

# Forecasting short run Gold Spot Prices in India using Mixed Frequency Models

Name of presenter: Varun Yadav Name of institution: IIM Ahmedabad

Presented at the conference by India Gold Policy Centre at IIM Ahmedabad Gold & Gold Markets 2020, February 7<sup>th</sup> and 8<sup>th</sup>

Venue: India Habitat Centre, New Delhi





### Agenda

- Introduction and Motivation
- Approach-Mixed Data Sampling
- Data
- Results
- Conclusion and way forward





#### Introduction and Motivation

- Bullion forecast used by consumers as well as investors
- Enhanced forecast accuracy has positive implications for market efficiency
  - Facilitates rational expectations
- Forecasting Techniques
  - Econometric
    - Non Structural(Reduced form)
      - ARIMA, ARIMAX, MLR, VAR
  - Non Econometric
    - Artificial Neural Networks, Genetic Algorithms, Particle Swarm Optimization etc.
    - Predictive rather than explanatory





#### Introduction and Motivation

- Traditional forecasting methods require that the dependent variable and predictors are available at same frequency(monthly, yearly quarterly etc.)
- We use aggregation/dis-aggregation to achieve same frequency (granularity!)
- Leads to loss of critical information available in high frequency data
- HF signals can be effectively leveraged to enhance forecast accuracy
- 2015 study by Hassani et al.: Many sophisticated methods unable to beat the random walk forecasts





### Approach-Mixed Data Sampling

- Consider a situation when independent variable(s) is/are sampled at a higher frequency than the dependent variable
- Month-end Gold Price forecast using daily Crude Oil Price, daily Stock Prices, daily Exchange Rate etc.
- MIDAS:Proposed by Ghysels et al.(2004)- Exposition by Armesto et al. (2010)
- Option1: Time Averaging the HF Variable

$$Y_t = \alpha + \sum_{i=1}^p \beta_i L^i Y_t + \sum_{j=1}^n \gamma_j L^j \bar{X}_t + \epsilon_t$$





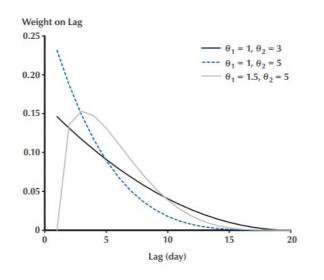
### Approach-Mixed Data Sampling

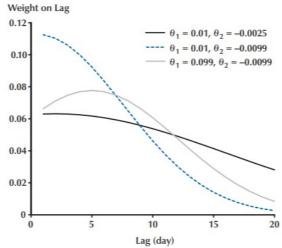
Option 2: Step Weighting

$$Y_t = \alpha + \sum_{i=1}^p \beta_i L^i Y_t + \sum_{k=1}^{n*m} \gamma_k L^k_{HF} X_t + \epsilon_t$$

Option 3: Mixed Data Sampling Regressions

$$Y_t = \alpha + \sum_{i=1}^p \beta_i L^i Y_t + \gamma \sum_{k=1}^m \Phi(k;\theta) L^k_{HF} X_t + \epsilon_t$$




### Approach-Mixed Data Sampling

 One of the most frequently used parametrization is exponential Almon lag function(usually 2 parameters)

$$\Phi(k;\theta) = \frac{exp(\theta_1k + .... + \theta_Qk^Q)}{\sum_{k=0}^{K} exp(\theta_1k + .... + \theta_Qk^Q)}$$









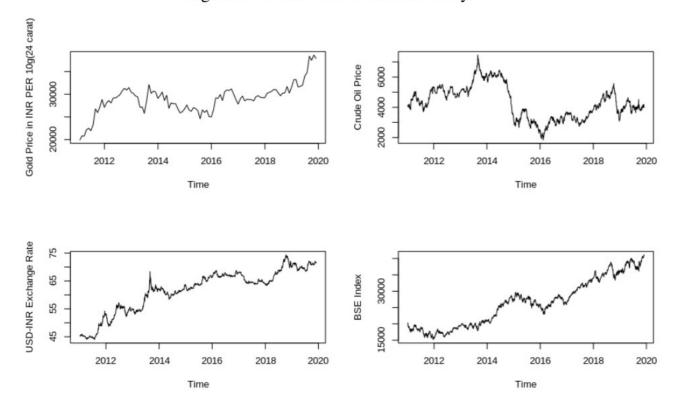
#### Data

• Period: 01-January 2011 to 30-Nov-2019

| Data/Variable        | Frequency | Source          |
|----------------------|-----------|-----------------|
| Gold Price(Real-     | Monthly   | MCX portal      |
| Inflation adjusted)  | Wionany   | MCA portar      |
| Crude oil price      | Daily     | MCX portal      |
| Stock Index(BSE Sen- | Daily     | BSE portal      |
| sex)                 |           |                 |
| Exchange Rate(USD    | Daily     | DDI DDIE portol |
| INR)                 | Daily     | RBI DBIE portal |

Table 1: Variables used, frequency and data sources

| Data/Variable                 | Transformation             |  |
|-------------------------------|----------------------------|--|
| Gold Price(Real-Inflation ad- | No transformation required |  |
| justed)                       |                            |  |
| Crude oil price               | First difference           |  |
| Stock Index(BSE Sensex)       | First difference           |  |
| Exchange Rate(USD INR)        | First difference           |  |


Table 2: Transformations on variables to achieve stationarity





### Data

Figure 1: Plot of variables under study

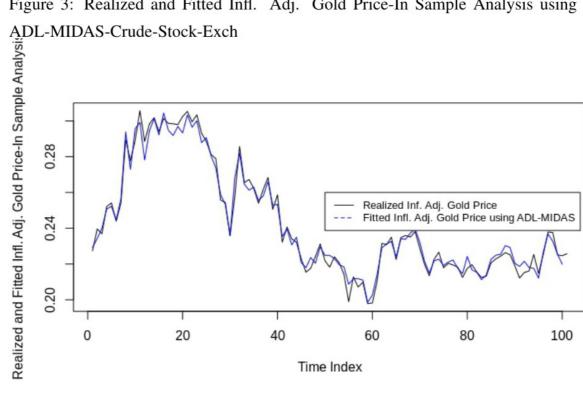






• In Sample forecast Accuracy(Fitted)
Period:

| In Sample RMSE for forecasts using different model specifications |         |  |
|-------------------------------------------------------------------|---------|--|
| Method                                                            | RMSE    |  |
| ADL-MIDAS-Crude                                                   | 0.00984 |  |
| ADL-MIDAS-Stock                                                   | 0.00978 |  |
| ADL-MIDAS-Exchange                                                | 0.00964 |  |
| ADL-MIDAS-Crude-Stock-Exch                                        | 0.00946 |  |
| ARIMA                                                             | 0.17215 |  |
| ARIMAX-Crude-Stock-Exchange                                       | 0.09923 |  |


Table 3: In-sample RMSE(Recursive)





In Sample(Fitted)

Figure 3: Realized and Fitted Infl. Adj. Gold Price-In Sample Analysis using

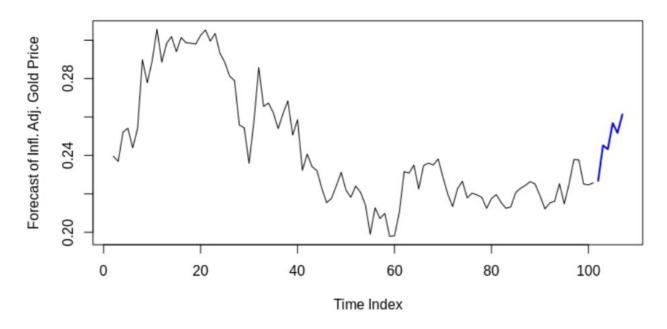






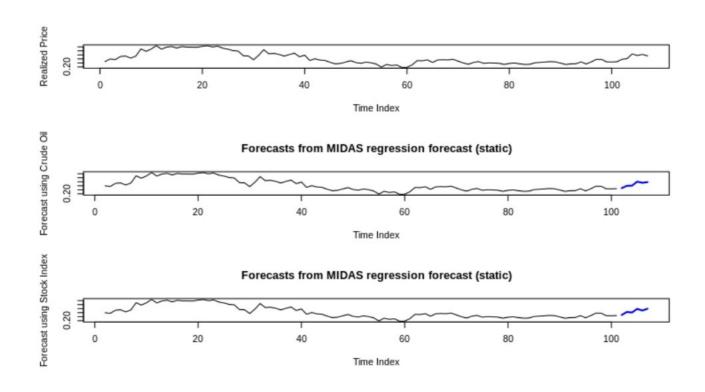
#### Out of sample forecast accuracy

| Out of Sample RMSE for forecasts using different model specifications |        |  |
|-----------------------------------------------------------------------|--------|--|
| Method                                                                | RMSE   |  |
| ADL-MIDAS-Crude                                                       | 0.0112 |  |
| ADL-MIDAS-Stock                                                       | 0.0118 |  |
| ADL-MIDAS-Exchange                                                    | 0.0112 |  |
| ADL-MIDAS-Crude-Stock-Exch                                            | 0.0109 |  |
| ARIMA                                                                 | 0.1921 |  |
| ARIMAX-Crude-Stock-Exchange                                           | 0.1012 |  |


Table 4: Out-of-sample RMSE for 6 month period from June-2019 to Nov 2019(Recursive)



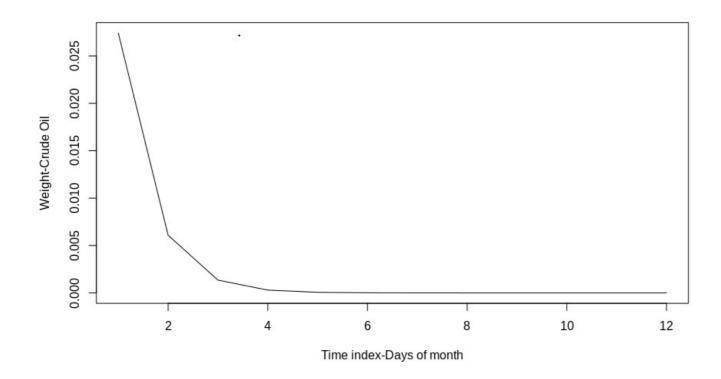



Out of sample forecast accuracy

#### Forecasts from MIDAS regression forecast (static)






Out of sample forecast accuracy







• Let us look at lag weights







- Most recent price of crude oil is the key determinant of the spot gold price
- Gold spot market is very sensitive to changes in crude oil prices
- Gold price rises as INR depreciates as compared to USD which confirms the hedging function served by gold
- Most recent exchange rate is not very important in this case
- Investors/consumers seem to take a long term view while forming expectations while considering exchange rate
- In the short term, gold prices are negatively related to stock prices which again corroborates the hedging role of the yellow metal





### Conclusion and Way Forward

- Enhanced forecast accuracy using Mixed Data Sampling Regression(MIDAS) models as compared to ARIMA and ARIMAX models
- We are using CPI value to get Inflation Adjusted Gold Price but..
- Casting the model in daily -hourly(for HF variables), although straightforward, may be of immense value for investors/traders
- Leverage the key strength of MF models: now-casting
- A real-time price forecasting application as HF signals evolve
- Adding more variables!





### References

- Armesto, M. T., Engemann, K. M., & Owyang, M. T. (2010). Forecasting with mixed frequencies. Federal Reserve Bank of St. Louis Review, 92(6), 521-36.
- Ghysels, E., Santa-Clara, P., & Valkanov, R. (2004). The MIDAS touch: Mixed data sampling regression models.
- Hassani, H., Silva, E. S., Gupta, R., & Segnon, M. K. (2015). Forecasting the price of gold. Applied Economics, 47(39), 4141-4152.





#### Note

For ease of exposition, some equations have been taken *ad verbatim* from the cited references

## Thank you..