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Amit Kumar Vatsa
Sachin Jayaswal

Abstract

Facility location problems reported in the literature generally assume the problem parameter values
(like cost, budget, etc.) to be known with complete certainty, even if they change over time (as in
multi-period versions). However, in reality, there may be some uncertainty about the exact values of
these parameters. Specifically, in the context of locating primary health centers (PHCs) in developing
countries, there is generally a high level of uncertainty in the availability of servers (doctors) joining the
facilities in different time periods. For transparency and efficient assignment of the doctors to PHCs, it is
desirable to decide the facility opening sequence (assigning doctors to unmanned PHCs) at the start of the
planning horizon. For, this we present a new formulation for a multi-period maximal coverage location
problem with server uncertainty (MMCLPSU). We further demonstrate the superiority of our proposed
formulation over the only other formulation reported in the literature. For instances of practical size, we
provide Benders’ decomposition based solution method, along with several refinements. For instances
that CPLEX MIP solver could solve within a time limit of 20 hours, our proposed solution method turns
out to be of the order of 150 - 250 times faster for the problems with complete coverage, and around
1000 times faster for gradual coverage.

Keywords: Facility Location, Primary Health Centers, Benders’ Decomposition

1 Introduction and literature review

A discrete facility location problem (FLP) is the problem of finding the optimal (defined with respect
to certain objectives) subset among a given set of candidate facility locations. FLPs have been widely
used/studied in the context of schools (Antunes & Peeters, 2001), hospitals (Baray & Cliquet, 2013), banks
(Wang et al., 2002), distribution centers (Klose & Drexl, 2005), fire stations (Schilling et al., 1980). These
problems mostly assume user demand and facility /transportation cost as given and constant. However, when
problem parameters like user demand or facility/transportation cost change over time, an optimal facility
location decision in one period may become sub-optimal in future periods. In such a situation, the optimal
facility location decision needs to be revised with time according to changes in the demand/cost. However,
revisiting facility location decisions in future periods may involve relocating/closing facilities opened in earlier
periods, which are generally costly, and may even be prohibitive in many cases. So, when problem parameters
are expected to change with time, a better idea is to plan ahead for more than one period. This gives rise

to multi-period FLP (MFLP), with parameter values changing over periods.
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Several variants of MFLP have been studied in the literature since its introduction by Ballou (1968).
Wesolowsky & Truscott (1975); Melo et al. (2006) present the problem with constraints on location and
relocation of facilities. Dias et al. (2006, 2007, 2008) consider MFLPs where facilities can be closed and
reopened. Wesolowsky & Truscott (1975); Saldanha da Gama & Captivo (1998); Canel et al. (2001) study
the problems where closing of facility involves capital expenditure. Erlenkotter (1981); Shulman (1991);
Canel et al. (2001); Melo et al. (2006); Dias et al. (2007); Thanh et al. (2008), among others, have studied
MFLP where facility capacities change over time. MFLPs with budget restriction have been studied by
Antunes & Peeters (2000, 2001); Wang et al. (2003); Melo et al. (2006); Ghaderi & Jabalameli (2013).
Antunes & Peeters (2000, 2001) have studied MFLPs with both budget and capacity constraints. Readers
are referred to a detailed survey by Boloori Arabani & Farahani (2012) on the literature in MFLPs.

Classical versions of FLP assume the problem parameter values (like demand, cost, budget, etc.) to
be known with complete certainty, even if they change over time (as in MFLP). However, in reality, there
may be some uncertainty about the exact values of these parameters. Averbakh & Berman (1997); Chen &
Lin (1998); Vairaktarakis & Kouvelis (1999); Averbakh & Berman (2000); Killmer et al. (2001); Burkard &
Dollani (2002); Albareda-Sambola et al. (2011); Berman & Wang (2011) have accounted for the uncertainty
in demand in MFLP. Uncertainty in cost has been considered by Chen & Lin (1998); Vairaktarakis &
Kouvelis (1999); Burkard & Dollani (2002). Uncertainty may also arise with respect to the availability of
servers/resources. This is generally true in case of locating Primary Health Centers (PHCs), which are single
doctor clinics meant to provide very basic health care in rural areas in developing countries. Due to acute
shortage of doctors in rural areas, many of these PHCs temporarily function without any doctor. Moreover,
there is a high degree of uncertainty regarding the number of doctors that will be available to join these
PHCs in any given period. Such uncertainty in the availability of servers/resources has not received much
attention in the extant MFLP literature. Current et al. (1998) consider a situation where the final number
of facilities to be sited is uncertain. They use a minimax regret approach to find the initial set of facilities
for a p-median FLP. However, their work does not consider multiple time periods. Vatsa & Ghosh (2014),

to the best of our knowledge, is the only paper to consider such an uncertainty in the context of MFLP.

In the current paper, we study a MFLP with uncertainty in the number of servers (doctors) available in
each period of the planning horizon. Through this paper, we make the following contributions to the scarce

literature on MFLP with uncertainty in server availability:

1. We present a formulation of the problem, which we show to be stronger than the only other formulation

available in the literature.

2. We present a Benders’ decomposition based exact solution method, and refinements thereof, to solve

realistic problem instances.

The remainder of the paper is organized as follows. Section 2 describes the problem in detail, followed by
mathematical models and their comparison with the existing models in the literature. Section 3 presents a
Benders’ decomposition based solution approach, followed by computational experiments in section 4. The

paper concludes with a summary and directions for future research in section 5.
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2 Problem Description

The problem described in this section is motivated by the one faced by the district administrations in provid-
ing primary health care facilities to the rural population in developing countries. World Health Organization
(WHO), through its Alma-Ata declaration (1978), expressed the need for a Primary Health Center (PHC)
for every 30,000 population in the plain areas and for every 20,000 in tribal and hilly areas. However, achiev-
ing this target (set by the Alma-Ata declaration) has been a challenge in most of the developing countries,
largely due to shortage of doctors and increasing population (Walley et al., 2008; Rohde et al., 2008). Con-
sequently, there is generally a shortage of PHCs. In many cases, even if PHCs exist, many of them remain
unmanned due to shortage of doctors. When doctors do become available over a period of time, the challenge
facing the district administration is to find the best sequence of unmanned PHCs to assign the doctors to,
so as to cover the maximum population over the entire planning horizon. For transparency in policy making
and implementation, it is essential that this sequence of opening the PHCs (assigning doctors to unmanned

PHCs) be pre-decided at the start of the planning horizon.

To describe the problem setting, we assume a planning horizon consisting of discrete time periods ¢t €
T ={1,2,...,|T|}. Further, we consider a district, which is divided into population zones (e.g., villages), each
of which is represented as a node i € I = {1,2,...,m}. Let j € J ={1,2,...,n} denote any PHC without an
assigned doctor. J° is the set of PHCs that are manned with doctors at the beginning of planning horizon,
ie,, at t = 0. In the rest of the paper, we use the term “candidate facility” to refer to a PHC without
an assigned doctor at ¢ = 0. Let §;; be the distance between population zone ¢ and candidate facility j.
Opening a PHC at j covers the entire population at node ¢ if it is within a given distance dy from the node,
i.e., 0;; < 6o. We use a parameter a;; = 1 if facility j is within the covering distance dg from demand node
i, 0 otherwise. We use N; to denote the set of candidate facilities that can cover a demand node i, i.e.,
N; ={j € J : a;; = 1}. Let d;; represent the population (demand) at node 7 in time period ¢. If the exact
number of doctors (henceforth called servers) that will become available to join PHCs in each period of the
planning horizon were known with complete certainty, then the district administration would ideally like to
assign them to the PHCs so as to maximize the total population covered over the planning horizon. This
is a classical Multi-period Maximal Covering Location Problem (MMCLP), as introduced by Gunawardane
(1982).

Generally, the exact number of doctors that will become available to join PHCs in each period of the
planning horizon is uncertain. We describe the uncertainty in the server availability using a parameter
prs to represent the number of new servers that become available at time ¢ under scenario s € S. Let
¢} be the maximum population that could have been covered in scenario s (by solving the corresponding
MMCLP). Then, regret from a proposed solution in any scenario is defined as the difference between the
maximum population that could have been covered (¢¥) and the population actually covered using the
proposed solution. In presence of server uncertainty, a plausible objective of the district administration is to
find the sequence of opening candidate facilities (assigning doctors to unmanned PHCs) that minimizes the
maximum regret across all possible server availability (doctor joining) scenarios. We refer to the resulting
problem as Multi-period Maximal Covering Location Problem under Server Uncertainty (MMCLPSU). We

summarize below the list of notations used to define the problem:

T: Set of time periods in the planning horizon, t € T
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ps: Number of new servers that become available at time ¢ under scenario s

I: Set of demand nodes, i € {1,2,...,m}

d;¢+: Demand of demand node ¢ in time period ¢

J: Set of candidate facility locations, j € {1,2,...,n}

JP: Set of initially open facilities

d;5: Distance between demand node ¢ and candidate facility j

do: Covering distance such that candidate facility j is said to cover node 4 if §;; < &g

a;;: 1 if facility j is within the covering distance dy from demand node 4, 0 otherwise

N;: Set of candidate facilities that can cover a demand node 4, i.e., Ny ={j € J: q;; = 1}

S

(¥ Maximum demand that can be covered in scenario s over the complete planning horizon

To mathematically model the problem, we define the following decision variables:

yjes: 1 if candidate facility j is open in time period ¢ under scenario s, 0 otherwise

T;ts: 1 if demand node 7 is covered in period t under scenario s, 0 otherwise

rj: 1if facility j is {** (1 € {1,2,...,n}) in the sequence of opening facilities, 0 otherwise

Using these variables, the objective function of MMCLPSU can be defined as min mag{( ¥ —
se

i€l teT

Yo Y diips )

With the above notations, MMCLPSU, as presented by Vatsa & Ghosh (2014), can be mathematically stated

as follows:

[MMCLPSU-V&G:]

Min 6
s.t. 0 Z C: — ZZditl‘itS
i€l teT
Tips < Z Yjts + Z Qi
JEN; jeJb
Zyjts = Zpt’s
jeJ <t
>, ra=1
le{1,2,...,n}
dora=1
jeJ
Z Irj; < Zpt’s +n (1= yjis)
le{1,2,...,n} t'<t
O S Tits S 1
0>0
yjts S {07 ]-}
rji € {0,1}
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(1) and (2) together help linearize the above described objective function (min maSX{C =30 > dixas ). CE
s€ i€l teT
is the maximum coverage possible in a given scenario s € S. It’s values is obtained by solving (12) - (17), as

given below, which is an MMCLP. Constraint set (3) ensures that any demand node is covered in any period
and scenario only if atleast one open facility exists within its covering distance. Number of open facilities
in any period and scenario is specified by (4). Constraint sets (5) and (6) ensure that each facility is given
a unique rank in the sequence. Constraint set (7) relate the variables rj; and y;;s using the condition that
a facility at j will be open in period ¢t and scenario s (y,is = 1) only if the rank of the facility j is less than
or equal to the total number of new servers that become available till period ¢ in scenario s. Even though,
Zits are binary, Vatsa & Ghosh (2014) show that relaxing them as continuous variables leaves the solution to
MMCLPSU unchanged. Hence, constraint set (8) relaxes z;:s as continuous variables. Constraints (9)-(11)

are the non-negativity and binary constraints.

[MMCLP]
Max Co= Y ) diwiss (12)
i€l teT
St Tijps < Z Yits T Z Qij Viel,teT (13)
JEN; jeJ®

Yjts = Yjt—1)s Vi e JiteT\{1} (14)
Zyjts - Zpt’s VteT (]_5)

jeJ <t
0<mwys <1 Viel,teT (16)
yjes € {0,1} VjeJteT (17)

Constraint set (14) in MMCLP ensures that a facility once opened remains open throughout the planning
horizon. Such a constraint is also required for MMCLPSU, but is already implied by the use of sequence

variable r;;.

For a problem with m demand nodes, n candidate facilities, and |T'| time periods, the total number of
scenarios |S| = ("+n|T|) = (;L!'E‘TT“))!!. For MMCLPSU-V&G, this results in n|T||S| + n? binary (for yjis, 1)
and m|T||S| continuous (for x;s) variables, and |S| + (m + n + 1)|T||S| + 2n constraints. For example,
m = 100, n = 15, |T| = 4 results in |S| = 3,876 scenarios and 232,785 binary and 1,550,400 continuous

variables, and 1,771, 362 constraints (excluding binary and lower/upper bound constraints). Although using

scenario dominance conditions, Vatsa & Ghosh (2014) are able to reduce the problem size considerably,
the problem is still difficult to solve, taking around 40 hours in some instances. We, therefore, present an
alternate formulation for MMCLPSU, which results in fewer variables and constraints. We further show that
our formation is better than MMCLPSU-V&G.

To introduce our formulation, we define a new set of decision variables z;; = 1 if candidate facility j is
one among the k € {0,1,...,n} candidate facilities that have been opened during the planning horizon, 0
otherwise. Clearly, the number of candidate facilities opened depends on the time period ¢ of the planning

horizon and the server availability scenario s, given by the relation k = ) pys. The variable z;;, is related
<t

to the variable y;;, and rj in MMCLPSU-V&G as follows:

Zjk = Yjts VieJteT,seS:k=>Y py (18)

v <t
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Zjk = Zj(k—1) = Tjk Vjie Jke{l,2,.,n} (19)

The variables zji, by definition, should satisfy the following relations:

Zjk 2 Zj(k—1) VieJ ke{l,2,..n} (20)
> zk=k vk € {0,1,2,..n} (21)
jEJ

For an example, consider a solution with z;;, values as given in table 1. The sequence of opening the 5 facilities
in this example is B-D-E-A-C. With a server availability scenario s, if 2 new servers become available by

the end of time ¢, i.e., > pys = 2, then the two candidate facilities to be opened will be B and D, i.e.,
<t
ZB2 — Zp2 — 1, while ZA2 = 202, RE2 — 0.

Table 1: An example with variable z;i

Total Open (k)
k=0 k=1 k=2 k=3 k=4 k=5

With the above variable definition, MMCLPSU can be mathematically restated as follows: [MMCLPSU:]

A 0 0 0 0 1 1
B 0 1 1 1 1 1
Facilities C 0 0 0 0 0 1
D 0 0 1 1 1 1
E 0 0 0 1 1 1

(1),(2),(8),(9),(20), (21)

Tits < szk+zaij Vie[,tET,SES:k:Zpt/s (22)
JEN; jEJP <t
2k € {0,1} VieJke{0,1,2 . .n} (23)

Constraint set (22) ensures that any demand node is covered in any period and scenario only if atleast one
open facility exists within its covering distance. This combines (3) and (18). Like MMCLPSU-V&G, we
are relaxing ;s as continuous variables (in (8)) since doing so leaves the solution to the model unchanged.
Table 2 provides a comparison of the resulting model size for MMCLPSU versus MMCLPSU-V&G. m =
100,n = 15, |T'| = 4 results in |S| = 3,876 scenarios and only 240 binary variables and 1,554,517 constraints
(excluding binary and lower /upper bound constraints), as opposed to 232, 785 binary variables and 1, 771, 362
constraints in case of MMCLPSU-V&G. The number of continuous variables remains the same. Moreover,
constraint set (21) fixes z;o to 0 and z;,, to 1 Vj € J, further reducing the computational effort in MMCLPSU.
We now show mathematically that MMCLPSU better than MMCPLSU-V&G.

Table 2: Comparison between MMCLPSU-V&G and MMCLPSU formulations

MMCLPSU-V&G MMCLPSU
No. of binary variables n? +n|T||S| n?+n
No. of continuous variables m|T||S]| m|T||S|
No. of constraints IS+ (m +n+D)|T||S|+2n |S|+m|T||S]+n*+n+1
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Proposition 1. Ppp(MMCLPSU) C Ppp(MMCLPSU-VE&G), where Prp(.) is the polyhedron of the LP

relazation of (.)

Proof. Given a solution [é,i,é] obtained by LP relaxation of MMCLPSU, we can construct a variable

Tik = éjk — 2j(k—1) Vie J ke {172, 7n} Now,

D= k=Y Fu-n=k—(k—1)=1 [+) %y =k using (21)]
J J J

jeJ
erk = Zi’jk - Z éj(kfl) =Zjp — 2j0 =1 [ Zin =1 and Zjp = 0 using (21) and LP
k>1 k>1 k>1

relaxation of (23)]

Hence, rj; satisfy constraint sets (5) and (6) of MMCLPSU-V&G. Now, we substitute y;;s with Zjp,
where k = 7 pps, and check if [2,#, 6] satisfies other constraints of MMCLPSU-V&G. Constraint (7),

t'<t
ie., oo lrp < Y prs+n(l—yjus) ViedJteT, seS, wil be satisfied by (2, z, 6] if:
le{1,2,...,n} <t

> krj—n(l—yje) <D pre VjEJteT,s€S (24)
E>1 <t

or, > k(Zjk—Zjg-n)—n(l—Z) <k VieJke{0,1,2,..n}:k=> py, (25)

E>1 <t

or, [ﬁjl — 2]'0} + [22]'2 — 2£’j1] + ...+ [’I’Léjn - ’I’Lij(nfl)] +nZj < k+n Vi k (26)
or, néjn + Tl,éjk - éjO - éjl - éjg — ee — Aj(n_l) S k +n V_L k (27)
or, ’fbéjk — 2j1 — 2j2 — ... éj(n—l) < k V], k [ 2jn S ].7 2j0 S 0] (28)
or, né’jk — 23‘1 — 2j2 — .. ZA’j(nfl) - Z/Ejn < k—1 Vj, k [ 2]’71 = 1] (29)

or, (Zjx—2j1)+ GGjr — &j2) + ..+ (Zjk — éj(k—l)) <k-1+ (2j(k+1) — Zjk) + ..
v+ (i — Zjk) Vi k (30)

Since Zjx > Zjk—1) Vj,k > 1 (using (20)), each of the terms within parenthesis in the last inequality lies
between 0 and 1. Since there are k — 1 terms on the left hand side (LHS) of the inequality (30), LHS cannot
be greater than k — 1. The right hand side is kK — 1 4+ some non-negative terms. Hence, the inequality (30)

holds true. Consequently, the inequality > lrj < > pys +n(l —ys) Vi€ Jt€T,s €S, is satisfied by
1 <t

2,#,6]. Further, constraint set (3) of MMCLPSU-V&G is the same as (22) of MMCLPSU (replacing ;.

with z;i, where k = ) pys). Therefore, [2, Z, 0] is a feasible solution to LP relaxation of MMCLPSU-V&G.
1<t

It follows from (18) that different combinations of scenario s and time ¢ in MMCLPSU that result in the

same number k = > py, of open facilities, will always have the same value for the variable y s Vj € J.
<t
However, this is not true for MMCLPSU-V&G. This implies that a solution that is feasible to the LP

relaxation of MMCLPSU-V&G may not be feasible to the LP relaxation of MMCLPSU. We now prove that

this is indeed true.
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Summing over j € J the constraint set (7) in MMCLPSU-V&G, we get:

Syite <3 pest+(n-1)/2 VteTses (31)
J

t<t

Comparing (31) with constraint set (4) suggests that there must be at least one j for which constraint
(7) will be non-binding. Now, consider a period ¢; in scenario s1, and a period ¢2 in scenario sy such

that > prs, = D prs, = k. Let facility A be a facility under scenario s; and period t; for which
= /<ty
constraint (7) is non-binding. Assume a feasible LP relaxation solution of MMCLPSU-V&G that is also

feasible to the LP relaxation of MMCLPSU. This implies yat,s, = Yat,s, = 24k for that solution. Let
us generate another solution by increasing yas, s, by € (since (7) is non-binding for yaes,), where € is
an infinitesimal positive number. This will violate constraint (4) of MMCLPSU-V&G. Nonetheless, if we
simultaneously decrease yp,s, by the same amount €, where B is any candidate facility other than A, then
the solution remains feasible to MM CLPSU-V&G. However, this solution will not be feasible to MMCLPSU

since YAty s, + € 7{ YAtosy = éAk'

Thus, any solution to the LP relaxation of MMCLPSU is also a solution to the LP relaxation of
MMCLPSU-V&G. However, the converse is not true. O

Proposition 2. Z;,p(MMCLPSU) = Zpp(MMCLPSU —V&G), where Zpp(.) is the LP relazation based
lower bound of (.).

Proof. In Proposition 1, it is shown that the LP feasible region of MMCLPSU is a proper subset of the LP
feasible region of MMCLPSU-V&G. If we show that an optimal solution to the LP relaxation of MMCLPSU-
V&G falls in the LP feasible region of MMCLPSU, we will prove this proposition.

Consider an optimal solution [#*, §*, &*, é*] to the LP relaxation of MMCLPSU-V&G. Then, we have:
U5, < min [1,(k+n— Z lf;‘l)/n] (from (7) and (10)) (32)
1

Z@;‘m =k (from (4)) (33)

where k = ) pps. At optimality the objective of regret minimization ensures that variables y;;s take the
<t
maximum permissible values. Hence, every combination of scenario s and time ¢ such that k = > py, will
<t
have the same value of §, (say = Z;) Vj € J. Clearly, Zjx > 21y (from (32) and (33)). Furthermore,

> Zik = 2. Ujs = k (from (33)). All other constraints in MMCLPSU-V&G and MMCLPSU are similar.
J J

Ak Nk

Consequently, [#*, §*, &%, é*] is a feasible LP solution of MMCLPSU and therefore an optimal LP solution of
the MMCLPSU. O

It follows from Proposition 1 that MMCLPSU is a better formulation compared to MMCLPSU-V&G
even though both have the same LP relaxation based lower bound. This is highlighted using an example in
figure 1, which shows the LP feasible regions BC' and OABC corresponding to two alternate formulations,
let’s say f1 and f2, respectively. Clearly, Prp(f1) C Prp(f2), and both f1 and f2 have the same LP

bound at B. However, after the branching at the root node in a branch-and-bound tree, the feasible region

W.P. No. 2015-02-07 Page No. 9
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for f1 reduces to CG, while that for f2 reduces to OFGC and DAE. Clearly, f1 will never take more
computational effort in getting to the IP optimal solution G.

10
9

8

X, 5 [r—e— — — — — a—

%

Figure 1: An example of LP feasible region

Table 3 presents a comparison of the computation time taken by the two formulations for different
instances. Clearly, MMCLPSU solves the problem significantly faster. For example, for instance 2 with
n = 15,m = 100, and |T| = 4, the computation time required by MMCLPSU-V /&G is more than 11 times
that required by MMCLPSU. For instance 3, MMCLPSU-V /&G fails to solve the problem even after 20
hours of CPU time, while MMCLPSU solves it in close to an hour. For larger problem sizes, MMCLPSU-
V /&G fails to find the optimal solution for any of the 5 instances within the 10 hour time limit. MMCLPSU,
on the other hand, is able to solve all the 5 instances within the time limit. However, the CPU time required
to solve instances with n = 15, m = 200, |T| = 4 is significantly large even for MMCLPSU, the maximum
being close to 8 hours. For larger instances, MMCLPSU will clearly find it difficult to solve the problem
to optimality within a reasonable time limit. In section 3, we, therefore, present a Benders’ decomposition

based solution approach to speed up the solution process.

Table 3: Comparison between MMCLPSU-V /&G and MMCLPSU

Problem Size Instance CPU(s) (MMCLPSU-V/&G) CPU(s) (MMCLPSU)

n=15m =100,|T| =4 1 2054.8 2514
2 70710.4 6029.7
3 * 3693.3
4 * 7891.4
5 1810.0 229.3

n=15m = 200,|T| =4 1 * 28644.5
2 * 9062.8
3 * 4670.8
4 * 27265.0
5 * 7397.1

* Could not be solved in 20 hours

e
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2.1 Gradual coverage

In MMCLPSU, we assumed a particular facility j can either cover or not cover a demand node ¢ depending on
whether the node i lies within or outside the covering distance from j. Accordingly, we defined a parameter
a;; = 1 if facility j can cover demand node 4, 0 otherwise. However, in most of the situations, the coverage
does not change so abruptly. There is instead a range of distance, between a minimum and a maximum
covering distance (§,,in and d,,4, ), within which the coverage reduces gradually with distance. Such a gradual
coverage is considered by Church & Roberts (1983); Berman et al. (2003); Karasakal & Karasakal (2004);
Berman et al. (2010). However, none of them consider multi-period planning horizon or server uncertainty.
We now generalize MMCLPSU by allowing for gradual/partial coverage of a demand node if it lies between

Omin and Opq, from an open facility.

For the complete coverage version of MMCLPSU, it was sufficient to know whether a demand node ¢
was covered or not in a given time and scenario. Accordingly, we defined a variable x;;;. However, such a
variable definition is not sufficient to model the gradual coverage since to determine the level of coverage of
a node 1, it is also important to know which specific facility covers it. Accordingly, we now define a variable
x;jts = 1 if the demand node ¢ is covered (fully or partially) by facility at j in period ¢ and scenario s, 0
otherwise. In this problem, the coverage function can take fractional values if the demand node i is within
Omin and dpmae from facility at j, i.e., a;; € [0,1]. Similarly, we redefine IV; as the set of candidate facilities
that are within the maximum covering distance d,,4, from demand node i. We also define N;’ as the set
of facilities open at the beginning of the planning horizon that lie within d,,4, of node i. The resulting
problem, which we refer to as Multi-period Maximal Coverage Location Problem under Server Uncertainty
with Partial coverage (MMCLPSU-P), can be formulated as follows:

[MMCLPSU-P/]
Min 6 (34)

s.t. 0> C: — Z Z Zai]’dit%z‘jts Vse S (35)

1€l jeN;UN} teT

Tijts < Zjk Vz’eI,jeNi,VteT,seS:k:Zpt/s (36)
t'<t

> wis <1 Viel,teT,seS (37)
jeNiUN;’
Zjk 2 Zj(k—1) Vje Jke{l,2, ..n} (38)
szk =k vk €{0,1,2,...n} (39)
jeJ
Tijts = 0 Viel,je NNUN)teT,se S (40)
6>0 (41)
z, € {0,1} VjeJke{0,1,2,.n} (42)

(34) and (35) help linearize the objective of minimizing the maximum regret, similar to MMCLPSU for-
mulation above. ¢} is the maximum coverage possible in a given scenario s € S. It’s value is obtained by
solving (43) - (49), as given below, which we call as Multi-period Maximal Covering Location Problem with
Partial coverage(MMCLP-P). Constraint set (37) ensures that a demand node is covered by at most one

open facility. (38) and (39) are the same as (20) and (21). x;j+s, which by definition is a binary variable, can

L I——
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be relaxed as a continuous variable (Vatsa & Ghosh, 2014). Since z;j;s < 1 is already implied by (37), con-

tinuous relaxation of binary z;j:, is stated as (40). (41) and (42) are non-negativity and binary constraints.
Clearly, MMCLPSU is a special case of MMCLPSU-P when 6,,in = dmaz-

[MMCLP-P]
MaX Cs = Z Z Z aijditmijts (43)
icl jeJteT
s.t. Tijts < Yjts Vi € I,j S N,»,Vt eT (44)
> wis <1 Viel,teT (45)
jEquUN,ib

Zyjts = Zpt/s VteT (47)

jeJ t'<t
0 <z <1 Viel,je NNUN  teT (48)
Yjts € {Oa 1} v.] € J7t eT (49)

All the constraints of MMCLP-P are also implied in MMCLPSU-P. Here again, as in MMCLP, constraint set
(46) ensures that a facility once opened remains open throughout the planning horizon. Such a constraint

is redundant in MMCLPSU-P, as it is already implied by the use of sequence variable r;;.

Like MMCLPSU for the complete coverage, MMCLPSU-P is also a better formulation compared to the
formulation given by Vatsa & Ghosh (2014) for the problem with gradual coverage. This can be proven
along similar lines as done for MMCLPSU, and hence we skip the details. We now present the Benders’

decomposition based solution method for complete and gradual coverage versions of the problem.

3 Benders’ decomposition based solution method

Benders’ decomposition is a partition based solution technique, which has been applied to solve mixed integer
programming problems (Benders, 1962). It has been successfully applied to (multicommodity) network
design (Geoffrion & Graves, 1974), facility location (Wentges, 1996), and hub location (de Camargo et al.,
2009, 2011; Contreras et al., 2011). Costa (2005) provides a detailed review of application of Benders’

decomposition to the above problems.

In Benders’ decomposition method, the original problem is partitioned into a master problem and a
sub-problem. The master problem and the sub-problem are solved iteratively by utilizing the solution of one
in the other. The master problem contains a set of the complicating (integer) variables and their associated
constraints. The sub-problem is obtained by temporarily fixing the integer variables in the original problem
using the solution of the master problem. At each iteration, a relaxed master problem is solved to obtain a
lower bound. The sub-problem solution generates a Benders’ cut, which is added back to the master problem.
The master problem is completely defined when all possible Benders’ cuts are added to the problem. However,
in practice this is unnecessary, and at each iteration a relaxed master problem is solved, where only a subset
of all possible Benders’ cut is added to the master problem. For a minimization problem, relaxed master

problem solution at any iteration provides a lower bound to the original problem, while the sub-problem

e
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solution generates an upper bound. The Benders’ algorithm converges to an optimal solution for the original

mixed integer programming problem if such a solution exists.

We describe the Benders’ decomposition based solution method as applied to MMCLPSU in section 3.1,
and MMCLPSU-P in section 3.2.

3.1 Complete coverage

As shown by Vatsa & Ghosh (2014), removal of the set .J® of pre-existing facilities, if any, along with the
demand nodes that they cover does not affect the optimal objective functional value of MMCLPSU. We use
this result to eliminate set J® from further consideration in MMCLPSU. By fixing the binary variables z;j

as Zj, we obtain the following primal sub-problem:

[MMCLPSU-PSP;]

Min 6 (50)
st 04> > duwis > ( Vs €S (51)
i€l teT
Tits < Y Zjk VielteT,seS: k=Y pys (52)
JEN; t'<t
Tips < 1 Viel,teT,seS (53)
0,25 >0 Viel,teT,seS (54)

Let ag, Bits and pis be the dual variables associated with the constraint set (51), (52) and (53) respec-

tively. The dual of this problem can be formulated as follows:

[MMCLPSU-DSP]

Max ZC Qg — Zzzpzts ZZZ ths Z ij k= Z Dy (55)

ses i€l teT sesS i€l teT seSs JEN;

s.t. digas — Bigs — pits <0 Viel,teT,s€S (56)
da<1 (57)
sES
O, Bitsy Pits > 0 Viel,teT,seS (58)

Let H denote the set of all extreme points of MMCLPSU-DSP. For each extreme point h € H, we denote
the corresponding values of the dual variables as af, ﬂzhts, pfts, and the corresponding values of the primal

variables as 7, _, 0". The Benders’ cut generated by the extreme point h to be included in the master problem

its?

is given by:

WZZC:OZZ_ZZZPZS_ZZZ ztszzjk k= Zpt/ (59)

seS i€l teT scS i€l teT seS JEN;

D — ]
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Since the master problem deals with z;; variables, rearranging the last term of (59) gives the following

alternate representation of the Benders’ cuts:
% _h h h
N Gar =33 3 A= 2.2 D | D Bt | k= oo (60)
seS i€l teT s€S jeJteT seS \ieN; <t

where N; is the set of demand nodes that can be covered by any candidate facility j, i.e., N; = {i € I :

a;j = 1}. The master problem can be stated as follows:

[MMCLPSU-MP:]

Min 7 (61)
st Zjk 2 Zj(k—1) ViedJk>1 (62)
> zk=k VE € {0,1,...,n} (63)
jeJ
N Gy =3 3> = > D DB |z VheH k=) pus  (64)
s€S i€l teT seS JEJtET s€S \iEN; <t
zir € {0,1},7 >0 Vje Jke{0,.,n} (65)

Proposition 3. The primal sub-problem MMCLPSU-PSP is always feasible and bounded for any feasible
solution Z;, of the MMCLPSU-MP.

Proof. A feasible solution to the master problem at any iteration provides a facility opening sequence,
indicated by the values of Z;;. Such a sequence obtained from the master problem also conveys the set
of facilities open, and hence the coverage of each demand node (defined by the value of the variable x;),
in each time period ¢ and scenario s. Hence, a feasible solution to a master problem always produces a
feasible solution to the corresponding sub-problem. This feasible solution can be used to calculate overall
coverage and regret in each scenario s. Using the regret value in each scenario, objective function value of
the sub-problem, which is the maximum regret across all scenarios, can be obtained. Since the regret in any
scenario, and hence the maximum among them, is finite, the optimal solution to the sub-problem is always
bounded. O

We now give propositions to efficiently solve MMCLPSU-DSP since it needs to be solved iteratively in

the Benders’ decomposition framework.

Proposition 4. For a given solution zj, to MMCLPSU-MP, algorithm 1 gives an optimal solution to
MMCLPSU-DSP.

Proof. First, we prove that algorithm 1 gives a feasible solution to MMCLPSU-DSP. Clearly, steps 1 and
2 give an optimal solution to MMCLPSU-PSP. The solution to MMCLPSU-DSP is obtained in steps 3
to 6 using complementary slackness conditions between MMCLPSU-PSP and MMCLPSU-DSP. Applying
complementary slackness condition to (51) gives: (0 + > > diywis — (F)as =0 Vs € S. This, together

i€l teT
with (57) gives as feasible solution ae = 1, where £ = argmax((F — > > duxis) and as = 0 Vs € S\E
seS i€l teT

in step 3. Further, complementary slackness condition on constraint set (53) in step 4 gives p;s = 0 when

L —
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Algorithm 1 Solution algorithm for MMCLPSU-DSP
1. set xys <~ min(l, > Zj) Viel,teT,se S, where k= ) pys;

JEN; t/<t
2: 0 < max ({;‘ -3 > ditxits> , & «+ argmax (C;‘ -3 3 ditxits) Ties can be broken arbitrarily;
s€S i€l teT ses i€l teT
3 set ag + Las 0 Vs e S\
4: if x5 == 0 then set pys + 0, Biys +— dyas Vie I, t €T s € S;
5: else set Bis < 0, piys + dyyas Vie [, teT,s€ S,
6: end if
7. output ag, Bits, pits Vi€ It €T, s € S.

Zigs =0 Viel, teT,s€S. Byus is obtained in step 4 using the values of a; and p;is in (56) and exploiting
the fact that (56) is binding at optimality. On the other hand, when x;; # 0, step 5 gives feasible values for

Bits and p;s using (56). The intuition behind this step comes from the interpretation of the dual variables.

We now show that this solution is optimal. From steps 3, 4 and 5, ag = 0, Bizs = 0, pits = 0 Vs € S\¢.
Hence, with the solution found in algorithm 1, the objective function of MMCLPSU-DSP, given by (55), can

be expressed as:

ZZPzt& —ZZ Bite Z Zjk: k= Z Rz (66)

i€l teT i€l teT JEN;

It can be seen from steps 4 and 5 that 3¢ indicates the demand that is not covered, while p;+¢ indicates the
demand that is covered at demand node ¢ in period ¢ and scenario . Consequently, the first two terms in

(66) together give the regret in scenario £, which from step 2 is equal to 6. Hence, (66) can be restated as:

0 — ZZ 611&5 Z ij: k= Z Dire (67)

i€l teT JEN;

Moreover, from step 4 it is evident that ;¢ takes a non-zero value only if e =0 = > Zjx =0
JEN;

(from step 1). Consequently, the second term in (67) equates to zero. Hence, the objective function value

of MMCLPSU-DSP is equal to @, which is also the objective function value of MMCLPSU-PSP. Since this

dual solution is feasible, it must be optimal. O

Corollary 4.1. The Benders’ cut (64) can be expressed as:

n>0"— ZZ Zﬁngh Zjk: k= Zpt,gh Vh e H (68)

jeJ teT \i€N;

where, £" is argmax (C: -3 dz‘t%‘ts) associated with the extreme point h.
ses i€l teT

Proof. This follows directly from substituting the values of dual variables in (67), using z;; as a variable,

and rearranging the terms. O

e
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Proposition 5. Let s; and sy be any two scenarios in step 2 of algorithm 1 such that 0 = C5 —>_ > diTis, =

i€l teT
om0 D, duTiys, and Y pps, < Y pys, V€T, then § < sy cannot provide a weaker Benders’ cut
i€l teT <t <t
than & < s1.

Proof. Clearly, from step 1, we know that MMCLPSU-PSP has a unique optimal solution for a given solution
Zjr to MMCLPSU-MP. Let that solution to MMCLPSU-PSP be Zits, 0. However, MMCLPSU-DSP may
have multiple optimal solutions corresponding this primal optimal solution (depending on the choice of £ in
step 2 of algorithm 1). Let two such optimal solutions be associated with the extreme points hy and ho of
MMCLPSU-DSP. Let oft, gl pht and ol2, g2 o2 be the optimal solutions to MMCLPSU-DSP at the
extreme point h; and hy. Further, let £ < s; at the extreme point hy and £ < s2 at extreme point hy (in

step 2 of algorithm 1) such that 0" = (¥ — 3 S dyall = ¢, — 2 3 dual?, = 0" = 0 (let’s say).
i€l ieT i€l teT

Then, the Benders’ cut n > 6"z — 3= 3 ( > thﬁh2> Zjk: k= Z Pyre is no weaker than the Benders’ cut
JEJLET \iEN;

n>m - [ ztfh1> Zik: k= 5 pyreny if (Magnanti & Wong, 1981):
JEJLeT \i€N; t/ <t

- ZZ 'Ltsl Z Zjk: k= Z R <o — ZZ zt52 Z Zjk: k= Z Dirsy (69)

i€l teT JEN; i€l teT JEN;

Since, 8" = 62, the above condition reduces to:

22 (B 2 zibe ke g w220 | Pila D 2k ke 2 (70)
t' <t el teT t/ <t

i€l teT JEN; JEN;

We now prove that (70) is indeed true. For this, let > pys, = ki and > pps, = k; Vet € T. It is given
<t <t

that k; < ki Vt € T. Also, (from (62)), we get zj(p—1) < zjx Vj € J,k € {1,2,...,n}. Hence, any feasible
solution to MMCLPSU-MP should satisty: z;x, < zjr; Vj € J,t € T. Therefore, step 1 of algorithm 1 gives
the following relation: x5, < @is, Vi € I,t € T. This, together with steps 4 and 5 of algorithm 1, gives:
ﬁml > ﬁm Vi € I,t € T. This proves that (70) is true, which proves the proposition. O

3.2 Gradual coverage

By fixing the binary variables z;; as Z;, we obtain the following primal sub-problem:

[MMCLPSU-P-PSP;|
Min 6 (71)

s.t. 0> C: — Z Z Zaijditxijts Vse S (72)

i€l jeN; uN" teT

Tijes < Zjk Viel,je NyVteT,s€S k=Y pus (T3)
t/<t
> wis <1 VielteT,seS (74)
JEN;UN?

D — ]
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Tijts > 0 Viel,je NNUN) teT,seS (75)
6>0 (76)
Let o, Bijts and 7;s be the dual variables associated with (72), (73) and (74), respectively. The dual

sub-problem is formulated as:

[MMCLPSU-P-DSP]

Max ZC Qg — ZZZVHS Z Z ZZﬂz]tsZ]k k= Z Dyt g (77)

seS i€l teT seS i€l jEN,; teT seS
st aijdisos — Bijts — Yits < 0 Viel,j€e NNUN  teT,se S (78)
 a, <1 (79)
seS
s, Bijess Yits > 0 Viel,jEe NNUN) teT,s€ S (80)

Let N; be the set of demand nodes that can be covered completely or partially by any candidate facility
Jj,ie., N ={i€I:a;; >0}. The master problem can be formulated as follows:

[MMCLPSU-P-MP:]

Min n (81)
st Zjk 2 Zj(k-1) ViedJk>1 (82)
> zik=k vk e {0,1,...,n} (83)
jeJ
N2 o= > D =20 D | 2Bl |me VhEH: k=) pu.  (89)
ses i€l teT ses jeJteT ses 1€EN; t' <t
zjr € {0,1} Vie Jke{0,1,..,n} (85)

Proposition 6. The primal sub-problem MMCLPSU-P-PSP is always feasible and bounded for any feasible
solution z;y, of the MMCLPSU-P-MP.

Proof. This can be proved along similar lines as the proof for proposition 3. O

We now give propositions to solve MMCLPSU-P-DSP efficiently.

Proposition 7. For a given solution Zj, to MMCLPSU-P-MP, algorithm 2 gives an optimal solution to
MMCLPSU-P-DSP.

Proof. First, we prove that algorithm 2 gives a feasible solution to MMCLPSU-P-DSP. Let us define X;;s =
max  a;jTies Vi € I,t €T,s € S as the maximum level (fraction) of coverage possible for node ¢ in time
JEN;, UN

period t and scenario s. Xy, by this definition, is also equal to max a;;z;x Vi€ I,t € T,s € S, where
JEN,;U N

k = > pws, as shown in step 1. Clearly, steps 1 and 2 together solve MMCLPSU—P—PSP optimally. The
<t
solution to MMCLPSU-P-DSP is obtained in steps 3 to 6 using complementary slackness conditions between

MMCLPSU-P-PSP and MMCLPSU-P-DSP.

D — ]
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Algorithm 2 Dual sub-problem solution

1: set Xys < max a;Zj, Vie [,t€T,s€ S, where k= ) pys;

jENiUNib t'<t
2: 0 + max (C: -3 > d,»tXit8>, £ < argmax <§; -3 > ditXits). Ties are broken using proposition
s€S i€l teT ses i€l teT

5;
set ag = 1,0, 0 Vs € S\E, Bijes < 0 ‘v’iEI,jENib,tET,seS;
if Xj;s == 0 then set ;s < 0, Bijis < aijdigas, Viel,je NjteT,se€ S,
. else set s « Xisdivas and Bijus < max(0, ajdyos —vies) Vi€ I, jE Nt €T, s€S;
end if
. output o, Bijes, Vies Vi€ I, jENjteT,s€S.

N oo w

Applying complementary slackness condition to (72) gives: (0+ . > > duxijts —( )as =0 Vs €
i€l jeN;UN? teT

S. This, together with (79) gives as feasible solution a¢ = 1, where { = argmax(¢} — > > duXits)
SES el teT
and as = 0 Vs € S\¢ in step 3. X5 = 0, by its definition, implies z;;,s = 0 Vj € N; U N} for any

i€ l,teT,s e S. In step 4, the above result, together with the complementary slackness condition on
constraint set (74), gives vizs = 0 when X3 =0 Vi € I,t € T,s € S. Furthermore, ;s is obtained in
step 4 using the values of a; and 7,5 in (78) and exploiting the fact that (78) is binding at optimality. On
the other hand, when X;;s # 0, step 5 gives feasible values for ;s and p;;s using (78). The intuition behind
this step comes from the interpretation of the dual variables that an increase of one unit in the RHS of (74)
implies an improvement of X;;sd;tas in the objective function value (double counting demand covered at

node i in period ¢ and scenario s).

We now show that this solution is the optimal solution to MMCLPSU-P-DSP. With this solution obtained
using algorithm 2, MMCLPSU-P-DSP objective function (77) is expressed as:

0 — Z Z Zﬂijt&%k: k=5 o (86)

i€l jEN, teT

As in the problem with complete coverage, the second term of (86) evaluates to zero. This is because

Bijts takes a positive value only when zj; = 0, where k = ) py¢ (follows from steps 1, 4 and 5). Conse-
<t
quently, dual and primal objective function value are same (equal to #) and hence the algorithm 2 solves the

MULLPSU-P-2-DSP to optimality. O

Although ties in step 2 of algorithm 2 can be broken arbitrarily, breaking them using proposition 5 is
guaranteed to generate a Benders’ cut that is no weaker than any other Benders’ cut generated by breaking

ties arbitrarily. The proof for this is similar to that for proposition 5, and hence we skip the details.

Corollary 7.1. The Benders’ cut (84) can be expressed as:

n>6"— Z Z Z 5§;t€h Zjk k=X pn VhEH (87)
t/ <t

jeJteT \4ieN;

where, £" is argmax (C;‘ >3 ditXits> associated with the extreme point h.
ses i€l teT

e
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Proof. This follows directly from substituting the values of dual variables in (86), using z;; as a variable,

and rearranging the terms.
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3.3 Implementation of Benders’ decomposition cuts using callback

Benders’ decomposition described above in section 3 is the classical textbook version. In the classical im-
plementation of Benders’ decomposition, the master problem is solved to optimality at each iteration, which
becomes increasingly difficult with each successive iteration. The modern version of Benders’ decomposition,
therefore, uses an incumbent solution in the branch-and-bound search tree to be passed to the sub-problem
for Benders’ cut generation. This is facilitated by the flexibility provided by commercial solvers (like CPLEX)
to the users to intervene in the branch-and-bound tree search process (using callback in CPLEX). In this
framework, the master problem is solved to optimality only once. Moreover, the generated Benders’ cuts
are added to the master problem as lazy constraints. Bai & Rubin (2009); Fortz & Poss (2009); Botton
et al. (2013) have found this implementation to be more efficient than the classical version of Benders’

decomposition. We present the flowchart of this implementation of Benders’ decomposition algorithm in

figure 2.

Get an incumbent solution to
the master problem from
branch-and-bound search tree

Stopping No

criteria
met?

y

Invoke callback; get an integer
feasible solution Zj;

Get an optimal solution z;;,

: :

Solve the associated sub-
problem; report the solution

Solve the associated sub-problem;
generate a Benders’ cut

|

Figure 2: Flowchart for Benders’ decomposition implementation

4 Computational study

In this section, we describe the data generation scheme used for our computational experiments, followed by

discussion of computational results.

Add the Benders’ cut as a lazy
constraint. Generate stronger
Benders’ cut when possible using
proposition 5.
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4.1 Data generation

We use the following scheme to generate the data used in our computational study. The number of demand
nodes m € {200, 300,400, 500}. X and Y coordinates of all the demand nodes are generated as X ~ U|[0, 100]
and Y ~ U[0,100]. The number of candidate facilities n € {10,15,20}. These candidate facilities are
randomly selected as a subset of the m demand nodes. This gives us 12 (=3x4) problem sizes for both
MMCLPSU and MMCLPSU-P. In all our experiments, the set J? of open facilities at the start of the
planning horizon is assumed to be empty. Distance d;; between demand node i and candidate facility
location j is taken as the Euclidean distance \/(X; — X;)2 + (Y; — Y;)2. Covering distance in MMCLPSU
is fixed as dg = 20 for n = 10,15 and §y = 15 for n = 20. Maximum and minimum covering distances in
MMCLPSU-P are fixed as d,,0. = 30 and d,,,;,, = 20 for n = 10,15, while 0,4, = 25 and &, = 15 for

n = 20. Coverage is assumed to decrease linearly between 6§, and 0,4z, implying the following coverage

function:
1 if 055 < dpmin,
_ 0ij—Omin Smax—0ij :
a/i'j B 1 o 67n(]lm_6m,in = 6m,am_6m;n lf 5mln < 51"7 S 5maza
0 if 5ij > Omaz-

The first period demand at any demand node i is generated as d;; ~ U[50,1500]. Demand at node i in
successive periods of the planning horizon varies as di; = d;;—1)(1 +¢;), where g; is the demand growth rate
at node i, generated as g; ~ U[—0.04,0.10].

Length of the planning horizon in all experiments is assumed to be 5 periods. We assume that by the
end of the planning horizon (i.e., in period ¢t = 5), servers are available for all the candidate facilities under
any scenario. With this assumption, all facility opening sequences give the same demand coverage in the last
period. Hence, the last period ¢t = 5 can be excluded from the model since it does not make any contribution
to the regret. Clearly, any problem with |T'| periods with such an assumption is equivalent to a corresponding

problem with |T" — 1| periods without this assumption. Thus, for a 5 period problem, the total number of

n+4) _ (n+4)!

possible scenarios under this assumption is ( 1Al

. Server availability scenarios are generated using

algorithm 3.

Algorithm 3 Generation of server availability scenarios

1: 5 ¢ 0;

2: for t; < 0,n do

3: for to < 0,n —t; do

4: for t3 < 0,n —t; —t3 do

5: fort4<—07n—t1—t2—t3d0
6: s+ s+1;

7 D1s < t1,D2s < t2,D3s < 13, Das < T4, P5s < N — t1 — ta — t3 — t4;
8: end for

9: end for

10: end for

11: end for
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4.2 Computational results

Computational study is done on the data generated using the scheme described above. All the experiments
are run on a personal computer with Intel Core i5 (3.30 GHz) processor; 4 GB RAM; and windows 64-bit
operating system. Solution algorithms are coded in C++ (Visual Studio 2010), and IBM ILOG CPLEX
12.4 is used as the MIP solver. In all our experiments, the maximal coverage ¢} for each scenario s € S is
obtained by solving MMCLP for complete coverage and MMCLP-P for gradual coverage using CPLEX MIP
solver. The total CPU time taken to obtain (! across all scenarios is less than 200 and 4000 seconds for
complete and partial coverage, respectively, even for the largest problem instance that we solve. These times
are much smaller than the CPU time taken by CPLEX MIP solver to solve MMCLPSU and MMCLPSU-P,

respectively. Hence, we do not include these times in the total CPU times reported in all our experiments.

It is clear from table 2 that the problem size (number of variables and constraints) increases with the
number of scenarios considered. Hence, in all our experiments, we use scenario dominance rules given by
Vatsa & Ghosh (2014) to reduce the size of the problem. For this, we represent any server availability
scenario s as (b1, b2, .., b, .., b)) where b; is the number of new servers that become available in period
t € T. A facility opening sequence II is represented as Il = (my, 72, ..., T, ), where m; is the i** facility in
the facility opening sequence. Further, Jt,mum +1U...Un; 18 the total demand covered by the set of facilities

{mi, Mix1,...,mj} in period t.

Rule 1: Scenarios in which all n servers become available in the same period, will have zero regret for any
facility opening sequence. Hence, the regret associated with these scenarios can never be greater than the

regret associated with any other scenario.

Rule 2: Consider a scenario s; = (0, .., by, .., bir|) that has 0 new server available in the first period, and
the first new server available in period ¢. Compare s; with another scenario s = (1,..,b; — 1,..,b/p|). For
any facility opening sequence II, regret associated with s; can never be greater than that associated with sy
if:

di gz, 4+ dom, + oA dp—1)m <, —C (88)

Rule 3: Consider a scenario s; = (b1, .., bz, .., 0) that has 0 new server available in the last period, and the
nt" new server available in period t. Compare s, with another scenario sy = (b1,..,by — 1,..,1). For any

facility opening sequence II, regret associated with s; can never be greater than that associated with sg if:

(d(ri-1),0 = dri-1).0m,) + (dgri—2),0 = dr-2) N\70) + oo+ (deg —dine,) 2 G =G, (89)

Rule 4: Consider a scenario s; = (1,..,b¢,..,bjp|) that has 1 new server available in the first period, and
the second new server available in period t. Compare s; with another scenario sy = (2,..,b; —1,..,bj7|). For

any facility opening sequence II, regret associated with s; can never be greater than that associated with sy
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if:

(JLTUUTQ - Jlﬂfl) + (JQ,TUUTQ - (ZQJT]) + ..+ (J(t—l)nrlLﬁrg - J(t—l),ﬂ'l) < C:;) - C:l (90)

Rule 5: Consider a scenario s1 = (b1, .., by, .., 1) that has 1 new server available in the last period, and the
(n—1)*" new server available in period . Compare s; with another scenario sy = (by,..,b; —1,..,2). For any

facility opening sequence II, regret associated with s; can never be greater than that associated with so if:

(d(r1-1), 770 = AT 1)\ (1 }) T (dTI=2), 7\ = A(TI=2), I\ (70 1}) +
o (de ey, — A\ 1y) = €= (91)

Rule 6: Consider a scenario s; = (2,..,by, .., bj7)) that has 2 new servers available in the first period, and
the third new server available in period ¢. Compare s; with another scenario sy = (3,..,b; — 1,..,b/p|). For

any facility opening sequence 11, regret associated with s; can never be greater than that associated with s,
if:

(dl,ﬂ1Uﬂ2Uﬂ3 - d1,7T1U7T2) + (dQ,ﬂ'lUﬂ'QUﬂ';; - d2,7'rlU7r2) + ..

o+ (di=1).mUmaUrs — di—1),mum) < G5, — GG (92)

Rule 7: Consider a scenario s; = (by, .., bz, .., 2) that has 2 new server available in the last period, and the
(n—2)*" new server available in period t. Compare s; with another scenario sy = (b1, ..,b; — 1, .., 3). For any

facility opening sequence II, regret associated with s; can never be greater than that associated with so if:

(d(1-1), M\ e sn 1} = AUTI=1), 2\ (17 —2}) F (AUTI=2), 0\ (701} = DUTI=2), 0\ {7 701702}
+ oot (de,\frnmn sy = e\ {1 mna}) = G — G, (93)

After applying the above scenario dominance rules, the remaining set of non-dominated scenarios is denoted
as Sop C S. We replace S by Sp in all our experiments with MMCLPSU and MMCLPSU-P.

We conduct our computational experiments with 10 instances for each of the 12 problem sizes described
in section 4.1. For MMCLPSU, table 4 reports the objective function value (Obj), time taken by CPLEX
MIP solver (CPLEX CPU(s)), time and number of cuts required by the classic and callback versions of
Benders’ decomposition method (BD-Classic and BD-Callback). Clearly, BD-Classic and BD-Callback out-
perform the CPLEX MIP solver. For example, the computation time taken by the CPLEX MIP solver
for the problem size of n=15, m=300 is on average more than 150 times the time taken by BD-Classic,
and more than 250 times that taken by BD-Callback. Further, CPLEX solver could not solve MMCLSPU
instances beyond problem size n=15, m=300 within the time limit of 20 hours. Benders-Classic, on the
other hand, could solve most of the problem instances till n=20, m=400 within the same time limit, while
Benders-Callback solved instances of size n=20, m=500 in close to 2 hours on average. At the same time, we
notice that the number of cuts, and hence the CPU time, required by BD-Classic and BD-Callback increases
with the problem size. However, the increase in CPU time is more drastic for BD-Classic since it solves a

new master problem to optimality at each iteration, whereas BD-Callback solves only one master problem
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to optimality. Subsequently, for MMCLPSU-P, we perform computational experiments only with CPLEX
MIP solver and BD-Callback.

Table 5 provides a comparison between CPLEX MIP solver and BD-Callback for MMCLPSU-P. Like
MMCLPSU, we notice that BD-Callback solves much larger instances of MMCLPSU-P compared to CPLEX
MIP solver within the time limit of 20 hours. For example, CPLEX MIP solver could not solve 6 out of the
10 instances corresponding to n = 10, m = 300 within the 20 hour limit, while BD-Callback could solve all
10 instances corresponding to the largest size of n = 20, m = 500 in close to 1 hour on average. Further, for
the instances that CPLEX MIP solver could solve within the time limit, BD-Callback is of the order of 1,000
times faster. Moreover, comparing the results in table 4 and 5, we notice that the CPLEX MIP solver could
not solve many instances corresponding to n = 10, m = 300 for MMCLPSU-P, while it could solve much
larger instances for MMCLPSU. This is expected since the size of the mathematical model for MMCLPSU-P
is much larger than that for MMCLPSU (for example, MMCLSPU-P has variables x;;;s while MMCLPSU
has x;15). Interestingly, the same does not appear to hold true with respect to BD-Callback. On the contrary,
BD-Callback solves MMCLPSU-P instances much faster, on an average, compared to MMCLPSU. This is
true because, as obvious from tables 4 and 5, the average number of Benders’ cuts used by BD-Callback is
smaller for MMCLPSU-P compared to MMCLPSU. This indicates that the Benders’ cuts in MMCLPSU-P
carry more information compared to the cuts in MMCLPSU (since the two master problems, MMCLPSU-MP
and MMCLPSU-P-MP, differ only in Benders’ cuts). This can be explained by comparing the Benders’ cuts
in the two models, which suggests that for d,,;, = do, as used in our experiments, the additional coverage
(partial) allowed between 0, and ;4. in case of MMCLPSU-P may result in more information with each
Benders’ cut (consequently fewer cuts). In order to check this assertion, we conduct additional experiments
with 20 instances for different values of the covering distance (§p) in MMCLPSU. We depict the resulting

average number of cuts used for each value of §; in figure 3, which confirms our assertion.

Figures 4 and 5 show how the number of instances (out of 20) with 0 maximum regret as the objective
function value, and the average objective function value vary with §y. As obvious from figure 4, with a
sufficiently high dp, most of the instances result in 0 objective function value. This is expected since with a
very high g, all the facility opening sequences provide the same coverage under any given scenario. Hence,
the regret associated with an optimal sequence will be zero. Further, as can be seen from figure 5, the
average objective function value first increases and then decreases with an increase in §y. This is due to
the fact that with very small §y, total demand that can be covered is small in magnitude, and hence the
regret is also of similar magnitude. As §p increases, it becomes possible to cover more demand nodes by
judiciously selecting candidate facilities to open. Consequently, when the optimal facility opening sequence
has a regret, it is generally of higher magnitude. Furthermore, a very high Jp results in too many instances
with low or zero objective function value, as observed in figure 4. Consequently, the average objective
function value decreases with very high values of dg. This observation provides an interesting insight. The
covering distance represents the connectivity of the nodes. A larger covering distance indicates demand
nodes are well connected with candidate facilities. The above observation implies that with a good level of

connectivity, even the most unfavorable scenario will not have a high regret.
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Table 4: Computation results with MMCLPSU

Ins. Obj CPLEX BD-Classic BD-Callback Obj CPLEX BD-Classic BD-Callback
CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts  CPU(s) Cuts
n=10, m=200 n=10, m=300
1 4673.2 97.9 5.1 88 5.3 86 8557.7 59.7 9.3 84 12.2 114
2 7509.0 184.9 2.6 50 2.4 47 5174.2 79.7 7.1 77 5.5 56
3 19828.6 16.8 4.4 52 6.0 72 7986.4 600.7 13.3 116 12.1 116
4 115.7 26.3 2.8 38 2.9 37 255.9 41.3 6.6 71 7.9 76
5 0.0 70.0 0.7 10 1.8 25 0.0 124.8 2.0 30 2.6 29
6 8758.8 62.2 5.3 72 4.2 62 21763.9 578.0 5.7 69 5.1 61
7 0.0 42.1 1.2 26 1.3 25 4618.1 176.9 18.5 147 13.1 109
8 0.0 112.2 3.1 48 3.5 50 0.0 94.1 4.5 67 6.6 96
9 13179.4 438.9 1.2 24 1.4 32 863.1 107.2 4.1 62 4.2 61
10 0.0 54.6 0.7 10 1.3 16 13.0 60.0 4.2 62 4.4 59
Avg 110.6 2.7 41.8 3.0 45.2 192.2 7.5 78.5 7.4 7.7
Max. 438.9 5.3 88 6.0 86 600.7 18.5 147 13.1 116
n=10, m=400 n=10, m=500
1 10688.6 63.7 10.0 73 9.8 61 0.0 395.0 9.6 58 15.1 87
2 374.6 55.0 12.7 99 10.6 74 1966.1 930.6 17.4 90 24.2 121
3 396.9 65.5 10.8 83 11.5 84 9289.5 2292.5 14.5 74 21.9 103
4 10033.1 85.7 10.7 82 10.0 70 0.0 92.1 10.4 66 11.9 68
5 20531.7 1382.6 7.9 58 9.8 72 5094.7 102.5 4.8 39 6.8 45
6 14744.4 970.5 13.8 74 15.7 83 7181.4 120.5 12.3 54 16.5 68
7 0.0 158.8 3.1 25 10.3 75 0.0 204.1 5.7 35 4.5 24
8 13783.7 75.1 4.1 31 5.0 34 9362.9 1197.0 15.6 71 20.5 88
9 7549.6 972.4 7.7 55 9.3 62 0.0 402.8 6.6 42 13.8 78
10 15144.2 289.1 6.1 62 6.6 64 2680.2 229.4 21.6 111 17.2 76
Avg 411.8 8.7 64.2 9.9 67.9 596.7 11.8 64 15.2 75.8
Max 1382.6 13.8 99 15.7 84 2292.5 21.6 111 24.2 121
n=15, m=200 n=15, m=300
1 13335.4  25878.3 530.6 435 96.0 401 863.5 7025.8 28.8 82 31.9 87
2 7509.0 7200.8 41.3 121 39.6 156 7991.5 28235.2 147.7 231 107.0 231
3 4833.0 8965.0 66.9 175 71.3 218 18405.0  53327.2 514.2 329 229.2 368
4 9274.4 489.0 51.2 138 34.9 136 0.0 4262.8 72.4 161 89.5 193
5 3608.8 14270.5 33.8 113 36.0 151 1582.7 1218.5 28.5 79 43.6 121
6 904.0 4637.8 88.6 241 88.5 237 20642.3  26878.8 52.8 107 89.1 225
7 3215.5 609.7 31.0 120 38.7 168 13364.7  36511.5 476.6 314 202.0 315
8 6263.6 27162.2 444.5 431 212.1 457 7406.7 1863.2 53.7 126 39.8 106
9 16059.5 1727.6 44.9 112 32.0 102 19254.6  48713.7 105.0 166 73.1 185
10 0.0 1220.4 20.9 80 20.2 82 9712.3 36164.8 107.3 238 58.7 153
Avg. 9216.1 135.4 196.6 67.0 210.8 24420.1 158.7 183.3 96.4 198.4
Max. 27162.2 530.6 435 212.1 457 53327.2 514.2 329 229.2 368
n=15, m=400 n=15, m=500
1 7520.3 * 159.4 185 200.3 266 20806.6 * 300.3 248 231.1 290
2 17916.3 * 81.6 118 76.8 124 9711.8 * 191.6 289 177.3 287
3 4162.9 * 247.0 248 183.1 258 12126.9 * 181.1 192 216.1 239
4 12103.4 * 174.2 163 193.1 214 4972.4 * 58.8 95 103.7 147
5 18194.5 * 86.4 125 87.9 148 17206.1 * 65.7 92 89.9 139
[ 27138.1 * 207.0 242 170.4 276 9248.3 * 370.0 275 296.1 250
7 617.0 * 59.2 127 72.6 148 732.0 * 85.5 114 147.5 176
8 12120.2 * 43.9 89 49.8 97 4748.5 * 82.3 107 87.3 105
9 11109.7 * 275.2 190 230.1 270 8087.1 * 131.2 132 178.4 172
10 15144.2 * 71.2 123 64.1 133 22524.7 * 2132.3 843 880.0 896
Avg 140.5 161 132.8 193.4 359.9 238.7 240.8 270.1
Max 275.2 248 230.1 276 2132.3 843 880.0 896

" Could not be solved in 20 hours
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Ins. Obj CPLEX BD-Classic BD-Callback Obj CPLEX BD-Classic BD-Callback

CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts
n=20, m=200 n=20, m=300

1 34923 * * * 58219 3396  5378.1 * 4727.3 679 956.9 582

2 32225 * 2167.5 444  648.6 493  7633.0 * 26362.8 983 33819 1479
3 360.0 * 4488 379 5009 392 3723.2 * * * 123383 3044
4 541.2 * 482.7 404 3169 268 102218 * 49181 703 16743 1022
5 1806.3 * 809.0 328  389.1 366 4659.3 * 6153.2 500 11594 645
6 808.7 * 1165.4 541  696.3 569 0.0 * 582.0 315 5285 359
T 24649 * 450.6 313 360.9 369  9978.9 * * * 42322 1143
8 561.2 * 63022.0 2095  14399.7 2404  3906.0 * 8166.7 1260  1935.1 1067
9 5813.0 * 6108.6 748  1109.9 700  6518.0 * 3655.2 806  1577.1 856
10 420.7 * 1337.0 788 812.6 635 8671.4 * 34265.6 2063 2956.1 1424
Avg. 2505.7 959.2 3074.0 1162.1
Max 14399.7 3396 12338.3 3044

n=20, m=400 n=20, m=>500

1 2257.3 * 11643.8 946 2481.8 1049 16066.7 * * * 38432.0 6642

2 8364.5 * 27470.4 990 4381.5 1273 18915.9 * * * 10891.1 2447
3 5297.3 * 9396.0 1416 4399.3 1147 10163.3 * * * 4040.3 1105
4 8180.6 * 7367.5 724 2815.3 927 5262.4 * * * 1812.1 637
5 8351.3 * 2443.0 556 1247.0 617 6761.3 * * * 1217.9 465
6 5257.1 * 4070.3 616 1469.9 572 11044.2 * * * 4803.8 1556
7 13696.3 * 5057.6 889 4559.9 1467 5918.8 * * * 1419.6 433
8 13.0 * 561.0 250 431.1 200 10376.5 * * * 2756.5 943
9 5021.5 * * * 9420.4 3097 9723.9 * * * 5072.3 1528
10 13158.8 * 8537.6 1037 3196.9 1140 4167.9 * * * 5968.6 1829
Avg. 3440.3 1148.9 7641.4 1758.5
Max. 9420.4 3097 38432.0 6642

* Could not be solved in 20 hours
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Table 5: Computation results with MMCLPSU-P

Ins. Obj CPLEX BD-Callback Obj CPLEX BD-Callback Obj CPLEX BD-Callback
CPU(s) CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) CPU(s) Cuts
n=10, m=200 n=10, m=300 n=10, m=400
1 11272.2 3463.9 6.1 64 13040.9 18044.7 8.4 43 13199.7 * 22.4 60
2 2227.8 5060.3 4.1 34 11574.0 37982.8 9.8 48 13922.7 * 17.1 56
3 11591.5 6569.4 10.2 75 17891.7 * 15.7 79 23551.0 * 17.9 66
4 540.0 1822.0 4.0 39 16340.6 * 9.2 56 10634.6 * 9.9 47
5 823.3 2146.4 3.3 28 0.0 * 2.0 14 9475.6 * 11.6 42
6 6862.4 7209.0 8.6 79 11633.1 * 6.9 50 0.0 * 6.2 24
7 3079.5 854.7 2.4 31 10260.9 * 19.7 94 15026.5 * 25.2 90
8 2901.2 1388.9 5.6 43 12196.8  44738.32 7.9 62 30696.0 * 14.7 51
9 4972.4 931.2 2.3 22 10965.5 * 4.6 39 12520.3 * 17.2 65
10 2832.5 957.8 4.3 43 44.9 34574.86 7.6 45 20226.0 * 10.8 53
Avg 3040.4 5.1 45.8 9.2 53 15.3 55.4
Max 7209.0 10.2 79 19.7 94 25.2 90
n=10, m=500 n=15, m=200 n=15, m=300
1 55221.4 * 27.5 74 21085.2 * 55.8 142 16563.4 * 109.7 154
2 21287.3 * 22.4 82 23183.0 * 58.5 135 21128.9 * 205.0 235
3 20978.7 * 28.7 s 4635.7 * 68.3 108 13450.2 * 153.4 159
4 0.0 * 12.7 44 6605.7 * 33.9 73 19648.8 * 163.8 166
5 2168.2 * 8.0 31 7287.6 * 25.4 56 2890.1 * 41.3 72
6 5692.6 * 18.5 47 6434.4 * 78.9 137 13262.0 * 78.9 112
7 18005.9 * 7.9 27 11732.4 * 44.4 110 13293.4 * 186.8 162
8 10452.8 * 20.3 71 8372.1 * 122.3 145 15356.1 * 69.4 7
9 0.0 * 14.4 47 7480.7 * 32.5 78 10250.7 * 50.6 82
10 0.0 * 10.5 31 2832.5 * 56.2 137 18249.3 * 131.3 188
Avg 17.1 53.1 57.6 112.1 119.0 140.7
Max. 28.7 82 122.3 145 205.0 235
n=15, m=400 n=15, m=>500 n=20, m=200
1 13706.7 * 315.9 222 53670.4 * 149.3 125 16507.5 * 2341.0 1011
2 38421.3 * 204.8 153 9142.0 * 169.3 171 8715.6 * 533.3 285
3 18023.2 * 227.7 181 0.0 * 94.8 66 579.1 * 730.0 348
4 22114.1 * 295.9 176 13426.1 * 125.0 109 9570.6 * 2400.2 927
5 20806.4 * 100.6 96 21214.9 * 158.2 123 12815.5 * 957.8 413
6 12505.6 * 168.8 170 9824.0 * 244.5 127 5520.7 * 790.4 425
7 19116.4 * 113.4 101 33889.3 * 155.8 117 5227.8 * 509.9 310
8 37372.0 * 55.2 51 16802.1 * 152.5 116 5798.4 * 2131.7 623
9 14657.5 * 121.8 88 27899.4 * 261.2 135 10044.3 * 821.8 499
10 20226.0 * 78.0 78 19117.5 * 247.9 194 5548.5 * 596.4 311
Avg 168.2 131.6 175.8 128.3 1181.3 515.2
Max 315.9 222 261.2 194 2400.2 1011
n=20, m=300 n=20, m=400 n=20, m=500
1 8443.8 * 799.0 294 12058.1 * 4543.4 1085 18216.0 * 6104.7 1159
2 13895.6 * 2619.7 783 23681.4 * 5706.7 1075 13043.3 * 5708.7 885
3 11130.8 * 4752.6 1061 16695.2 * 5127.7 1246 33116.3 * 1590.3 338
4 4132.6 * 1505.7 442 13883.3 * 3815.9 682 38415.5 * 2788.4 640
5 7005.1 * 807.6 237 11886.5 * 1202.7 369 18873.8 * 990.8 250
6 18516.8 * 1141.4 412 16383.1 * 1650.5 412 29209.2 * 5050.1 891
7 9416.2 * 4697.5 1147 14953.3 * 2368.0 528 4355.3 * 1396.5 247
8 7788.2 * 1535.1 459 5772.3 * 526.8 156 10134.0 * 2923.1 514
9 13878.0 * 1290.1 497 17246.0 * 5265.5 1120 29415.5 * 3622.2 571
10 6352.6 * 2231.4 679 9806.0 * 1378.2 339 23821.3 * 7873.3 1446
Avg. 2138.0 601.1 3158.5 701.2 3804.8 694.1
Max. 4752.6 1147 5706.7 1246 7873.3 1446

" Could not be solved in 20 hours
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5 Conclusion

In this paper, we provided a new formulation of Multi-period maximal coverage (both complete and partial)
location problem with server uncertainty, motivated by its relevance with respect to primary health centers.
We mathematically proved that our formulation is better than the only other formulation available in the
literature. Using computational experiments, we show that for large problem instances, our formulation
is more than 10 times faster compared to the earlier formulation in the literature. Still, CPLEX MIP
solver was unable to solve practical size problems. Consequently, we provided Benders’ decomposition based
methods, which were able to solve much larger problem instances within reasonable time. We further provided
refinements to the Benders’ method, like heuristics for the sub-problems and cut strengthening methods,
which drastically reduced the computational time needed to solve problem instances of the size up to 20
facilities, 500 demand nodes and 5 periods. Further, for the instances that CPLEX MIP solver could solve
within a time limit of 20 hours, our proposed solution method turned out to be of the order of 150 — 250

times faster for the problems with complete coverage, and around 1000 times faster for gradual coverage.

Future research may use other regret measures like maximization of expected coverage or minimization of
expected regret when the probabilities of various server availability scenarios can be estimated. Extension of

this paper with capacity restrictions at candidate facilities is another interesting avenue for further research.
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