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Abstract

Facility location problems reported in the literature generally assume the problem parameter values

(like cost, budget, etc.) to be known with complete certainty, even if they change over time (as in

multi-period versions). However, in reality, there may be some uncertainty about the exact values of

these parameters. Specifically, in the context of locating primary health centers (PHCs) in developing

countries, there is generally a high level of uncertainty in the availability of servers (doctors) joining the

facilities in different time periods. For transparency and efficient assignment of the doctors to PHCs, it is

desirable to decide the facility opening sequence (assigning doctors to unmanned PHCs) at the start of the

planning horizon. For, this we present a new formulation for a multi-period maximal coverage location

problem with server uncertainty (MMCLPSU). We further demonstrate the superiority of our proposed

formulation over the only other formulation reported in the literature. For instances of practical size, we

provide Benders’ decomposition based solution method, along with several refinements. For instances

that CPLEX MIP solver could solve within a time limit of 20 hours, our proposed solution method turns

out to be of the order of 150 - 250 times faster for the problems with complete coverage, and around

1000 times faster for gradual coverage.

Keywords: Facility Location, Primary Health Centers, Benders’ Decomposition

1 Introduction and literature review

A discrete facility location problem (FLP) is the problem of finding the optimal (defined with respect

to certain objectives) subset among a given set of candidate facility locations. FLPs have been widely

used/studied in the context of schools (Antunes & Peeters, 2001), hospitals (Baray & Cliquet, 2013), banks

(Wang et al., 2002), distribution centers (Klose & Drexl, 2005), fire stations (Schilling et al., 1980). These

problems mostly assume user demand and facility/transportation cost as given and constant. However, when

problem parameters like user demand or facility/transportation cost change over time, an optimal facility

location decision in one period may become sub-optimal in future periods. In such a situation, the optimal

facility location decision needs to be revised with time according to changes in the demand/cost. However,

revisiting facility location decisions in future periods may involve relocating/closing facilities opened in earlier

periods, which are generally costly, and may even be prohibitive in many cases. So, when problem parameters

are expected to change with time, a better idea is to plan ahead for more than one period. This gives rise

to multi-period FLP (MFLP), with parameter values changing over periods.
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Several variants of MFLP have been studied in the literature since its introduction by Ballou (1968).

Wesolowsky & Truscott (1975); Melo et al. (2006) present the problem with constraints on location and

relocation of facilities. Dias et al. (2006, 2007, 2008) consider MFLPs where facilities can be closed and

reopened. Wesolowsky & Truscott (1975); Saldanha da Gama & Captivo (1998); Canel et al. (2001) study

the problems where closing of facility involves capital expenditure. Erlenkotter (1981); Shulman (1991);

Canel et al. (2001); Melo et al. (2006); Dias et al. (2007); Thanh et al. (2008), among others, have studied

MFLP where facility capacities change over time. MFLPs with budget restriction have been studied by

Antunes & Peeters (2000, 2001); Wang et al. (2003); Melo et al. (2006); Ghaderi & Jabalameli (2013).

Antunes & Peeters (2000, 2001) have studied MFLPs with both budget and capacity constraints. Readers

are referred to a detailed survey by Boloori Arabani & Farahani (2012) on the literature in MFLPs.

Classical versions of FLP assume the problem parameter values (like demand, cost, budget, etc.) to

be known with complete certainty, even if they change over time (as in MFLP). However, in reality, there

may be some uncertainty about the exact values of these parameters. Averbakh & Berman (1997); Chen &

Lin (1998); Vairaktarakis & Kouvelis (1999); Averbakh & Berman (2000); Killmer et al. (2001); Burkard &

Dollani (2002); Albareda-Sambola et al. (2011); Berman & Wang (2011) have accounted for the uncertainty

in demand in MFLP. Uncertainty in cost has been considered by Chen & Lin (1998); Vairaktarakis &

Kouvelis (1999); Burkard & Dollani (2002). Uncertainty may also arise with respect to the availability of

servers/resources. This is generally true in case of locating Primary Health Centers (PHCs), which are single

doctor clinics meant to provide very basic health care in rural areas in developing countries. Due to acute

shortage of doctors in rural areas, many of these PHCs temporarily function without any doctor. Moreover,

there is a high degree of uncertainty regarding the number of doctors that will be available to join these

PHCs in any given period. Such uncertainty in the availability of servers/resources has not received much

attention in the extant MFLP literature. Current et al. (1998) consider a situation where the final number

of facilities to be sited is uncertain. They use a minimax regret approach to find the initial set of facilities

for a p-median FLP. However, their work does not consider multiple time periods. Vatsa & Ghosh (2014),

to the best of our knowledge, is the only paper to consider such an uncertainty in the context of MFLP.

In the current paper, we study a MFLP with uncertainty in the number of servers (doctors) available in

each period of the planning horizon. Through this paper, we make the following contributions to the scarce

literature on MFLP with uncertainty in server availability:

1. We present a formulation of the problem, which we show to be stronger than the only other formulation

available in the literature.

2. We present a Benders’ decomposition based exact solution method, and refinements thereof, to solve

realistic problem instances.

The remainder of the paper is organized as follows. Section 2 describes the problem in detail, followed by

mathematical models and their comparison with the existing models in the literature. Section 3 presents a

Benders’ decomposition based solution approach, followed by computational experiments in section 4. The

paper concludes with a summary and directions for future research in section 5.
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2 Problem Description

The problem described in this section is motivated by the one faced by the district administrations in provid-

ing primary health care facilities to the rural population in developing countries. World Health Organization

(WHO), through its Alma-Ata declaration (1978), expressed the need for a Primary Health Center (PHC)

for every 30,000 population in the plain areas and for every 20,000 in tribal and hilly areas. However, achiev-

ing this target (set by the Alma-Ata declaration) has been a challenge in most of the developing countries,

largely due to shortage of doctors and increasing population (Walley et al., 2008; Rohde et al., 2008). Con-

sequently, there is generally a shortage of PHCs. In many cases, even if PHCs exist, many of them remain

unmanned due to shortage of doctors. When doctors do become available over a period of time, the challenge

facing the district administration is to find the best sequence of unmanned PHCs to assign the doctors to,

so as to cover the maximum population over the entire planning horizon. For transparency in policy making

and implementation, it is essential that this sequence of opening the PHCs (assigning doctors to unmanned

PHCs) be pre-decided at the start of the planning horizon.

To describe the problem setting, we assume a planning horizon consisting of discrete time periods t ∈
T = {1, 2, ..., |T |}. Further, we consider a district, which is divided into population zones (e.g., villages), each

of which is represented as a node i ∈ I = {1, 2, ...,m}. Let j ∈ J = {1, 2, ..., n} denote any PHC without an

assigned doctor. Jb is the set of PHCs that are manned with doctors at the beginning of planning horizon,

i.e., at t = 0. In the rest of the paper, we use the term “candidate facility” to refer to a PHC without

an assigned doctor at t = 0. Let δij be the distance between population zone i and candidate facility j.

Opening a PHC at j covers the entire population at node i if it is within a given distance δ0 from the node,

i.e., δij ≤ δ0. We use a parameter aij = 1 if facility j is within the covering distance δ0 from demand node

i, 0 otherwise. We use Ni to denote the set of candidate facilities that can cover a demand node i, i.e.,

Ni = {j ∈ J : aij = 1}. Let dit represent the population (demand) at node i in time period t. If the exact

number of doctors (henceforth called servers) that will become available to join PHCs in each period of the

planning horizon were known with complete certainty, then the district administration would ideally like to

assign them to the PHCs so as to maximize the total population covered over the planning horizon. This

is a classical Multi-period Maximal Covering Location Problem (MMCLP), as introduced by Gunawardane

(1982).

Generally, the exact number of doctors that will become available to join PHCs in each period of the

planning horizon is uncertain. We describe the uncertainty in the server availability using a parameter

pts to represent the number of new servers that become available at time t under scenario s ∈ S. Let

ζ∗s be the maximum population that could have been covered in scenario s (by solving the corresponding

MMCLP). Then, regret from a proposed solution in any scenario is defined as the difference between the

maximum population that could have been covered (ζ∗s ) and the population actually covered using the

proposed solution. In presence of server uncertainty, a plausible objective of the district administration is to

find the sequence of opening candidate facilities (assigning doctors to unmanned PHCs) that minimizes the

maximum regret across all possible server availability (doctor joining) scenarios. We refer to the resulting

problem as Multi-period Maximal Covering Location Problem under Server Uncertainty (MMCLPSU). We

summarize below the list of notations used to define the problem:

T : Set of time periods in the planning horizon, t ∈ T
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S: Set of all possible server availability scenarios, s ∈ S

pts: Number of new servers that become available at time t under scenario s

I: Set of demand nodes, i ∈ {1, 2, ...,m}

dit: Demand of demand node i in time period t

J : Set of candidate facility locations, j ∈ {1, 2, ..., n}

Jb: Set of initially open facilities

δij : Distance between demand node i and candidate facility j

δ0: Covering distance such that candidate facility j is said to cover node i if δij ≤ δ0

aij : 1 if facility j is within the covering distance δ0 from demand node i, 0 otherwise

Ni: Set of candidate facilities that can cover a demand node i, i.e., Ni = {j ∈ J : aij = 1}

ζ∗s : Maximum demand that can be covered in scenario s over the complete planning horizon

To mathematically model the problem, we define the following decision variables:

yjts: 1 if candidate facility j is open in time period t under scenario s, 0 otherwise

xits: 1 if demand node i is covered in period t under scenario s, 0 otherwise

rjl: 1 if facility j is lth (l ∈ {1, 2, ..., n}) in the sequence of opening facilities, 0 otherwise

Using these variables, the objective function of MMCLPSU can be defined as min max
s∈S
{ζ∗s −

∑
i∈I

∑
t∈T

ditxits}.

With the above notations, MMCLPSU, as presented by Vatsa & Ghosh (2014), can be mathematically stated

as follows:

[MMCLPSU-V&G:]

Min θ (1)

s.t. θ ≥ ζ∗s −
∑
i∈I

∑
t∈T

ditxits ∀s ∈ S (2)

xits ≤
∑
j∈Ni

yjts +
∑
j∈Jb

aij ∀i ∈ I, t ∈ T, s ∈ S (3)

∑
j∈J

yjts =
∑
t′≤t

pt′s ∀t ∈ T, s ∈ S (4)

∑
l∈{1,2,...,n}

rjl = 1 ∀j ∈ J (5)

∑
j∈J

rjl = 1 ∀l ∈ {1, 2, ..., n} (6)

∑
l∈{1,2,...,n}

lrjl ≤
∑
t′≤t

pt′s + n (1− yjts) ∀j ∈ J, t ∈ T, s ∈ S (7)

0 ≤ xits ≤ 1 ∀i ∈ I, t ∈ T, s ∈ S (8)

θ ≥ 0 (9)

yjts ∈ {0, 1} ∀j ∈ J, t ∈ T, s ∈ S (10)

rjl ∈ {0, 1} ∀j ∈ J, l ∈ {1, 2, ..., n} (11)
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(1) and (2) together help linearize the above described objective function (min max
s∈S
{ζ∗s −

∑
i∈I

∑
t∈T

ditxits}). ζ∗s
is the maximum coverage possible in a given scenario s ∈ S. It’s values is obtained by solving (12) - (17), as

given below, which is an MMCLP. Constraint set (3) ensures that any demand node is covered in any period

and scenario only if atleast one open facility exists within its covering distance. Number of open facilities

in any period and scenario is specified by (4). Constraint sets (5) and (6) ensure that each facility is given

a unique rank in the sequence. Constraint set (7) relate the variables rjl and yjts using the condition that

a facility at j will be open in period t and scenario s (yjts = 1) only if the rank of the facility j is less than

or equal to the total number of new servers that become available till period t in scenario s. Even though,

xits are binary, Vatsa & Ghosh (2014) show that relaxing them as continuous variables leaves the solution to

MMCLPSU unchanged. Hence, constraint set (8) relaxes xits as continuous variables. Constraints (9)-(11)

are the non-negativity and binary constraints.

[MMCLP:]

Max ζs =
∑
i∈I

∑
t∈T

ditxits (12)

s.t. xits ≤
∑
j∈Ni

yjts +
∑
j∈Jb

aij ∀i ∈ I, t ∈ T (13)

yjts ≥ yj(t−1)s ∀j ∈ J, t ∈ T\{1} (14)∑
j∈J

yjts =
∑
t′≤t

pt′s ∀t ∈ T (15)

0 ≤ xits ≤ 1 ∀i ∈ I, t ∈ T (16)

yjts ∈ {0, 1} ∀j ∈ J, t ∈ T (17)

Constraint set (14) in MMCLP ensures that a facility once opened remains open throughout the planning

horizon. Such a constraint is also required for MMCLPSU, but is already implied by the use of sequence

variable rjl.

For a problem with m demand nodes, n candidate facilities, and |T | time periods, the total number of

scenarios |S| =
(
n+|T |
n

)
= (n+|T |)!

n!(|T |)! . For MMCLPSU-V&G, this results in n|T ||S| + n2 binary (for yjts, rjl)

and m|T ||S| continuous (for xits) variables, and |S| + (m + n + 1)|T ||S| + 2n constraints. For example,

m = 100, n = 15, |T | = 4 results in |S| = 3, 876 scenarios and 232, 785 binary and 1, 550, 400 continuous

variables, and 1, 771, 362 constraints (excluding binary and lower/upper bound constraints). Although using

scenario dominance conditions, Vatsa & Ghosh (2014) are able to reduce the problem size considerably,

the problem is still difficult to solve, taking around 40 hours in some instances. We, therefore, present an

alternate formulation for MMCLPSU, which results in fewer variables and constraints. We further show that

our formation is better than MMCLPSU-V&G.

To introduce our formulation, we define a new set of decision variables zjk = 1 if candidate facility j is

one among the k ∈ {0, 1, ..., n} candidate facilities that have been opened during the planning horizon, 0

otherwise. Clearly, the number of candidate facilities opened depends on the time period t of the planning

horizon and the server availability scenario s, given by the relation k =
∑
t′≤t

pt′s. The variable zjk is related

to the variable yjts and rjl in MMCLPSU-V&G as follows:

zjk = yjts ∀j ∈ J, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (18)
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zjk − zj(k−1) = rjk ∀j ∈ J, k ∈ {1, 2, .., n} (19)

The variables zjk, by definition, should satisfy the following relations:

zjk ≥ zj(k−1) ∀j ∈ J, k ∈ {1, 2, ...n} (20)∑
j∈J

zjk = k ∀k ∈ {0, 1, 2, ...n} (21)

For an example, consider a solution with zjk values as given in table 1. The sequence of opening the 5 facilities

in this example is B-D-E-A-C. With a server availability scenario s, if 2 new servers become available by

the end of time t, i.e.,
∑
t′≤t

pt′s = 2, then the two candidate facilities to be opened will be B and D, i.e.,

zB2 = zD2 = 1, while zA2 = zC2, zE2 = 0.

Table 1: An example with variable zjk

Total Open (k)

k=0 k=1 k=2 k=3 k=4 k=5

Facilities

A 0 0 0 0 1 1
B 0 1 1 1 1 1
C 0 0 0 0 0 1
D 0 0 1 1 1 1
E 0 0 0 1 1 1

With the above variable definition, MMCLPSU can be mathematically restated as follows: [MMCLPSU:]

(1), (2), (8), (9), (20), (21)

xits ≤
∑
j∈Ni

zjk +
∑
j∈Jb

aij ∀i ∈ I, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (22)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ {0, 1, 2, ...n} (23)

Constraint set (22) ensures that any demand node is covered in any period and scenario only if atleast one

open facility exists within its covering distance. This combines (3) and (18). Like MMCLPSU-V&G, we

are relaxing xits as continuous variables (in (8)) since doing so leaves the solution to the model unchanged.

Table 2 provides a comparison of the resulting model size for MMCLPSU versus MMCLPSU-V&G. m =

100, n = 15, |T | = 4 results in |S| = 3, 876 scenarios and only 240 binary variables and 1, 554, 517 constraints

(excluding binary and lower/upper bound constraints), as opposed to 232, 785 binary variables and 1, 771, 362

constraints in case of MMCLPSU-V&G. The number of continuous variables remains the same. Moreover,

constraint set (21) fixes zj0 to 0 and zjn to 1 ∀j ∈ J , further reducing the computational effort in MMCLPSU.

We now show mathematically that MMCLPSU better than MMCPLSU-V&G.

Table 2: Comparison between MMCLPSU-V&G and MMCLPSU formulations

MMCLPSU-V&G MMCLPSU

No. of binary variables n2 + n|T ||S| n2 + n
No. of continuous variables m|T ||S| m|T ||S|
No. of constraints |S|+ (m+ n+ 1)|T ||S|+ 2n |S|+m|T ||S|+ n2 + n+ 1

W.P. No. 2015-02-07 Page No. 7



IIMA • INDIA
Research and Publications

Proposition 1. PLP (MMCLPSU) ⊂ PLP (MMCLPSU-V&G), where PLP (.) is the polyhedron of the LP

relaxation of (.)

Proof. Given a solution [ẑ, x̂, θ̂] obtained by LP relaxation of MMCLPSU, we can construct a variable

rjk = ẑjk − ẑj(k−1) ∀j ∈ J, k ∈ {1, 2, .., n}. Now,∑
j

rjk =
∑
j

ẑjk −
∑
j

ẑj(k−1) = k − (k − 1) = 1 [∵
∑
j∈J

ẑjk = k using (21)]

∑
k≥1

rjk =
∑
k≥1

ẑjk −
∑
k≥1

ẑj(k−1) = ẑjn − ẑj0 = 1 [∵ ẑjn = 1 and ẑj0 = 0 using (21) and LP

relaxation of (23)]

Hence, rjk satisfy constraint sets (5) and (6) of MMCLPSU-V&G. Now, we substitute yjts with ẑjk,

where k =
∑
t′≤t

pt′s, and check if [ẑ, x̂, θ̂] satisfies other constraints of MMCLPSU-V&G. Constraint (7),

i.e.,
∑

l∈{1,2,...,n}
lrjl ≤

∑
t′≤t

pt′s + n(1− yjts) ∀j ∈ J, t ∈ T, s ∈ S, will be satisfied by [ẑ, x̂, θ̂] if:

∑
k≥1

krjk − n(1− yjts) ≤
∑
t′≤t

pt′s ∀j ∈ J, t ∈ T, s ∈ S (24)

or,
∑
k≥1

k(ẑjk − ẑj(k−1))− n(1− ẑjk) ≤ k ∀j ∈ J, k ∈ {0, 1, 2, .., n} : k =
∑
t′≤t

pt′s (25)

or, [ẑj1 − ẑj0] + [2ẑj2 − 2ẑj1] + ...+ [nẑjn − nẑj(n−1)] + nẑjk ≤ k + n ∀j, k (26)

or, nẑjn + nẑjk − ẑj0 − ẑj1 − ẑj2 − ...− ẑj(n−1) ≤ k + n ∀j, k (27)

or, nẑjk − ẑj1 − ẑj2 − ...− ẑj(n−1) ≤ k ∀j, k [∵ ẑjn = 1, ẑj0 = 0] (28)

or, nẑjk − ẑj1 − ẑj2 − ...− ẑj(n−1) − ẑjn ≤ k − 1 ∀j, k [∵ ẑjn = 1] (29)

or, (ẑjk − ẑj1) + (ẑjk − ẑj2) + ..+ (ẑjk − ẑj(k−1)) ≤ k − 1 + (ẑj(k+1) − ẑjk) + ....

....+ (ẑjn − ẑjk) ∀j, k (30)

Since ẑjk ≥ ẑj(k−1) ∀j, k ≥ 1 (using (20)), each of the terms within parenthesis in the last inequality lies

between 0 and 1. Since there are k− 1 terms on the left hand side (LHS) of the inequality (30), LHS cannot

be greater than k − 1. The right hand side is k − 1 + some non-negative terms. Hence, the inequality (30)

holds true. Consequently, the inequality
∑
l

lrjl ≤
∑
t′≤t

pt′s + n(1− yjts) ∀j ∈ J, t ∈ T, s ∈ S, is satisfied by

[ẑ, x̂, θ̂]. Further, constraint set (3) of MMCLPSU-V&G is the same as (22) of MMCLPSU (replacing yjts

with zjk, where k =
∑
t′≤t

pt′s). Therefore, [ẑ, x̂, θ̂] is a feasible solution to LP relaxation of MMCLPSU-V&G.

It follows from (18) that different combinations of scenario s and time t in MMCLPSU that result in the

same number k =
∑
t′≤t

pt′s of open facilities, will always have the same value for the variable yjts ∀j ∈ J .

However, this is not true for MMCLPSU-V&G. This implies that a solution that is feasible to the LP

relaxation of MMCLPSU-V&G may not be feasible to the LP relaxation of MMCLPSU. We now prove that

this is indeed true.
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Summing over j ∈ J the constraint set (7) in MMCLPSU-V&G, we get:∑
j

yjts ≤
∑
t′≤t

pt′s + (n− 1)/2 ∀t ∈ T, s ∈ S (31)

Comparing (31) with constraint set (4) suggests that there must be at least one j for which constraint

(7) will be non-binding. Now, consider a period t1 in scenario s1, and a period t2 in scenario s2 such

that
∑
t′≤t1

pt′s1 =
∑
t′≤t2

pt′s2 = k. Let facility A be a facility under scenario s1 and period t1 for which

constraint (7) is non-binding. Assume a feasible LP relaxation solution of MMCLPSU-V&G that is also

feasible to the LP relaxation of MMCLPSU. This implies yAt1s1 = yAt2s2 = ẑAk for that solution. Let

us generate another solution by increasing yAt1s1 by ε (since (7) is non-binding for yAt1s1), where ε is

an infinitesimal positive number. This will violate constraint (4) of MMCLPSU-V&G. Nonetheless, if we

simultaneously decrease yBt1s1 by the same amount ε, where B is any candidate facility other than A, then

the solution remains feasible to MMCLPSU-V&G. However, this solution will not be feasible to MMCLPSU

since yAt1s1 + ε 6= yAt2s2 = ẑAk.

Thus, any solution to the LP relaxation of MMCLPSU is also a solution to the LP relaxation of

MMCLPSU-V&G. However, the converse is not true.

Proposition 2. ZLP (MMCLPSU) = ZLP (MMCLPSU−V&G), where ZLP (.) is the LP relaxation based

lower bound of (.).

Proof. In Proposition 1, it is shown that the LP feasible region of MMCLPSU is a proper subset of the LP

feasible region of MMCLPSU-V&G. If we show that an optimal solution to the LP relaxation of MMCLPSU-

V&G falls in the LP feasible region of MMCLPSU, we will prove this proposition.

Consider an optimal solution [r̂∗, ŷ∗, x̂∗, θ̂∗] to the LP relaxation of MMCLPSU-V&G. Then, we have:

ŷ∗jts ≤ min
[
1, (k + n−

∑
l

lr̂∗jl)/n
]

(from (7) and (10)) (32)∑
j

ŷ∗jts = k (from (4)) (33)

where k =
∑
t′≤t

pt′s. At optimality the objective of regret minimization ensures that variables yjts take the

maximum permissible values. Hence, every combination of scenario s and time t such that k =
∑
t′≤t

pt′s, will

have the same value of ŷ∗jts (say = ẑjk) ∀j ∈ J . Clearly, ẑjk ≥ ẑj(k−1) (from (32) and (33)). Furthermore,∑
j

ẑjk =
∑
j

ŷ∗jts = k (from (33)). All other constraints in MMCLPSU-V&G and MMCLPSU are similar.

Consequently, [r̂∗, ŷ∗, x̂∗, θ̂∗] is a feasible LP solution of MMCLPSU and therefore an optimal LP solution of

the MMCLPSU.

It follows from Proposition 1 that MMCLPSU is a better formulation compared to MMCLPSU-V&G

even though both have the same LP relaxation based lower bound. This is highlighted using an example in

figure 1, which shows the LP feasible regions BC and OABC corresponding to two alternate formulations,

let’s say f1 and f2, respectively. Clearly, PLP (f1) ⊂ PLP (f2), and both f1 and f2 have the same LP

bound at B. However, after the branching at the root node in a branch-and-bound tree, the feasible region
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for f1 reduces to CG, while that for f2 reduces to OFGC and DAE. Clearly, f1 will never take more

computational effort in getting to the IP optimal solution G.
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Figure 1: An example of LP feasible region

Table 3 presents a comparison of the computation time taken by the two formulations for different

instances. Clearly, MMCLPSU solves the problem significantly faster. For example, for instance 2 with

n = 15,m = 100, and |T | = 4, the computation time required by MMCLPSU-V/&G is more than 11 times

that required by MMCLPSU. For instance 3, MMCLPSU-V/&G fails to solve the problem even after 20

hours of CPU time, while MMCLPSU solves it in close to an hour. For larger problem sizes, MMCLPSU-

V/&G fails to find the optimal solution for any of the 5 instances within the 10 hour time limit. MMCLPSU,

on the other hand, is able to solve all the 5 instances within the time limit. However, the CPU time required

to solve instances with n = 15,m = 200, |T | = 4 is significantly large even for MMCLPSU, the maximum

being close to 8 hours. For larger instances, MMCLPSU will clearly find it difficult to solve the problem

to optimality within a reasonable time limit. In section 3, we, therefore, present a Benders’ decomposition

based solution approach to speed up the solution process.

Table 3: Comparison between MMCLPSU-V/&G and MMCLPSU

Problem Size Instance CPU(s) (MMCLPSU-V/&G) CPU(s) (MMCLPSU)

n = 15,m = 100, |T | = 4 1 2054.8 251.4
2 70710.4 6029.7
3 * 3693.3
4 * 7891.4
5 1810.0 229.3

n = 15,m = 200, |T | = 4 1 * 28644.5
2 * 9062.8
3 * 4670.8
4 * 27265.0
5 * 7397.1

* Could not be solved in 20 hours
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2.1 Gradual coverage

In MMCLPSU, we assumed a particular facility j can either cover or not cover a demand node i depending on

whether the node i lies within or outside the covering distance from j. Accordingly, we defined a parameter

aij = 1 if facility j can cover demand node i, 0 otherwise. However, in most of the situations, the coverage

does not change so abruptly. There is instead a range of distance, between a minimum and a maximum

covering distance (δmin and δmax), within which the coverage reduces gradually with distance. Such a gradual

coverage is considered by Church & Roberts (1983); Berman et al. (2003); Karasakal & Karasakal (2004);

Berman et al. (2010). However, none of them consider multi-period planning horizon or server uncertainty.

We now generalize MMCLPSU by allowing for gradual/partial coverage of a demand node if it lies between

δmin and δmax from an open facility.

For the complete coverage version of MMCLPSU, it was sufficient to know whether a demand node i

was covered or not in a given time and scenario. Accordingly, we defined a variable xits. However, such a

variable definition is not sufficient to model the gradual coverage since to determine the level of coverage of

a node i, it is also important to know which specific facility covers it. Accordingly, we now define a variable

xijts = 1 if the demand node i is covered (fully or partially) by facility at j in period t and scenario s, 0

otherwise. In this problem, the coverage function can take fractional values if the demand node i is within

δmin and δmax from facility at j, i.e., aij ∈ [0, 1]. Similarly, we redefine Ni as the set of candidate facilities

that are within the maximum covering distance δmax from demand node i. We also define N b
i as the set

of facilities open at the beginning of the planning horizon that lie within δmax of node i. The resulting

problem, which we refer to as Multi-period Maximal Coverage Location Problem under Server Uncertainty

with Partial coverage (MMCLPSU-P), can be formulated as follows:

[MMCLPSU-P:]

Min θ (34)

s.t. θ ≥ ζ∗s −
∑
i∈I

∑
j∈Ni∪Nbi

∑
t∈T

aijditxijts ∀s ∈ S (35)

xijts ≤ zjk ∀i ∈ I, j ∈ Ni,∀t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (36)

∑
j∈Ni∪Nbi

xijts ≤ 1 ∀i ∈ I, t ∈ T, s ∈ S (37)

zjk ≥ zj(k−1) ∀j ∈ J, k ∈ {1, 2, ...n} (38)∑
j∈J

zjk = k ∀k ∈ {0, 1, 2, ...n} (39)

xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (40)

θ ≥ 0 (41)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ {0, 1, 2, ...n} (42)

(34) and (35) help linearize the objective of minimizing the maximum regret, similar to MMCLPSU for-

mulation above. ζ∗s is the maximum coverage possible in a given scenario s ∈ S. It’s value is obtained by

solving (43) - (49), as given below, which we call as Multi-period Maximal Covering Location Problem with

Partial coverage(MMCLP-P). Constraint set (37) ensures that a demand node is covered by at most one

open facility. (38) and (39) are the same as (20) and (21). xijts, which by definition is a binary variable, can
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be relaxed as a continuous variable (Vatsa & Ghosh, 2014). Since xijts ≤ 1 is already implied by (37), con-

tinuous relaxation of binary xijts is stated as (40). (41) and (42) are non-negativity and binary constraints.

Clearly, MMCLPSU is a special case of MMCLPSU-P when δmin = δmax.

[MMCLP-P:]

Max ζs =
∑
i∈I

∑
j∈J

∑
t∈T

aijditxijts (43)

s.t. xijts ≤ yjts ∀i ∈ I, j ∈ Ni,∀t ∈ T (44)∑
j∈Ni∪Nbi

xijts ≤ 1 ∀i ∈ I, t ∈ T (45)

yjts ≥ yj(t−1)s ∀j ∈ J, t ∈ T\{1} (46)∑
j∈J

yjts =
∑
t′≤t

pt′s ∀t ∈ T (47)

0 ≤ xijts ≤ 1 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T (48)

yjts ∈ {0, 1} ∀j ∈ J, t ∈ T (49)

All the constraints of MMCLP-P are also implied in MMCLPSU-P. Here again, as in MMCLP, constraint set

(46) ensures that a facility once opened remains open throughout the planning horizon. Such a constraint

is redundant in MMCLPSU-P, as it is already implied by the use of sequence variable rjl.

Like MMCLPSU for the complete coverage, MMCLPSU-P is also a better formulation compared to the

formulation given by Vatsa & Ghosh (2014) for the problem with gradual coverage. This can be proven

along similar lines as done for MMCLPSU, and hence we skip the details. We now present the Benders’

decomposition based solution method for complete and gradual coverage versions of the problem.

3 Benders’ decomposition based solution method

Benders’ decomposition is a partition based solution technique, which has been applied to solve mixed integer

programming problems (Benders, 1962). It has been successfully applied to (multicommodity) network

design (Geoffrion & Graves, 1974), facility location (Wentges, 1996), and hub location (de Camargo et al.,

2009, 2011; Contreras et al., 2011). Costa (2005) provides a detailed review of application of Benders’

decomposition to the above problems.

In Benders’ decomposition method, the original problem is partitioned into a master problem and a

sub-problem. The master problem and the sub-problem are solved iteratively by utilizing the solution of one

in the other. The master problem contains a set of the complicating (integer) variables and their associated

constraints. The sub-problem is obtained by temporarily fixing the integer variables in the original problem

using the solution of the master problem. At each iteration, a relaxed master problem is solved to obtain a

lower bound. The sub-problem solution generates a Benders’ cut, which is added back to the master problem.

The master problem is completely defined when all possible Benders’ cuts are added to the problem. However,

in practice this is unnecessary, and at each iteration a relaxed master problem is solved, where only a subset

of all possible Benders’ cut is added to the master problem. For a minimization problem, relaxed master

problem solution at any iteration provides a lower bound to the original problem, while the sub-problem
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solution generates an upper bound. The Benders’ algorithm converges to an optimal solution for the original

mixed integer programming problem if such a solution exists.

We describe the Benders’ decomposition based solution method as applied to MMCLPSU in section 3.1,

and MMCLPSU-P in section 3.2.

3.1 Complete coverage

As shown by Vatsa & Ghosh (2014), removal of the set Jb of pre-existing facilities, if any, along with the

demand nodes that they cover does not affect the optimal objective functional value of MMCLPSU. We use

this result to eliminate set Jb from further consideration in MMCLPSU. By fixing the binary variables zjk

as z̄jk we obtain the following primal sub-problem:

[MMCLPSU-PSP:]

Min θ (50)

s.t. θ +
∑
i∈I

∑
t∈T

ditxits ≥ ζ∗s ∀s ∈ S (51)

xits ≤
∑
j∈Ni

z̄jk ∀i ∈ I, t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (52)

xits ≤ 1 ∀i ∈ I, t ∈ T, s ∈ S (53)

θ, xits ≥ 0 ∀i ∈ I, t ∈ T, s ∈ S (54)

Let αs, βits and ρits be the dual variables associated with the constraint set (51), (52) and (53) respec-

tively. The dual of this problem can be formulated as follows:

[MMCLPSU-DSP:]

Max
∑
s∈S

ζ∗sαs −
∑
i∈I

∑
t∈T

∑
s∈S

ρits −
∑
i∈I

∑
t∈T

∑
s∈S

βits ∑
j∈Ni

z̄jk: k=
∑
t′≤t

pt′s

 (55)

s.t. ditαs − βits − ρits ≤ 0 ∀i ∈ I, t ∈ T, s ∈ S (56)∑
s∈S

αs ≤ 1 (57)

αs, βits, ρits ≥ 0 ∀i ∈ I, t ∈ T, s ∈ S (58)

Let H denote the set of all extreme points of MMCLPSU-DSP. For each extreme point h ∈ H, we denote

the corresponding values of the dual variables as αhs , β
h
its, ρ

h
its, and the corresponding values of the primal

variables as xhits, θ
h. The Benders’ cut generated by the extreme point h to be included in the master problem

is given by:

η ≥
∑
s∈S

ζ∗sα
h
s −

∑
i∈I

∑
t∈T

∑
s∈S

ρhits −
∑
i∈I

∑
t∈T

∑
s∈S

βhits ∑
j∈Ni

zjk: k=
∑
t′≤t

pt′s

 (59)
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Since the master problem deals with zjk variables, rearranging the last term of (59) gives the following

alternate representation of the Benders’ cuts:

η ≥
∑
s∈S

ζ∗sα
h
s −

∑
i∈I

∑
t∈T

∑
s∈S

ρhits −
∑
j∈J

∑
t∈T

∑
s∈S

∑
i∈Nj

βhits

 zjk: k=
∑
t′≤t

pt′s
(60)

where Nj is the set of demand nodes that can be covered by any candidate facility j, i.e., Nj = {i ∈ I :

aij = 1}. The master problem can be stated as follows:

[MMCLPSU-MP:]

Min η (61)

s.t. zjk ≥ zj(k−1) ∀j ∈ J, k ≥ 1 (62)∑
j∈J

zjk = k ∀k ∈ {0, 1, ..., n} (63)

η ≥
∑
s∈S

ζ∗sα
h
s −

∑
i∈I

∑
t∈T

∑
s∈S

ρhits −
∑
j∈J

∑
t∈T

∑
s∈S

∑
i∈Nj

βhits

 zjk ∀h ∈ H, k =
∑
t′≤t

pt′s (64)

zjk ∈ {0, 1}, η ≥ 0 ∀j ∈ J, k ∈ {0, .., n} (65)

Proposition 3. The primal sub-problem MMCLPSU-PSP is always feasible and bounded for any feasible

solution z̄jk of the MMCLPSU-MP.

Proof. A feasible solution to the master problem at any iteration provides a facility opening sequence,

indicated by the values of z̄jk. Such a sequence obtained from the master problem also conveys the set

of facilities open, and hence the coverage of each demand node (defined by the value of the variable xits),

in each time period t and scenario s. Hence, a feasible solution to a master problem always produces a

feasible solution to the corresponding sub-problem. This feasible solution can be used to calculate overall

coverage and regret in each scenario s. Using the regret value in each scenario, objective function value of

the sub-problem, which is the maximum regret across all scenarios, can be obtained. Since the regret in any

scenario, and hence the maximum among them, is finite, the optimal solution to the sub-problem is always

bounded.

We now give propositions to efficiently solve MMCLPSU-DSP since it needs to be solved iteratively in

the Benders’ decomposition framework.

Proposition 4. For a given solution z̄jk to MMCLPSU-MP, algorithm 1 gives an optimal solution to

MMCLPSU-DSP.

Proof. First, we prove that algorithm 1 gives a feasible solution to MMCLPSU-DSP. Clearly, steps 1 and

2 give an optimal solution to MMCLPSU-PSP. The solution to MMCLPSU-DSP is obtained in steps 3

to 6 using complementary slackness conditions between MMCLPSU-PSP and MMCLPSU-DSP. Applying

complementary slackness condition to (51) gives: (θ +
∑
i∈I

∑
t∈T

ditxits − ζ∗s )αs = 0 ∀s ∈ S. This, together

with (57) gives as feasible solution αξ = 1, where ξ = argmax
s∈S

(ζ∗s −
∑
i∈I

∑
t∈T

ditxits) and αs = 0 ∀s ∈ S\ξ

in step 3. Further, complementary slackness condition on constraint set (53) in step 4 gives ρits = 0 when

W.P. No. 2015-02-07 Page No. 14



IIMA • INDIA
Research and Publications

Algorithm 1 Solution algorithm for MMCLPSU-DSP

1: set xits ← min(1,
∑
j∈Ni

z̄jk) ∀i ∈ I, t ∈ T, s ∈ S, where k =
∑
t′≤t

pt′s;

2: θ ← max
s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditxits

)
, ξ ← argmax

s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditxits

)
. Ties can be broken arbitrarily;

3: set αξ ← 1, αs ← 0 ∀s ∈ S\ξ;
4: if xits == 0 then set ρits ← 0, βits ← ditαs ∀i ∈ I, t ∈ T, s ∈ S;
5: else set βits ← 0, ρits ← ditαs ∀i ∈ I, t ∈ T, s ∈ S;
6: end if
7: output αs, βits, ρits ∀i ∈ I, t ∈ T, s ∈ S.

xits = 0 ∀i ∈ I, t ∈ T, s ∈ S. βits is obtained in step 4 using the values of αs and ρits in (56) and exploiting

the fact that (56) is binding at optimality. On the other hand, when xits 6= 0, step 5 gives feasible values for

βits and ρits using (56). The intuition behind this step comes from the interpretation of the dual variables.

We now show that this solution is optimal. From steps 3, 4 and 5, αs = 0, βits = 0, ρits = 0 ∀s ∈ S\ξ.
Hence, with the solution found in algorithm 1, the objective function of MMCLPSU-DSP, given by (55), can

be expressed as:

ζ∗ξ −
∑
i∈I

∑
t∈T

ρitξ −
∑
i∈I

∑
t∈T

βitξ ∑
j∈Ni

z̄jk: k=
∑
t′≤t

pt′ξ

 (66)

It can be seen from steps 4 and 5 that βitξ indicates the demand that is not covered, while ρitξ indicates the

demand that is covered at demand node i in period t and scenario ξ. Consequently, the first two terms in

(66) together give the regret in scenario ξ, which from step 2 is equal to θ. Hence, (66) can be restated as:

θ −
∑
i∈I

∑
t∈T

βitξ ∑
j∈Ni

z̄jk: k=
∑
t′≤t

pt′ξ

 (67)

Moreover, from step 4 it is evident that βitξ takes a non-zero value only if xitξ = 0 =⇒
∑
j∈Ni

z̄jk = 0

(from step 1). Consequently, the second term in (67) equates to zero. Hence, the objective function value

of MMCLPSU-DSP is equal to θ, which is also the objective function value of MMCLPSU-PSP. Since this

dual solution is feasible, it must be optimal.

Corollary 4.1. The Benders’ cut (64) can be expressed as:

η ≥ θh −
∑
j∈J

∑
t∈T

∑
i∈Nj

βhitξh

 zjk: k=
∑
t′≤t

p
t′ξh

∀h ∈ H (68)

where, ξh is argmax
s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditxits

)
associated with the extreme point h.

Proof. This follows directly from substituting the values of dual variables in (67), using zjk as a variable,

and rearranging the terms.
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Proposition 5. Let s1 and s2 be any two scenarios in step 2 of algorithm 1 such that θ = ζ∗s1−
∑
i∈I

∑
t∈T

ditxits1 =

ζ∗s2 −
∑
i∈I

∑
t∈T

ditxits2 and
∑
t′≤t

pt′s1 ≤
∑
t′≤t

pt′s2 ∀t ∈ T , then ξ ← s2 cannot provide a weaker Benders’ cut

than ξ ← s1.

Proof. Clearly, from step 1, we know that MMCLPSU-PSP has a unique optimal solution for a given solution

z̄jk to MMCLPSU-MP. Let that solution to MMCLPSU-PSP be x̄its, θ̄. However, MMCLPSU-DSP may

have multiple optimal solutions corresponding this primal optimal solution (depending on the choice of ξ in

step 2 of algorithm 1). Let two such optimal solutions be associated with the extreme points h1 and h2 of

MMCLPSU-DSP. Let αh1
s , β

h1
its, ρ

h1
its and αh2

s , β
h2
its, ρ

h2
its be the optimal solutions to MMCLPSU-DSP at the

extreme point h1 and h2. Further, let ξ ← s1 at the extreme point h1 and ξ ← s2 at extreme point h2 (in

step 2 of algorithm 1) such that θh1 = ζ∗s1 −
∑
i∈I

∑
t∈T

ditx
h1
its1

= ζ∗s2 −
∑
i∈I

∑
t∈T

ditx
h2
its2

= θh2 = θ (let’s say).

Then, the Benders’ cut η ≥ θh2 −
∑
j∈J

∑
t∈T

( ∑
i∈Nj

βh2

itξh2

)
zjk: k=

∑
t′≤t

p
t′ξh2

is no weaker than the Benders’ cut

η ≥ θh1 −
∑
j∈J

∑
t∈T

( ∑
i∈Nj

βh1

itξh1

)
zjk: k=

∑
t′≤t

p
t′ξh1

if (Magnanti & Wong, 1981):

θh1 −
∑
i∈I

∑
t∈T

βh1
its1

∑
j∈Ni

zjk: k=
∑
t′≤t

pt′s1

 ≤ θh2 −
∑
i∈I

∑
t∈T

βh2
its2

∑
j∈Ni

zjk: k=
∑
t′≤t

pt′s2

 (69)

Since, θh1 = θh2 , the above condition reduces to:

∑
i∈I

∑
t∈T

βh1
its1

∑
j∈Ni

zjk: k=
∑
t′≤t

pt′s1

 ≥∑
i∈I

∑
t∈T

βh2
its2

∑
j∈Ni

zjk: k=
∑
t′≤t

pt′s2

 (70)

We now prove that (70) is indeed true. For this, let
∑
t′≤t

pt′s1 = kt and
∑
t′≤t

pt′s2 = k′t ∀t ∈ T . It is given

that kt ≤ k′t ∀t ∈ T . Also, (from (62)), we get zj(k−1) ≤ zjk ∀j ∈ J, k ∈ {1, 2, ..., n}. Hence, any feasible

solution to MMCLPSU-MP should satisfy: z̄jkt ≤ z̄jk′t ∀j ∈ J, t ∈ T . Therefore, step 1 of algorithm 1 gives

the following relation: xits1 ≤ xits2 ∀i ∈ I, t ∈ T . This, together with steps 4 and 5 of algorithm 1, gives:

βh1
its1
≥ βh2

its2
∀i ∈ I, t ∈ T . This proves that (70) is true, which proves the proposition.

3.2 Gradual coverage

By fixing the binary variables zjk as z̄jk we obtain the following primal sub-problem:

[MMCLPSU-P-PSP:]

Min θ (71)

s.t. θ ≥ ζ∗s −
∑
i∈I

∑
j∈Ni∪Nbi

∑
t∈T

aijditxijts ∀s ∈ S (72)

xijts ≤ z̄jk ∀i ∈ I, j ∈ Ni,∀t ∈ T, s ∈ S : k =
∑
t′≤t

pt′s (73)

∑
j∈Ni∪Nbi

xijts ≤ 1 ∀i ∈ I, t ∈ T, s ∈ S (74)
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xijts ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (75)

θ ≥ 0 (76)

Let αs, βijts and γits be the dual variables associated with (72), (73) and (74), respectively. The dual

sub-problem is formulated as:

[MMCLPSU-P-DSP:]

Max
∑
s∈S

ζ∗sαs −
∑
i∈I

∑
t∈T

∑
s∈S

γits −
∑
i∈I

∑
j∈Ni

∑
t∈T

∑
s∈S

βijtsz̄jk: k=
∑
t′≤t

pt′s
(77)

s.t. aijditαs − βijts − γits ≤ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (78)∑

s∈S
αs ≤ 1 (79)

αs, βijts, γits ≥ 0 ∀i ∈ I, j ∈ Ni ∪N b
i , t ∈ T, s ∈ S (80)

Let Nj be the set of demand nodes that can be covered completely or partially by any candidate facility

j, i.e., Nj = {i ∈ I : aij > 0}. The master problem can be formulated as follows:

[MMCLPSU-P-MP:]

Min η (81)

s.t. zjk ≥ zj(k−1) ∀j ∈ J, k ≥ 1 (82)∑
j∈J

zjk = k ∀k ∈ {0, 1, ..., n} (83)

η ≥
∑
s∈S

ζ∗sα
h
s −

∑
i∈I

∑
t∈T

∑
s∈S

γhits −
∑
j∈J

∑
t∈T

∑
s∈S

∑
i∈Nj

βhijts

 zjk ∀h ∈ H : k =
∑
t′≤t

pt′s (84)

zjk ∈ {0, 1} ∀j ∈ J, k ∈ {0, 1, ..., n} (85)

Proposition 6. The primal sub-problem MMCLPSU-P-PSP is always feasible and bounded for any feasible

solution z̄jk of the MMCLPSU-P-MP.

Proof. This can be proved along similar lines as the proof for proposition 3.

We now give propositions to solve MMCLPSU-P-DSP efficiently.

Proposition 7. For a given solution z̄jk to MMCLPSU-P-MP, algorithm 2 gives an optimal solution to

MMCLPSU-P-DSP.

Proof. First, we prove that algorithm 2 gives a feasible solution to MMCLPSU-P-DSP. Let us define Xits =

max
j∈Ni∪Nbi

aijxijts ∀i ∈ I, t ∈ T, s ∈ S as the maximum level (fraction) of coverage possible for node i in time

period t and scenario s. Xits, by this definition, is also equal to max
j∈Ni∪Nbi

aij z̄jk ∀i ∈ I, t ∈ T, s ∈ S, where

k =
∑
t′≤t

pt′s, as shown in step 1. Clearly, steps 1 and 2 together solve MMCLPSU-P-PSP optimally. The

solution to MMCLPSU-P-DSP is obtained in steps 3 to 6 using complementary slackness conditions between

MMCLPSU-P-PSP and MMCLPSU-P-DSP.
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Algorithm 2 Dual sub-problem solution

1: set Xits ← max
j∈Ni∪Nbi

aij z̄jk ∀i ∈ I, t ∈ T, s ∈ S, where k =
∑
t′≤t

pt′s;

2: θ ← max
s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditXits

)
, ξ ← argmax

s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditXits

)
. Ties are broken using proposition

5;
3: set αξ ← 1, αs ← 0 ∀s ∈ S\ξ, βijts ← 0 ∀i ∈ I, j ∈ N b

i , t ∈ T, s ∈ S ;
4: if Xits == 0 then set γits ← 0, βijts ← aijditαs, ∀i ∈ I, j ∈ Ni, t ∈ T, s ∈ S;
5: else set γits ← Xitsditαs and βijts ← max(0, aijditαs − γits) ∀i ∈ I, j ∈ Ni, t ∈ T, s ∈ S;
6: end if
7: output αs, βijts, γits ∀i ∈ I, j ∈ Ni, t ∈ T, s ∈ S.

Applying complementary slackness condition to (72) gives: (θ+
∑
i∈I

∑
j∈Ni∪NbI

∑
t∈T

ditxijts− ζ∗s )αs = 0 ∀s ∈

S. This, together with (79) gives as feasible solution αξ = 1, where ξ = argmax
s∈S

(ζ∗s −
∑
i∈I

∑
t∈T

ditXits)

and αs = 0 ∀s ∈ S\ξ in step 3. Xits = 0, by its definition, implies xijts = 0 ∀j ∈ Ni ∪ N b
i for any

i ∈ I, t ∈ T, s ∈ S. In step 4, the above result, together with the complementary slackness condition on

constraint set (74), gives γits = 0 when Xits = 0 ∀i ∈ I, t ∈ T, s ∈ S. Furthermore, βits is obtained in

step 4 using the values of αs and γits in (78) and exploiting the fact that (78) is binding at optimality. On

the other hand, when Xits 6= 0, step 5 gives feasible values for βits and ρits using (78). The intuition behind

this step comes from the interpretation of the dual variables that an increase of one unit in the RHS of (74)

implies an improvement of Xitsditαs in the objective function value (double counting demand covered at

node i in period t and scenario s).

We now show that this solution is the optimal solution to MMCLPSU-P-DSP. With this solution obtained

using algorithm 2, MMCLPSU-P-DSP objective function (77) is expressed as:

θ −
∑
i∈I

∑
j∈Ni

∑
t∈T

βijtξ z̄jk: k=
∑
t′≤t

pt′ξ
(86)

As in the problem with complete coverage, the second term of (86) evaluates to zero. This is because

βijts takes a positive value only when zjk = 0, where k =
∑
t′≤t

pt′ξ (follows from steps 1, 4 and 5). Conse-

quently, dual and primal objective function value are same (equal to θ) and hence the algorithm 2 solves the

MULLPSU-P-2-DSP to optimality.

Although ties in step 2 of algorithm 2 can be broken arbitrarily, breaking them using proposition 5 is

guaranteed to generate a Benders’ cut that is no weaker than any other Benders’ cut generated by breaking

ties arbitrarily. The proof for this is similar to that for proposition 5, and hence we skip the details.

Corollary 7.1. The Benders’ cut (84) can be expressed as:

η ≥ θh −
∑
j∈J

∑
t∈T

∑
i∈Nj

βhijtξh

 zjk: k=
∑
t′≤t

p
t′ξh

∀h ∈ H (87)

where, ξh is argmax
s∈S

(
ζ∗s −

∑
i∈I

∑
t∈T

ditXits

)
associated with the extreme point h.
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Proof. This follows directly from substituting the values of dual variables in (86), using zjk as a variable,

and rearranging the terms.

3.3 Implementation of Benders’ decomposition cuts using callback

Benders’ decomposition described above in section 3 is the classical textbook version. In the classical im-

plementation of Benders’ decomposition, the master problem is solved to optimality at each iteration, which

becomes increasingly difficult with each successive iteration. The modern version of Benders’ decomposition,

therefore, uses an incumbent solution in the branch-and-bound search tree to be passed to the sub-problem

for Benders’ cut generation. This is facilitated by the flexibility provided by commercial solvers (like CPLEX)

to the users to intervene in the branch-and-bound tree search process (using callback in CPLEX). In this

framework, the master problem is solved to optimality only once. Moreover, the generated Benders’ cuts

are added to the master problem as lazy constraints. Bai & Rubin (2009); Fortz & Poss (2009); Botton

et al. (2013) have found this implementation to be more efficient than the classical version of Benders’

decomposition. We present the flowchart of this implementation of Benders’ decomposition algorithm in

figure 2.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

Get an incumbent solution to 
the master problem from 

branch-and-bound search tree 
 

Stopping 
criteria 
met? 

 
Invoke callback; get an integer 

feasible solution   ̅  

Solve the associated sub-problem; 
generate a Benders’ cut 

Add the Benders’ cut as a lazy 
constraint. Generate stronger 

Benders’ cut when possible using 
proposition 5. 

 

No 

Yes 

Get an optimal solution    
  

 

Solve the associated sub-
problem; report the solution 

End 

Figure 2: Flowchart for Benders’ decomposition implementation

4 Computational study

In this section, we describe the data generation scheme used for our computational experiments, followed by

discussion of computational results.
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4.1 Data generation

We use the following scheme to generate the data used in our computational study. The number of demand

nodes m ∈ {200, 300, 400, 500}. X and Y coordinates of all the demand nodes are generated as X ∼ U [0, 100]

and Y ∼ U [0, 100]. The number of candidate facilities n ∈ {10, 15, 20}. These candidate facilities are

randomly selected as a subset of the m demand nodes. This gives us 12 (=3x4) problem sizes for both

MMCLPSU and MMCLPSU-P. In all our experiments, the set Jb of open facilities at the start of the

planning horizon is assumed to be empty. Distance δij between demand node i and candidate facility

location j is taken as the Euclidean distance
√

(Xi −Xj)2 + (Yi − Yj)2. Covering distance in MMCLPSU

is fixed as δ0 = 20 for n = 10, 15 and δ0 = 15 for n = 20. Maximum and minimum covering distances in

MMCLPSU-P are fixed as δmax = 30 and δmin = 20 for n = 10, 15, while δmax = 25 and δmin = 15 for

n = 20. Coverage is assumed to decrease linearly between δmin and δmax, implying the following coverage

function:

aij =


1 if δij ≤ δmin,

1− δij−δmin
δmax−δmin =

δmax−δij
δmax−δmin if δmin < δij ≤ δmax,

0 if δij > δmax.

The first period demand at any demand node i is generated as di1 ∼ U [50, 1500]. Demand at node i in

successive periods of the planning horizon varies as dit = di(t−1)(1 + gi), where gi is the demand growth rate

at node i, generated as gi ∼ U [−0.04, 0.10].

Length of the planning horizon in all experiments is assumed to be 5 periods. We assume that by the

end of the planning horizon (i.e., in period t = 5), servers are available for all the candidate facilities under

any scenario. With this assumption, all facility opening sequences give the same demand coverage in the last

period. Hence, the last period t = 5 can be excluded from the model since it does not make any contribution

to the regret. Clearly, any problem with |T | periods with such an assumption is equivalent to a corresponding

problem with |T − 1| periods without this assumption. Thus, for a 5 period problem, the total number of

possible scenarios under this assumption is
(
n+4
n

)
= (n+4)!

n!4! . Server availability scenarios are generated using

algorithm 3.

Algorithm 3 Generation of server availability scenarios

1: s← 0;
2: for t1 ← 0, n do
3: for t2 ← 0, n− t1 do
4: for t3 ← 0, n− t1 − t2 do
5: for t4 ← 0, n− t1 − t2 − t3 do
6: s← s+ 1;
7: p1s ← t1, p2s ← t2, p3s ← t3, p4s ← t4, p5s ← n− t1 − t2 − t3 − t4;
8: end for
9: end for

10: end for
11: end for
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4.2 Computational results

Computational study is done on the data generated using the scheme described above. All the experiments

are run on a personal computer with Intel Core i5 (3.30 GHz) processor; 4 GB RAM; and windows 64-bit

operating system. Solution algorithms are coded in C++ (Visual Studio 2010), and IBM ILOG CPLEX

12.4 is used as the MIP solver. In all our experiments, the maximal coverage ζ∗s for each scenario s ∈ S is

obtained by solving MMCLP for complete coverage and MMCLP-P for gradual coverage using CPLEX MIP

solver. The total CPU time taken to obtain ζ∗s across all scenarios is less than 200 and 4000 seconds for

complete and partial coverage, respectively, even for the largest problem instance that we solve. These times

are much smaller than the CPU time taken by CPLEX MIP solver to solve MMCLPSU and MMCLPSU-P,

respectively. Hence, we do not include these times in the total CPU times reported in all our experiments.

It is clear from table 2 that the problem size (number of variables and constraints) increases with the

number of scenarios considered. Hence, in all our experiments, we use scenario dominance rules given by

Vatsa & Ghosh (2014) to reduce the size of the problem. For this, we represent any server availability

scenario s as (b1, b2, .., bt, .., b|T |) where bt is the number of new servers that become available in period

t ∈ T . A facility opening sequence Π is represented as Π = (π1, π2, ..., πn), where πi is the ith facility in

the facility opening sequence. Further, d̄t,πi∪πi+1∪...∪πj is the total demand covered by the set of facilities

{πi, πi+1, ..., πj} in period t.

Rule 1: Scenarios in which all n servers become available in the same period, will have zero regret for any

facility opening sequence. Hence, the regret associated with these scenarios can never be greater than the

regret associated with any other scenario.

Rule 2: Consider a scenario s1 = (0, .., bt, .., b|T |) that has 0 new server available in the first period, and

the first new server available in period t. Compare s1 with another scenario s2 = (1, .., bt − 1, .., b|T |). For

any facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2

if:

d̄1,π1
+ d̄2,π1

+ ..+ d̄(t−1),π1
≤ ζ∗s2 − ζ

∗
s1 (88)

Rule 3: Consider a scenario s1 = (b1, .., bt, .., 0) that has 0 new server available in the last period, and the

nth new server available in period t. Compare s1 with another scenario s2 = (b1, .., bt − 1, .., 1). For any

facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2 if:

(
d̄(|T |−1),J − d̄(|T |−1),J\πn

)
+
(
d̄(|T |−2),J − d̄(|T |−2),J\πn

)
+ ...+

(
d̄t,J − d̄t,J\πn

)
≥ ζ∗s1 − ζ

∗
s2 (89)

Rule 4: Consider a scenario s1 = (1, .., bt, .., b|T |) that has 1 new server available in the first period, and

the second new server available in period t. Compare s1 with another scenario s2 = (2, .., bt− 1, .., b|T |). For

any facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2
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if:

(
d̄1,π1∪π2 − d̄1,π1

)
+
(
d̄2,π1∪π2 − d̄2,π1

)
+ ..+

(
d̄(t−1),π1∪π2

− d̄(t−1),π1

)
≤ ζ∗s2 − ζ

∗
s1 (90)

Rule 5: Consider a scenario s1 = (b1, .., bt, .., 1) that has 1 new server available in the last period, and the

(n−1)th new server available in period t. Compare s1 with another scenario s2 = (b1, .., bt−1, .., 2). For any

facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2 if:

(
d̄(|T |−1),J\πn − d̄(|T |−1),J\{πn,πn−1}

)
+
(
d̄(|T |−2),J\πn − d̄(|T |−2),J\{πn,πn−1}

)
+ ...

..+
(
d̄t,J\πn − d̄t,J\{πn,πn−1}

)
≥ ζ∗s1 − ζ

∗
s2 (91)

Rule 6: Consider a scenario s1 = (2, .., bt, .., b|T |) that has 2 new servers available in the first period, and

the third new server available in period t. Compare s1 with another scenario s2 = (3, .., bt − 1, .., b|T |). For

any facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2

if:

(
d̄1,π1∪π2∪π3 − d̄1,π1∪π2

)
+
(
d̄2,π1∪π2∪π3 − d̄2,π1∪π2

)
+ ..

..+
(
d̄(t−1),π1∪π2∪π3

− d̄(t−1),π1∪π2

)
≤ ζ∗s2 − ζ

∗
s1 (92)

Rule 7: Consider a scenario s1 = (b1, .., bt, .., 2) that has 2 new server available in the last period, and the

(n−2)th new server available in period t. Compare s1 with another scenario s2 = (b1, .., bt−1, .., 3). For any

facility opening sequence Π, regret associated with s1 can never be greater than that associated with s2 if:

(
d̄(|T |−1),J\{πn,πn−1} − d̄(|T |−1),J\{πn,πn−1,πn−2}

)
+
(
d̄(|T |−2),J\{πn,πn−1} − d̄(|T |−2),J\{πn,πn−1,πn−2}

)
+ ...+

(
d̄t,J\{πn,πn−1} − d̄t,J\{πn,πn−1,πn−2}

)
≥ ζ∗s1 − ζ

∗
s2 (93)

After applying the above scenario dominance rules, the remaining set of non-dominated scenarios is denoted

as S0 ⊂ S. We replace S by S0 in all our experiments with MMCLPSU and MMCLPSU-P.

We conduct our computational experiments with 10 instances for each of the 12 problem sizes described

in section 4.1. For MMCLPSU, table 4 reports the objective function value (Obj), time taken by CPLEX

MIP solver (CPLEX CPU(s)), time and number of cuts required by the classic and callback versions of

Benders’ decomposition method (BD-Classic and BD-Callback). Clearly, BD-Classic and BD-Callback out-

perform the CPLEX MIP solver. For example, the computation time taken by the CPLEX MIP solver

for the problem size of n=15, m=300 is on average more than 150 times the time taken by BD-Classic,

and more than 250 times that taken by BD-Callback. Further, CPLEX solver could not solve MMCLSPU

instances beyond problem size n=15, m=300 within the time limit of 20 hours. Benders-Classic, on the

other hand, could solve most of the problem instances till n=20, m=400 within the same time limit, while

Benders-Callback solved instances of size n=20, m=500 in close to 2 hours on average. At the same time, we

notice that the number of cuts, and hence the CPU time, required by BD-Classic and BD-Callback increases

with the problem size. However, the increase in CPU time is more drastic for BD-Classic since it solves a

new master problem to optimality at each iteration, whereas BD-Callback solves only one master problem
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to optimality. Subsequently, for MMCLPSU-P, we perform computational experiments only with CPLEX

MIP solver and BD-Callback.

Table 5 provides a comparison between CPLEX MIP solver and BD-Callback for MMCLPSU-P. Like

MMCLPSU, we notice that BD-Callback solves much larger instances of MMCLPSU-P compared to CPLEX

MIP solver within the time limit of 20 hours. For example, CPLEX MIP solver could not solve 6 out of the

10 instances corresponding to n = 10,m = 300 within the 20 hour limit, while BD-Callback could solve all

10 instances corresponding to the largest size of n = 20,m = 500 in close to 1 hour on average. Further, for

the instances that CPLEX MIP solver could solve within the time limit, BD-Callback is of the order of 1,000

times faster. Moreover, comparing the results in table 4 and 5, we notice that the CPLEX MIP solver could

not solve many instances corresponding to n = 10,m = 300 for MMCLPSU-P, while it could solve much

larger instances for MMCLPSU. This is expected since the size of the mathematical model for MMCLPSU-P

is much larger than that for MMCLPSU (for example, MMCLSPU-P has variables xijts while MMCLPSU

has xits). Interestingly, the same does not appear to hold true with respect to BD-Callback. On the contrary,

BD-Callback solves MMCLPSU-P instances much faster, on an average, compared to MMCLPSU. This is

true because, as obvious from tables 4 and 5, the average number of Benders’ cuts used by BD-Callback is

smaller for MMCLPSU-P compared to MMCLPSU. This indicates that the Benders’ cuts in MMCLPSU-P

carry more information compared to the cuts in MMCLPSU (since the two master problems, MMCLPSU-MP

and MMCLPSU-P-MP, differ only in Benders’ cuts). This can be explained by comparing the Benders’ cuts

in the two models, which suggests that for δmin = δ0, as used in our experiments, the additional coverage

(partial) allowed between δmin and δmax in case of MMCLPSU-P may result in more information with each

Benders’ cut (consequently fewer cuts). In order to check this assertion, we conduct additional experiments

with 20 instances for different values of the covering distance (δ0) in MMCLPSU. We depict the resulting

average number of cuts used for each value of δ0 in figure 3, which confirms our assertion.

Figures 4 and 5 show how the number of instances (out of 20) with 0 maximum regret as the objective

function value, and the average objective function value vary with δ0. As obvious from figure 4, with a

sufficiently high δ0, most of the instances result in 0 objective function value. This is expected since with a

very high δ0, all the facility opening sequences provide the same coverage under any given scenario. Hence,

the regret associated with an optimal sequence will be zero. Further, as can be seen from figure 5, the

average objective function value first increases and then decreases with an increase in δ0. This is due to

the fact that with very small δ0, total demand that can be covered is small in magnitude, and hence the

regret is also of similar magnitude. As δ0 increases, it becomes possible to cover more demand nodes by

judiciously selecting candidate facilities to open. Consequently, when the optimal facility opening sequence

has a regret, it is generally of higher magnitude. Furthermore, a very high δ0 results in too many instances

with low or zero objective function value, as observed in figure 4. Consequently, the average objective

function value decreases with very high values of δ0. This observation provides an interesting insight. The

covering distance represents the connectivity of the nodes. A larger covering distance indicates demand

nodes are well connected with candidate facilities. The above observation implies that with a good level of

connectivity, even the most unfavorable scenario will not have a high regret.
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Figure 3: Average No. of Cuts vs. δ0
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Figure 4: No. of instance with zero objective function value vs. δ0
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Figure 5: Average objective function value vs. δ0
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Table 4: Computation results with MMCLPSU

Ins. Obj CPLEX BD-Classic BD-Callback Obj CPLEX BD-Classic BD-Callback
CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts

n=10, m=200 n=10, m=300

1 4673.2 97.9 5.1 88 5.3 86 8557.7 59.7 9.3 84 12.2 114
2 7509.0 184.9 2.6 50 2.4 47 5174.2 79.7 7.1 77 5.5 56
3 19828.6 16.8 4.4 52 6.0 72 7986.4 600.7 13.3 116 12.1 116
4 115.7 26.3 2.8 38 2.9 37 255.9 41.3 6.6 71 7.9 76
5 0.0 70.0 0.7 10 1.8 25 0.0 124.8 2.0 30 2.6 29
6 8758.8 62.2 5.3 72 4.2 62 21763.9 578.0 5.7 69 5.1 61
7 0.0 42.1 1.2 26 1.3 25 4618.1 176.9 18.5 147 13.1 109
8 0.0 112.2 3.1 48 3.5 50 0.0 94.1 4.5 67 6.6 96
9 13179.4 438.9 1.2 24 1.4 32 863.1 107.2 4.1 62 4.2 61
10 0.0 54.6 0.7 10 1.3 16 13.0 60.0 4.2 62 4.4 59

Avg. 110.6 2.7 41.8 3.0 45.2 192.2 7.5 78.5 7.4 77.7
Max. 438.9 5.3 88 6.0 86 600.7 18.5 147 13.1 116

n=10, m=400 n=10, m=500

1 10688.6 63.7 10.0 73 9.8 61 0.0 395.0 9.6 58 15.1 87
2 374.6 55.0 12.7 99 10.6 74 1966.1 930.6 17.4 90 24.2 121
3 396.9 65.5 10.8 83 11.5 84 9289.5 2292.5 14.5 74 21.9 103
4 10033.1 85.7 10.7 82 10.0 70 0.0 92.1 10.4 66 11.9 68
5 20531.7 1382.6 7.9 58 9.8 72 5094.7 102.5 4.8 39 6.8 45
6 14744.4 970.5 13.8 74 15.7 83 7181.4 120.5 12.3 54 16.5 68
7 0.0 158.8 3.1 25 10.3 75 0.0 204.1 5.7 35 4.5 24
8 13783.7 75.1 4.1 31 5.0 34 9362.9 1197.0 15.6 71 20.5 88
9 7549.6 972.4 7.7 55 9.3 62 0.0 402.8 6.6 42 13.8 78
10 15144.2 289.1 6.1 62 6.6 64 2680.2 229.4 21.6 111 17.2 76

Avg. 411.8 8.7 64.2 9.9 67.9 596.7 11.8 64 15.2 75.8
Max. 1382.6 13.8 99 15.7 84 2292.5 21.6 111 24.2 121

n=15, m=200 n=15, m=300

1 13335.4 25878.3 530.6 435 96.0 401 863.5 7025.8 28.8 82 31.9 87
2 7509.0 7200.8 41.3 121 39.6 156 7991.5 28235.2 147.7 231 107.0 231
3 4833.0 8965.0 66.9 175 71.3 218 18405.0 53327.2 514.2 329 229.2 368
4 9274.4 489.0 51.2 138 34.9 136 0.0 4262.8 72.4 161 89.5 193
5 3608.8 14270.5 33.8 113 36.0 151 1582.7 1218.5 28.5 79 43.6 121
6 904.0 4637.8 88.6 241 88.5 237 20642.3 26878.8 52.8 107 89.1 225
7 3215.5 609.7 31.0 120 38.7 168 13364.7 36511.5 476.6 314 202.0 315
8 6263.6 27162.2 444.5 431 212.1 457 7406.7 1863.2 53.7 126 39.8 106
9 16059.5 1727.6 44.9 112 32.0 102 19254.6 48713.7 105.0 166 73.1 185
10 0.0 1220.4 20.9 80 20.2 82 9712.3 36164.8 107.3 238 58.7 153

Avg. 9216.1 135.4 196.6 67.0 210.8 24420.1 158.7 183.3 96.4 198.4
Max. 27162.2 530.6 435 212.1 457 53327.2 514.2 329 229.2 368

n=15, m=400 n=15, m=500

1 7520.3 * 159.4 185 200.3 266 20806.6 * 300.3 248 231.1 290
2 17916.3 * 81.6 118 76.8 124 9711.8 * 191.6 289 177.3 287
3 4162.9 * 247.0 248 183.1 258 12126.9 * 181.1 192 216.1 239
4 12103.4 * 174.2 163 193.1 214 4972.4 * 58.8 95 103.7 147
5 18194.5 * 86.4 125 87.9 148 17206.1 * 65.7 92 89.9 139
6 27138.1 * 207.0 242 170.4 276 9248.3 * 370.0 275 296.1 250
7 617.0 * 59.2 127 72.6 148 732.0 * 85.5 114 147.5 176
8 12120.2 * 43.9 89 49.8 97 4748.5 * 82.3 107 87.3 105
9 11109.7 * 275.2 190 230.1 270 8087.1 * 131.2 132 178.4 172
10 15144.2 * 71.2 123 64.1 133 22524.7 * 2132.3 843 880.0 896

Avg. 140.5 161 132.8 193.4 359.9 238.7 240.8 270.1
Max. 275.2 248 230.1 276 2132.3 843 880.0 896

* Could not be solved in 20 hours
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Table 4 (continued)

Ins. Obj CPLEX BD-Classic BD-Callback Obj CPLEX BD-Classic BD-Callback
CPU(s) CPU(s) Cuts CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) Cuts

n=20, m=200 n=20, m=300

1 3492.3 * * * 5821.9 3396 5378.1 * 4727.3 679 956.9 582
2 3222.5 * 2167.5 444 648.6 493 7633.0 * 26362.8 983 3381.9 1479
3 360.0 * 448.8 379 500.9 392 3723.2 * * * 12338.3 3044
4 541.2 * 482.7 404 316.9 268 10221.8 * 4918.1 703 1674.3 1022
5 1806.3 * 809.0 328 389.1 366 4659.3 * 6153.2 500 1159.4 645
6 808.7 * 1165.4 541 696.3 569 0.0 * 582.0 315 528.5 359
7 2464.9 * 450.6 313 360.9 369 9978.9 * * * 4232.2 1143
8 561.2 * 63022.0 2095 14399.7 2404 3906.0 * 8166.7 1260 1935.1 1067
9 5813.0 * 6108.6 748 1109.9 700 6518.0 * 3655.2 806 1577.1 856
10 420.7 * 1337.0 788 812.6 635 8671.4 * 34265.6 2063 2956.1 1424

Avg. 2505.7 959.2 3074.0 1162.1
Max. 14399.7 3396 12338.3 3044

n=20, m=400 n=20, m=500

1 2257.3 * 11643.8 946 2481.8 1049 16066.7 * * * 38432.0 6642
2 8364.5 * 27470.4 990 4381.5 1273 18915.9 * * * 10891.1 2447
3 5297.3 * 9396.0 1416 4399.3 1147 10163.3 * * * 4040.3 1105
4 8180.6 * 7367.5 724 2815.3 927 5262.4 * * * 1812.1 637
5 8351.3 * 2443.0 556 1247.0 617 6761.3 * * * 1217.9 465
6 5257.1 * 4070.3 616 1469.9 572 11044.2 * * * 4803.8 1556
7 13696.3 * 5057.6 889 4559.9 1467 5918.8 * * * 1419.6 433
8 13.0 * 561.0 250 431.1 200 10376.5 * * * 2756.5 943
9 5021.5 * * * 9420.4 3097 9723.9 * * * 5072.3 1528
10 13158.8 * 8537.6 1037 3196.9 1140 4167.9 * * * 5968.6 1829

Avg. 3440.3 1148.9 7641.4 1758.5
Max. 9420.4 3097 38432.0 6642

* Could not be solved in 20 hours
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Table 5: Computation results with MMCLPSU-P

Ins. Obj CPLEX BD-Callback Obj CPLEX BD-Callback Obj CPLEX BD-Callback
CPU(s) CPU(s) Cuts CPU(s) CPU(s) Cuts CPU(s) CPU(s) Cuts

n=10, m=200 n=10, m=300 n=10, m=400

1 11272.2 3463.9 6.1 64 13040.9 18044.7 8.4 43 13199.7 * 22.4 60
2 2227.8 5060.3 4.1 34 11574.0 37982.8 9.8 48 13922.7 * 17.1 56
3 11591.5 6569.4 10.2 75 17891.7 * 15.7 79 23551.0 * 17.9 66
4 540.0 1822.0 4.0 39 16340.6 * 9.2 56 10634.6 * 9.9 47
5 823.3 2146.4 3.3 28 0.0 * 2.0 14 9475.6 * 11.6 42
6 6862.4 7209.0 8.6 79 11633.1 * 6.9 50 0.0 * 6.2 24
7 3079.5 854.7 2.4 31 10260.9 * 19.7 94 15026.5 * 25.2 90
8 2901.2 1388.9 5.6 43 12196.8 44738.32 7.9 62 30696.0 * 14.7 51
9 4972.4 931.2 2.3 22 10965.5 * 4.6 39 12520.3 * 17.2 65
10 2832.5 957.8 4.3 43 44.9 34574.86 7.6 45 20226.0 * 10.8 53

Avg. 3040.4 5.1 45.8 9.2 53 15.3 55.4
Max. 7209.0 10.2 79 19.7 94 25.2 90

n=10, m=500 n=15, m=200 n=15, m=300

1 55221.4 * 27.5 74 21085.2 * 55.8 142 16563.4 * 109.7 154
2 21287.3 * 22.4 82 23183.0 * 58.5 135 21128.9 * 205.0 235
3 20978.7 * 28.7 77 4635.7 * 68.3 108 13450.2 * 153.4 159
4 0.0 * 12.7 44 6605.7 * 33.9 73 19648.8 * 163.8 166
5 2168.2 * 8.0 31 7287.6 * 25.4 56 2890.1 * 41.3 72
6 5692.6 * 18.5 47 6434.4 * 78.9 137 13262.0 * 78.9 112
7 18005.9 * 7.9 27 11732.4 * 44.4 110 13293.4 * 186.8 162
8 10452.8 * 20.3 71 8372.1 * 122.3 145 15356.1 * 69.4 77
9 0.0 * 14.4 47 7480.7 * 32.5 78 10250.7 * 50.6 82
10 0.0 * 10.5 31 2832.5 * 56.2 137 18249.3 * 131.3 188

Avg. 17.1 53.1 57.6 112.1 119.0 140.7
Max. 28.7 82 122.3 145 205.0 235

n=15, m=400 n=15, m=500 n=20, m=200

1 13706.7 * 315.9 222 53670.4 * 149.3 125 16507.5 * 2341.0 1011
2 38421.3 * 204.8 153 9142.0 * 169.3 171 8715.6 * 533.3 285
3 18023.2 * 227.7 181 0.0 * 94.8 66 579.1 * 730.0 348
4 22114.1 * 295.9 176 13426.1 * 125.0 109 9570.6 * 2400.2 927
5 20806.4 * 100.6 96 21214.9 * 158.2 123 12815.5 * 957.8 413
6 12505.6 * 168.8 170 9824.0 * 244.5 127 5520.7 * 790.4 425
7 19116.4 * 113.4 101 33889.3 * 155.8 117 5227.8 * 509.9 310
8 37372.0 * 55.2 51 16802.1 * 152.5 116 5798.4 * 2131.7 623
9 14657.5 * 121.8 88 27899.4 * 261.2 135 10044.3 * 821.8 499
10 20226.0 * 78.0 78 19117.5 * 247.9 194 5548.5 * 596.4 311

Avg. 168.2 131.6 175.8 128.3 1181.3 515.2
Max. 315.9 222 261.2 194 2400.2 1011

n=20, m=300 n=20, m=400 n=20, m=500

1 8443.8 * 799.0 294 12058.1 * 4543.4 1085 18216.0 * 6104.7 1159
2 13895.6 * 2619.7 783 23681.4 * 5706.7 1075 13043.3 * 5708.7 885
3 11130.8 * 4752.6 1061 16695.2 * 5127.7 1246 33116.3 * 1590.3 338
4 4132.6 * 1505.7 442 13883.3 * 3815.9 682 38415.5 * 2788.4 640
5 7005.1 * 807.6 237 11886.5 * 1202.7 369 18873.8 * 990.8 250
6 18516.8 * 1141.4 412 16383.1 * 1650.5 412 29209.2 * 5050.1 891
7 9416.2 * 4697.5 1147 14953.3 * 2368.0 528 4355.3 * 1396.5 247
8 7788.2 * 1535.1 459 5772.3 * 526.8 156 10134.0 * 2923.1 514
9 13878.0 * 1290.1 497 17246.0 * 5265.5 1120 29415.5 * 3622.2 571
10 6352.6 * 2231.4 679 9806.0 * 1378.2 339 23821.3 * 7873.3 1446

Avg. 2138.0 601.1 3158.5 701.2 3804.8 694.1
Max. 4752.6 1147 5706.7 1246 7873.3 1446

* Could not be solved in 20 hours
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5 Conclusion

In this paper, we provided a new formulation of Multi-period maximal coverage (both complete and partial)

location problem with server uncertainty, motivated by its relevance with respect to primary health centers.

We mathematically proved that our formulation is better than the only other formulation available in the

literature. Using computational experiments, we show that for large problem instances, our formulation

is more than 10 times faster compared to the earlier formulation in the literature. Still, CPLEX MIP

solver was unable to solve practical size problems. Consequently, we provided Benders’ decomposition based

methods, which were able to solve much larger problem instances within reasonable time. We further provided

refinements to the Benders’ method, like heuristics for the sub-problems and cut strengthening methods,

which drastically reduced the computational time needed to solve problem instances of the size up to 20

facilities, 500 demand nodes and 5 periods. Further, for the instances that CPLEX MIP solver could solve

within a time limit of 20 hours, our proposed solution method turned out to be of the order of 150 − 250

times faster for the problems with complete coverage, and around 1000 times faster for gradual coverage.

Future research may use other regret measures like maximization of expected coverage or minimization of

expected regret when the probabilities of various server availability scenarios can be estimated. Extension of

this paper with capacity restrictions at candidate facilities is another interesting avenue for further research.
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