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Abstract 

Receiver operating characteristic (ROC) curves and the area under the curve 

(AUC) are widely used in medical studies to examine the effectiveness of 

markers in diagnosing diseases. In most of the existing literature for ROC 

curve analysis it is assumed that the healthy and the diseased populations are 

independent of each other, which may lead to bias in the studies. In this paper 

we consider the disease status as a binary random variable. Assuming the 

disease status is determined by a latent variable and the marker and the latent 

variable have a bivariate normal distribution, we derive the properties of the 

ROC curve and the AUC. We also look at the problem of choosing optimum 

combination of markers when multiple markers are present. Limiting 

distributions are obtained and confidence intervals are discussed as well. A 

small simulation study is performed which confirms the superiority of our 

methods over the general practice of considering the two populations to be 

independent. 

1 Introduction 

ROC curves and in particular AUC are widely used in medical studies to examine the 

effectiveness of markers used to diagnose diseases. Consider a study where for each individual 

disease status, observations on a continuous marker and a set of related covariates are available. 

Let us assume that for an individual the higher the value of the marker more is the chance of 

being diseased. In determining the ROC curves it is almost always a priori assumed the samples 

for the diseased (case) and healthy (control) individuals are obtained from two different, 

independent, populations. To be precise, let Y1 and Y2 respectively denote the random variables 

representing marker values for the healthy and diseased individuals, which are distributed 

independently. For a given value c  we define the true positive rate at c (TPR(c)) to be equal 

to P(Y2>c) and the false positive rate at c (FPR(c)) to be equal to P(Y1>c). The ROC curve is 

then obtained by joining the points ))(),(( cTPRcFPR for c varying over the real line, see Pepe et 
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al. (2001) and Baker (2003). It can be mathematically shown that AUC = P(Y2>Y1), see Bamber 

(1975).  

The setup mentioned above is the common practice but always not very sensible. Consider the 

situation, for example, when one wishes to evaluate the performance of a biomarker risk 

prediction, as considered by Pepe et al. (2012), Kerr and Pepe (2011) and the references within. 

When one considers these two groups to be independent, one faces the dilemma whether to 

“match” the biomarkers for case and control groups or not. The common practice of matching is 

problematic, see Janes and Pepe (2008), but not matching may also lead to bias. There is perhaps 

a need for a different approach. 

To eliminate the bias that arises from assuming the diseased and healthy individuals to be from 

two different populations, one option is to consider them to be from the same population but at 

two different “states”, namely: “diseased” or “healthy”.  It may easily be achieved by assuming 

the disease status to be a dichotomous random variable instead, as in Pepe et al. (2012). In that 

case we may say that we have a random sample of size n from the study population. For each 

selected individual we then observe the disease status (D) which is binary, (where D = 1 means 

diseased and D = 0 means healthy), the value of the marker (Y), and the covariates (x). Assuming 

an underlying latent variable YD for the binary variable D such that YD > 0   D = 1 (diseased) 

and YD < 0    D = 0 (healthy) and a bivariate absolutely continuous distribution for (Y,YD) we 

may carry out ROC analysis adjusting for the effect of covariates x. One may easily extend this 

analysis to the case where more than one marker are available by looking at an appropriate 

multivariate structure. In this paper we restrict our analysis to a bivariate/ multivariate normal 

structure for convenience. In case of departure from normality one may think of appropriate 

transformations, see Schisterman et al. (2004) for motivation. 

In Section 2, we introduce the model and find an expression for the area under ROC curve 

(AUC) for any given covariate level x0. In Section 3 we find the maximum likelihood estimates 

(MLE) of the model parameters. In Section 4 the large sample distributions of the ROC values 

and AUC are established, and an interval estimate of AUC given the covariate value (level) 

0x has been obtained using bootstrap. In Section 5, a simulation study has been carried out to 



 

 
 

IIMA    INDIA 
Research and Publications 

Page No. 4 W.P.  No.  2015-07-02 

compare the ROC curve obtained by our approach with that of the standard approach. 

Concluding discussions are given in Section 6. 

2 A Parametric Model  

In the standard ROC curve analysis with marker Y following a normal distribution it is assumed 

that the parameters of the distributions of Y for diseased and healthy patients are independent, see 

Pepe (2003). As already established in Section 1, this assumption seems to be restrictive as it 

may require matching the biomarkers. In this paper we propose a simple parametric model 

obtained from the joint distribution of the binary variable indicating presence/absence of disease, 

a set of markers assumed to be continuous, and a set of covariates, also assumed to be 

continuous. For some useful references in analysis of ROC curve when covariates are present, 

one may refer to Janes et al. (2009), Pardo-Fernández et al. (2014) and the references within. 

Note that our approach could be adapted to situations where some or all of the markers and/or 

the covariates may be categorical, as well as to the complex situations where nonparametric or 

semiparametric models are required. We would discuss it in the sequels.  

To begin with suppose we have a single continuous marker Y for discriminating between the 

diseased and the healthy individuals. Although it is possible to extend our analysis to multiple 

markers, in that case the problem of choosing an optimal marker combination arises, which is not 

of interest for our current work. However, we briefly discuss the application of our methodology 

in such a situation in Section 6. 

Suppose we have a random sample of size n from the study population and the data are in the 

form (yi, di, xi), i =1, ,n. . As mentioned in Section 1, we assume an underlying latent variable 

YD for D. We now assume that (Y,YD) has a bivariate normal distribution with respective 

means 1 1 1( )  T
Y x x   and 2 2 2( ) ,

D

T
Y x x   respective variances 2

Y  and 1 and correlation 

coefficient ρ. Note that 1x  and 2x  are subsets of x. Thus the distribution of the marker Y given YD 

> 0 (YD < 0)) represents the distribution of Y for the diseased and healthy patients respectively. 

Writing the model parameters T

Y

TT )1,,,( 2

21   the conditional distribution of Y given YD > 0 

and YD < 0 are respectively given by: 
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( | ) ( | , 0) ( ) ( , ; )

( | ) ( | , 0) ( ) ( , ; )
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                 … (2.1) 

where  
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2
2 21
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/
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2
2 21

 
    

 D

/
T

Y |YD
a ( x, y; ) x      ,    

 2 2 1 1  
D

T T
Y |Y

Y

x y x


  


  

and (.) is the cdf of the standard normal distribution. 

We have assumed at the outset that 10   . For 10   , the distributions 

( | )Df y x and ( | )
D

f y x  are not symmetric. Also );,( yxaD  ( );,( yxa
D

) increases (decreases) in 

y from 0   2 21  T x   to  2 21 T x  (0). Note that for y greater (less) than 

 
1 2

2
1 1 2 21 1

 
   

 

/
T TYx x


  


( );(0 xy , say), );,( yxaD ( );,( yxa

D
) is greater (less) than 

unity. Thus )|( xyfD  becomes greater (less) than ( )Yf y  for y greater (less) than );(0 xy . The 

relation between ( | )
D

f y x  and )(yfY  is exactly the opposite. In other words, ( | )Df y x  becomes 

positively skewed and ( | )
D

f y x  negatively skewed. The amount of inflicted skewness depends 

on the value of ρ. The closer it is to 1, the skewness becomes more pronounced. In the extreme 

cases viz. 0  and 1  the distributions becomes identical and completely separated.  

We now state and prove the following result. 

Theorem 1: For 10   , the distribution of ( | )Df y x  is stochastically larger than the 

distribution of ( | )
D

f y x . 
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Proof: Note that ( | ) ( )D Yf y x f y ( ( | ) ( ) YD
f y x f y ) for );(0 xyy   and ( | ) ( )D Yf y x f y  

( ( | ) 
D

f y x )(yfY ) for );(0 xyy  .  

Thus for );(0 xyy  , we get 

( | ) ( | ) ( )    
y y

D D YF y x f t x dt f t dt ( | ) ( | ) 
y

D D
f t x dt F y x . 

Similarly, for );(0 xyy  , )|( xyFD )|( xyFD ( | ) ( | ), D D
F y x F y x  which completes the 

proof. 

To draw the ROC curve we need to find True positive rate (TPR) )(cFD ( )(1 cFD ) and False 

Positive Rate (FPR) )(cF
D

( )(1 cF
D

 ) for any real c and then to plot ( )(),( cFcF DD
) for 

different values of c for a given x . In fact, ROC curve is plot of the function   1*
D D

F F t for 

( , )t 0 1  for a given x  where )(* cF
D

 is a survival function of the density 

       
/

 
   
 

1 2
2 T 1 T

2 2 2 2z 1 z x x       , ,z   where (.) and (.)  denote the density 

and the distribution function of the standard normal distribution. This is often called the adjusted 

ROC curve, see Janes et al. (2009). 

The area under the ROC curve (AUC) is an important measure of diagnostic accuracy. For 

examples, properties and applications see Metz et al. (1984), Su and Liu (1993), Zhou et al. 

(2002), Liu et al. (2005), Ma and Huang (2005) and Wang et al. (2007). For a given 0x , the AUC 

is given by     AUC |    
0

x 1 2 1 2 0P Y Y P Y Y x x  where 1Y  and 2Y  are independent 

random variables with probability density (.)Df  and (.)
D

f  respectively. This may be referred to 

as “adjusted AUC”. 

3 Maximum Likelihood Estimation 

Among the various choices available for estimating the ROC curve, perhaps the most popular 

choice among the parametric methods is to employ the maximum likelihood estimation (MLE), 
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which dates back to Ogilvie and Creelman (1968), also see Dorfman and Alf (1969) for further 

elaboration. This method, among other advantages, readily allows us to obtain asymptotic 

confidence bands for the ROC curve and also helps to estimate the AUC, as we explore in 

Section 3.1.  

Let us write  

 
T

T T 2
1 2 Y, , ,     ,    

  
    

 

1/ 2
2 T T

i 2 2i i 1 i
Y

v ( ) 1 x y x ,


   


 

and  

           
 i i i iw ( ) v v 1 v       . 

Then the full log likelihood for n observations is given by  

                 
2

Y i 1i 1 Y i i i i
i i i

l( ) ln f y | x ; , d ln v 1 d ln v        

where   2
1 1| ; ,Y i i Yf y x    is the  density of Yi given xi. 

The corresponding score equations are: 

      
1/2

2 1 2
1 1 1 1 11 ( ) ( ) ;


        

T
Y i i i Y i i i i

i i

l x y x x w d v        

    
1/2

2
2 21 ( ) ( ) ;


     i i i i

i

l x w d v     

        
2 1/2

1 3 2 2
1 1 1 11 ( ) ( )


            

T T
Y Y Y i i Y i i i i i

i i

l n y x y x w d v          

and  
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3/2

1 2
1 11 ( ) ( ) .


     

T
Y i i i i i

i

l y x w d v       

We can see that no closed form solution is available, and it is a bit complicated to obtain the 

information matrix. However, one can simply obtain a numerical solution to the likelihood using 

some statistical package. As for example, one may use the „optim‟ package available with the 

statistical software R, which we use in the simulation exercise carried out in Section 5.  

3.1 AUC at the Maximum Likelihood 

We now discuss how to employ the maximum likelihood estimate obtained above to estimate the 

adjusted AUC. 

Recall from Section 2.1 that the adjusted AUC at a given x is given by  

      AUCx =  )()();( yFdyFxH
DD ,                                           …(3.3) 

where  



y

DD duufyF )()(  and  



y

DD
duufyF )()(  are the survival functions of the conditional 

distributions of Y given D and D  respectively. 

Now, by direct plug-in of the MLE, we can write the estimated AUC at x  as 

 ;AUC ˆ
x H x                                                         …(3.4) 

which is trivially a consistent estimator of AUCx under the present setup. In Section 4.1 we 

establish the asymptotic normality of the above estimator and develop a confidence interval for 

the adjusted AUC. 

4 Asymptotic Properties of the ROC Curve and the AUC 

In this section we establish the asymptotic normality of the ROC curve and the AUC for the 

given setup at the parametric rate using the asymptotic properties of the MLE ̂  of  
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T

T T 2
1 2 Y, , , ,      and hence discuss the development of asymptotic confidence intervals for 

the same. 

4.1 Asymptotic Normality of the ROC Curve 

It can easily be shown that the MLE ̂  satisfies the conditions of Theorem 7.5.1 of Lehmann 

(1999), so that the following hold true  

(a)         1/ 2
P

ˆ O n       …(4.1)  

and 

(b)          1/ 2 ˆn N 0,I   ,      …(4.2) 

where 

lim 



  
  

   

2
1

Tn

l( )
I ( ) n E .




 
 

The population ROC curve is obtained by plotting   ROC ( )  1
x D D

t F F t
 
against )1,0(t . 

The natural estimate of )(tROCx  
is  1ˆROC ˆ( ) ( )x D D

t F F t , where DFˆ and 
D

F
ˆ

 
are the values of 

DF  
and 

D
F  respectively, obtained by plugging in ̂  for  .  

Theorem 2: Given ( , )t 0 1  and ,  as n , 

       RO OCC R 
d1/ 2

x x xn t t N 0,v t;
 

where the asymptotic variance );( tvx is given by  

( ; ) ( ; ) ( ) ( ; ), T 1
x x xv t h t I h t      
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and 

      
         

      

D D D
x D D

D

ln f (Y | x )ln f (Y | x ) f ( t | x )
h ( t; ) E I(Y t ) E I(Y t )

f ( t | x )


   

where )(I is the Fisher’s Information matrix and (.)DE  and (.)
D

E are expectation with respect 

to distributions }1,|{ DxY  and }0,|{ DxY respectively.  Further, a consistent estimator of 

the asymptotic variance is given by 

       



1T

x x x
ˆ ˆˆ ˆ ˆ ˆˆv̂ t; h t; I h t;     

where  

 

 


      

 

n n
i1 1D i D

x i i x i i
i 1 i 1

ln f (Y | x )ln f (Y | x )
ĥ ( t; ) n I(Y t,D 1) c ( t; )n I(Y t,D 0 ) 

   

for some suitably chosen cx(t,θ).
 

Proof.  Let      ; | |x D D
c t f t x f t x . Using the delta method as in the proof Theorem 1 (ii) 

of Ma et al. (2010), we have 

    ˆ ˆ( ) ROC ( ) ( )R ( ; ) ( ) ( ) ; ( )OC     x x D x D xD D
t t F t c t F t F t c t F t  . 

Further applying a Taylor series expansion about θ, we get  

          / / /OROC ˆR C ;
T1 2 1 2 1 2

x x x Pn t t n h t O n      
 

and hence the asymptotic normality is established.  

4.2 Large Sample CI for the AUC 

We have seen in Section 3.1 that AUCx = );( xH  is a continuously derivable function of θ. 

Hence, using the delta method, from (4.1) and (4.2) above, we have 
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));(,0()};()ˆ;({ 22/1  xNxHxHn H , );()();();( 12   xHIxHx T

H
  . 

In view of the above, theoretically we have the means to obtain the asymptotic variance 

2 ( ; ),H x   and hence obtain confidence intervals for AUC. Unfortunately, although computation 

can be further simplified by replacing )(I  with limiting average observed information 

lim 


    1 2 T

o
n

I ( ) n l( ) / ,     in general computation of );(  xH   will be complicated. In 

this article we do not obtain a confidence interval for the AUC, but see Section 6.3 for a possible 

solution. 

5 Some Simulation Studies 

In this section we look at the performance of the proposed methodology through some simulation 

studies.  We compare the performance of the proposed method with the existing method of 

obtaining the ROC curves and AUC considering the diseased and the healthy subjects to be part 

of two independent populations.  

We perform the simulation exercises by first sampling the covariate values (x) from mixture 

normal distributions, and then generating the marker and latent variable values for disease status 

from some bivariate normal distributions.  

Step 1: Draw a random sample nxx ,...,1  from a mixture normal density. Let it be 

),...,( 1 nn xxX  . Then for each x generate ),( dyy
 
value using bivariate normal density with 

means xoxy 1|    and xxyd 10|   , variances 
2

y and 1, and correlation  . Here y is 

the marker and dy  is the latent variable for disease or healthy unit. Define 1id  (disease) if 

0
idy  and 0 (healthy), otherwise, ni ,...,1 . The sample is },...,1:),,{( nixdy iii  . Given nX , 

we repeat above procedure to obtain )100(B independent set of samples 

},...,1:),,{( nixdyS iibibb  , Bb ,...,1 . 

Step 2:  Consider two groups: the first group is represented by H (for healthy, )0ibd  and the 

second group is represented by D (for diseased, )1ibd . Thus the b -th sample is split into two 
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subsamples: },...,1,0:),{( nidxyS ibiib

H

b   assigned to group H (with sample size 


i ib

H

b dnn ) and },...,1,1:),{( nidxyS ibiib

D

b   assigned to group D (with sample size 

 i ib

H

b dn ), Bb ,...,1 . Then fit linear regressions based on samples H

bS  and D

bS  and estimate 

,FPR1
b x and ,TPR1

b x  for the set of different threshold values T and the x -values are: 

1x )min( nX , 2x first quartile of nX , 3x 2nd quartile of nX , 4x  third quartile of nX , 

and 5x )max( nX . Finally consider set of t  points ( ,FPR FPR ,1 1 1
bx b xB   

,TPR TPR1 1 1
bx b xB  ) for each choice of x , 51,..., xxx  . The set of points is represented by 

ROC1
x , 51,..., xxx  . The adjusted AUC is then obtained through numerical integration.  

Step 3. In Step 3 we compute the ROC, ROC2
x , 51,..., xxx  , using proposed methodology. Here 

1

,xbFPR and 1

,xbTPR  is evaluated from the fitted bivariate normal population consider in Step 1 

based on the sample bS . The rest is same as step 2. 51,..., xxx  . 

Step 4: Finally in Step 4 we plot (see Figures 1-2) two set of points ( 1

xROC  and 2

xROC ) for a 

fixed x -value in same graph to obtain covariate adjusted ROC curves for standard (step 2) and 

proposed (step 3) methodologies, 51,..., xxx  . In Figures 1-4 the ROC curves corresponding to 

the standard method are represented by the red lines and the ROC curves corresponding to the 

proposed method are represented by the blue lines. 

We perform the simulation exercises using two different models as described below. 

Simulation 1: The marginal distribution of x  is mixture of normal densities   2
N 1, 0.3  and 

  
2

N 1, 0.3  with equal probability. The joint distribution of ),( dyy
 
given x  is bivariate 

normal with means oxy  |  and xxyd 10|   , variances 
2

y and 1, and correlation   where 

values of the parameters are: ,1.00  25.01  , 01.00  , 11  , 5.0y  and 7.0 . The 

set T consists of 61t  equidistant points (distance = 0.1) from -3 to 3.  
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Simulation 2: The steps are exactly similar to Steps 1-4 of simulation 1 except for the 

distribution of x  and joint distribution of ),( dyy . The marginal distribution of x  is mixture of 

normal densities ))1.0(,1( 2N  and ))1.0(,1( 2N  with equal probability and the joint distribution 

of ),( dyy
 
given x  is bivariate normal with means oxy  |  and xxyd 10|   , variances 

2

y and 1, and correlation  . The values of parameters are: ,9.00  00  , 11  , 1y  and 

8.0 .  

The simulations were performed for sample size n =100.  

5.1 Discussion of Simulation Results 

Table 1: The average adjusted AUC values for the two simulated data sets with sample size 100. 

Values of the Covariate 

 

Average Adjusted  AUC values for n = 100 

Simulation 1 Simulation 2 

Standard 

Method 

Proposed 

Method 

Standard 

Method 

Proposed 

Method 

Minimum 0.8540 0.8669 0.9004 0.9733 

First Quartile 0.8329 0.8403 0.9120 0.9609 

Second Quartile/ Median 0.7985 0.8156 0.9152 0.9803 

Third Quartile 0.7838 0.8359 0.8963 0.9817 

Maximum  0.7683 0.8574 0.8799 0.9782 

The resulting average adjusted AUC values for both the simulations are summarized in Table 1, 

and the average ROC curves are presented in Figures 1 and 2 for Simulations 1 and 2 

respectively. From Figure 1, we can see that in Simulation 1, the standard methodology is 

slightly worse than the proposed methodology for covariates x=x
1
, x

2
 and x

3
, but the proposed 

methodology performs significantly better at the third quartile and the maximum. This finding is 

also confirmed by looking at the average adjusted AUC values for Simulation 1, as given in 

Table 1. It may further be noted that the ROC curve for the proposed methodology seems to 

stochastically dominate the standard methodology in this case. 

Simulation 2 looks at a situation when the two normal distributions mixed to simulate x are better 

separated. We can see that both methods perform better in this case, as expected, as they report 

higher AUC values, but the proposed methodology seems to perform significantly better than the 
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standard method, as is evident from Figure 2 as well as the average adjusted AUC values 

reported in the last two columns of Table 1. 

6 Discussions and Further Extensions 

In this article we have discussed how one may consider the diseased and the healthy subjects to 

be from the same population, instead of two different independent populations, and obtain the 

ROC curve and AUC in such a situation. We have discussed the maximum likelihood estimates 

and their asymptotic properties for the proposed method to obtain the ROC, and have 

demonstrated its relative advantage over the standard methodology through a simulation 

exercise. In this section we now discuss some challenges that one may encounter applying our 

proposed methodologies and their solutions. We also discuss an additional simulation example 

with a smaller sample size to demonstrate the advantage of our proposed methodology over the 

standard methodology. 

6.1 Dealing with Multiple Markers 

In this article all our discussions were based on the case when we have only a single marker. It is 

possible to encounter a situation where we have multiple continuous markers, which is very 

common in medical practice. Selecting the “best” linear combination of the markers in that case 

is a well-documented problem, for example one may refer to Schisterman et al. (2004), Liu et al. 

(2005). Lin et al. (2011), Wang and Chang (2011), Yu et al. (2011) and Chang (2013) to name a 

few.  Schisterman et al. (2004) consider the problem of obtaining the best linear combination of 

the markers that would maximize AUC assuming the markers to be distributed as independent 

multivariate normal distributions for the population of diseased and healthy individuals 

conditionally given the value of the covariates. Such assumptions are restrictive, and might be 

hard to defend. In this work, as before, we proceed without this assumption of independence.   

Suppose  Y p 1  represents the vector of markers. As before suppose )(yf D  and )(yf
D

 

represent the distributions of Y for the diseased and the healthy individuals. (Note that from now 

on we suppress the dependence on x in the notations unless there is a scope for confusion.) We 

now have the following theorem under the assumption that the likelihood ratio 
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       D D
y f y f y  is a monotone function of *( ),s y  a suitably chosen function of y. 

Actually in the present setup *( )s y  is a linear function of the components of y which is to be 

defined later in this section. 

Theorem 3: The best combination of the markers in the sense of maximizing AUC is given by 

)(* ys . 

Proof: Consider the testing of the simple null hypothesis that the distribution of the marker Y is 

)(yf
D

 against the simple alternative that the distribution of the marker Y is )(yf D . Neyman-

Pearson Lemma entails that the optimum test for the problem is given by 

  D D
: ( y ) f ( y ) f ( y ) k   where k  is determined by the size condition. 

Since )(y  is a monotone increasing function of )(* ys , the optimum test can be equivalently 

written as   *y : s y c . Further the test is optimum in the Neyman-Pearson sense, so it 

maximizes   DP y : s y c  subject to the constraint that })(:{ cysyP
D

  is fixed for any real 

c where )(ys  is any other function of y.  

For a given value of c  the ROC curve corresponding to a combination of markers )(ys  plots 

TPR(c) })(:{ cysyPD   against FPR(c) })(:{ cysyP
D

 . From the above it is evident that 

the ROC curve corresponding to )(* ys  maximizes the vertical height at any point on the 

horizontal axis and hence maximizes the AUC. 

Note. Theorem 3 is a generalization of the result considered in Section 3 of Schisterman et al. 

(2004). 

We will now apply the above theorem to our set-up to find the optimum combination of makers. 

Let us assume that T

D

T YpY )),1((   has a multivariate normal distribution where Y is the vector 

of marker values or an appropriate transformation of it. Then the mean vector and variance-

covariance matrix of TT

D

T YY ),( are respectively  
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D

T

Y
T
Y ,  and 

  
 

  

D

D

T
YY YY

YY

( p p ) (1 p )
,

( p 1) 1

 



 

where  

 T T T
Y 1 1 p px , , x   , 11  p

T

pY x
D

 , )( YYYY   and  
D

T
1/ 2 1/ 2

YY 11Y 1d ppY pd, ,       

and DY , as before, represents the latent variable corresponding to the binary variable D defined 

in Section 2.  

Writing   1 p 1, , ,....,     ,  
T

T T
1 p 1x x , ,x ,  we thus have 

                               D Y Df y f y a y;x,  and ),;()()( xyayfyf
DYD
 ,                       …(6.1) 

where  

      
D D

T
D Y |Y Y |Y p 1 P 1a y;x, x      , 

                                           )(/)/(),;( 11||  P

T

pYYYYD
xxya

DD
 ,                           …(6.2) 

))...(( 11

1

11| p

T

p

T

YY

T

YYp

T

pYY xxyx
DD

  

  

and 

2/11

| )1(
DDD YYYY

T

YYYY   . 

 Note that in our set up the likelihood ratio )(/)()( yfyfy
DD  is an increasing function of 

yys YY

T

YYD

1* )(  . Thus )(* ys  is the optimum linear combination of the marker values in the 

sense of Theorem 2 above. Also, it is evident that the likelihood ratio )(y  depends on 

)}/1(1/{)/1( yDPyDP DD  . Our formulation thus leads to a discriminant type of function 

based on a kind of probit regression.  
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Now denoting the conditional distribution of )(* Ys  given 1D  and 0D  by ))(( * ysfD  and 

))(( * ysf
D

 respectively we obtain 

             ),;())(())(( *** xyaysfysf DYD   and ),;())(())(( *** xyaysfysf
DYD

 , 

where     

     * *
*

1 1| ( ) | ( )
; ,   

D D

T
D p pY s y Y s y

a y x x      

and 

     * *
*

1 1| ( ) | ( )
; , .    

D D

T
D p pY s y Y s y

a y x x     

6.2 Challenges in Estimation of the Confidence Intervals for Adjusted AUC 

In Section 4.2, we have seen that the asymptotic variance  2 ;H x  of AUC is a function of 

)(I  and ( ; ),H x  where the latter has a complicated expression and is not easy to obtain. As an 

alternative, we may estimate );(2  xH  directly using paired bootstrap and then find normal 

theory bootstrap-based CI based on the facts that  

(a)     / /ˆ ;  
B

1 2 2 1 2
H H Pnv x 1 O n  , where Hv̂  is the bootstrap estimate of  ;1 2

Hn x   and 

(.)BP  represents bootstrap probability distribution given the sample data. 

(b)       / ˆˆ ; ; , .   
  

1 2
HP v H x H x N 0 1 1    

Now, for Monte-Carlo based Bootstrap estimation of  ;1 2
Hn x  , we can, for example, 

consider B  with replacement resamples of size n  from the sampled data, where B is a large 

positive number. Based on B bootstrap samples we can calculate the variance estimate Hv̂  as 
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   ˆ ˆˆ ; ; ,  
   

 

2
1 1

H b b
b b

v B H x B H x   

which may now be used to obtain an appropriate confidence interval for adjusted AUC. 

 

6.3 Performance when Sample Sizes are Small  

We can see from the simulation exercise carried over in Section 5 that our proposed 

methodology performs better than the standard methodology. One question of interest is to see 

the effect of the sample size on these two competing methods. Looking at higher sample sizes is 

of course not very interesting as in that case both methods approach perfection and there is little 

to choose between the two methodologies. However, one interesting question is the relative 

performance of the two methods when the sample sizes are small, which is not too uncommon in 

medical studies. 

To address this interesting question, we repeat our simulation exercise from Section 5, but this 

time with a sample size of 25. The average adjusted AUC values are presented in Table 2, and 

the ROC curves for the first, second and third quartiles of the covariate x are presented in Figures 

3 and 4. 

Table 2: The average adjusted AUC values for the two simulated data sets with sample size 25. 

Values of the Covariate 

 

Average Adjusted  AUC  values for n = 25 

Simulation 1 Simulation 2 

Standard 

Method 

Proposed 

Method 

Standard 

Method 

Proposed 

Method 

First Quartile 0.6805 0.7187 0.8914 0.9471 

Second Quartile/ Median 0.6845 0.7044 0.8809 0.9449 

Third Quartile 0.7157 0.7455 0.8691 0.9474 

 

We note that the performance of the proposed method is consistently better for both the 

simulation exercises for all three quartiles. We would like to point out that the standard method 

was highly unstable with n = 25, especially for x = minimum or maximum when in many cases 

there were very few observations in one group. Hence we decided that it was not meaningful to 

compare the two methods in such cases. 
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We note that this observation is in sync with reality: extreme values of a meaningful covariate 

should indicate either the presence or the absence of the disease, and hence, especially when 

number of subjects in the sample is small, one of the groups may not be adequately represented 

in the sample. In that case the proposed methodology is actually much more stable than the 

standard method, and can still be employed meaningfully. Applicability when sample sizes are 

small is indeed one of the main advantages of the methodology we propose.  
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Figure 1: ROC curves based on bivariate normal population of simulation 1 using proposed 

(blue line)  and standard  (red line) methodologies at extreme x -values (graph 1 for  minimum 

and graph 5 for maximum) and three quartiles (graphs 2-4 for first -third quartiles).  

 



 

 
 

IIMA    INDIA 
Research and Publications 

Page No. 21 W.P.  No.  2015-07-02 

Figure 2: ROC curves based on bivariate normal population of simulation 2 using proposed 

(blue line)  and standard  (red line) methodologies at extreme x -values (graph 1 for  minimum 

and graph 5 for maximum) and three quartiles (graph 2-4 for first -third quartiles) 
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Figure 3: ROC curves based on bivariate normal population of simulation 1 using proposed 

(blue line) and standard  (red line) methodologies at three quartiles for sample size 25. 

 

Figure 4: ROC curves based on bivariate normal population of simulation 2 using proposed 

(blue line) and standard  (red line) methodologies at three quartiles for sample size 25. 

 

 



 

 
 

IIMA    INDIA 
Research and Publications 

Page No. 23 W.P.  No.  2015-07-02 

References 

Baker SG. The central role of receiver operating characteristic (ROC) curves in evaluating tests 

for the early detection of cancer. Journal of the National Cancer Institute. 2003; 95: 511–515. 

Bamber DC. The area above the ordinal dominance graph and the area below the receiver 

operating characteristic graph. Journal of Mathematical Psychology. 1975; 12:387–415. 

Chang YCI. Maximizing an ROC‐type measure via linear combination of markers when the gold 

reference is continuous. Statistics in medicine. 2013; 32: 1893-1903. 

Dorfman DD, Alf E. Maximum likelihood estimation of parameters of signal detection theory 

and determination of confidence intervals-rating method data. Journal of Mathematical 

Psychology. 1969; 6:487-96. 

Janes H, Longton G and Pepe MS. Accommodating covariates in receiver operating 

characteristic analysis. The Stata Journal. 2009; 1: 17-39.  

Janes H and Pepe MS. Matching in studies of classification accuracy: Implications for analysis, 

efficiency, and assessment of incremental value. Biometrics. 2008; 64:1–9. 

Kerr KF and Pepe MS. Joint Modeling, Covariate Adjustment, and Interaction: Contrasting 

Notions in Risk Prediction Models and Risk Prediction Performance. Epidemiology. 2011; 22: 

805–812. 

Lehmann, EL. Elements of large-sample theory. Springer, New York, 1999. 

 

Lin H, Zhou L, Peng H and Zhou XH. Selection and combination of biomarkers using ROC 

method for disease classification and prediction. Canadian Journal of Statistics. 2011; 39: 324-

343. 

 

Liu A, Schisterman EF and Zhu Y. On linear combinations of biomarkers to improve diagnostic 

accuracy. Statistics in Medicine. 2005; 24: 37–47. 

Ma S and Hunag, J. Regularized ROC method for disease classification and biomarker selection 

with microarray data. Bioinformatics. 2005; 21: 4356–4362. 



 

 
 

IIMA    INDIA 
Research and Publications 

Page No. 24 W.P.  No.  2015-07-02 

Ma J, Xiaofei W and Stephen G. Semiparametric estimation of ROC curve under test-result-

dependent sampling. Duke Biostatistics and Bioinformatics Working Paper Series. 2010; Paper 

9. 

Metz C, Wang P and Kronman H. A new approach for testing the significance of differences 

between the ROC curves measured from correlated data. In: Deconick, F. (editor), Information 

Processing in Medical Imaging VIII. 1984; 432–445. 

Ogilvie JC and Creelman CD. Maximum likelihood estimation of ROC curve parameters. 

Journal of Mathematical Psychology. 1968; 5:377-91.  

Pardo-Fernández JC, Rodrıguez-Alvarez MX and Van Keilegom I. (2014). A review on ROC 

curves in the presence of covariates. REVSTAT–Statistical Journal. 2014; 12, 21-41. 

Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford 

University Press, 2003. 

Pepe MS, Fan J, Seymour CW, Li C, Huang Y and Feng Z. Biases Introduced by Choosing 

Controls to Match Risk Factors of Cases in Biomarker Research. Clinical Chemistry. 2012; 58: 

1242–1251. 

Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, Winget M and  Yasui Y. 

Phases of biomarker development for early detection of cancer. Journal of the National Cancer 

Institute. 2001; 93: 1054–1061. 

Schisterman EF, David Faraggi D and Reiser B. Adjusting the generalized ROC curve for 

covariates. Statistics in Medicine. 2004; 23:3319–3331. 

Wang Z and Chang YCI. Marker selection via maximizing the partial area under the ROC curve 

of linear risk scores. Biostatistics. 2011; 12: 369-385. 

Wang Z, Chang Y, Ying Z, Zhu L and Yang Y. A parsimonious threshold-independent protein 

feature selection method through the area under receiver operating characteristic curve. 

Bioinformatics. 2007; 23: 2788–2794. 

Zhou C, Obuchowski N and McClish D.  Statistical Methods in Diagnostic Medicine. New York: 

Wiley, 2002. 


