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Abstract

The bandwidth packing problem seeks to select and route a set of calls from a given list, each
with a pre-specified requirement for bandwidth, on an undirected communication network
such that the revenue generated is maximized. In this paper, we present a model and an
exact solution approach for the bandwidth packing problem with queuing delay costs under
stochastic demand and congestion. We provide a more general model than available in the
extant literature by assuming a general service time distribution on the links. The problem,
under Poison call arrivals, is thus set up as a network of spatially distributed independent
M/G/1 queues. However, the presence of delay cost in the objective function makes the re-
sulting integer programming model nonlinear. We present an exact solution approach based
on piecewise linearization and cutting plane algorithm. Computational results indicate that
the proposed solution method provides optimal solution in reasonable computational times.
Comparisons of our exact solution method with the Lagrangean relaxation based solution
reported in the literature for the special case of exponential service times clearly demonstrate
that our solution approach outperforms the latter, both in terms of the quality of solution
and computational times. Using numerical examples, we demonstrate that the service time
variability, if not correctly represented in the model, can result in a solution very different
from the optimal.
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1. Introduction

Technological improvements in the telecommunications industry have led to a massive
growth of services like video-conferencing, social networking, collaborative computing, etc.
At the same time, the arrival of cheaper and smarter devices have resulted in demand for
faster and better services from the providers. This has increased the pressure on telecommu-
nication firms to efficiently manage their limited bandwidth to provide satisfactory end-user
services. In this context, one of the fundamental problems that arises is the Bandwidth
Packing Problem (BPP). The BPP can be stated as: given a set of calls, and their associ-
ated potential revenues and bandwidth requirements (demand), arising at an instant on a
telecommunication network with limited bandwidth on its links, (i) decide which of these
calls to accept/reject, and (ii) select a single path (sequence of links) to route each selected
call, such that the total revenue generated from the accepted calls is maximized without

violating the bandwidth capacities on the links (Cox et al., 1991).

Several variants of BPP have been studied in the literature. For example, Amiri and
Barkhi (2000) present multi-hour BPP to account for the variation in traffic between peak
and off-peak hours of the day. Another version of BPP that involves scheduling of the
selected calls within given time windows is reported by Amiri (2005). Amiri and Barkhi
(2012) present an extension of BPP that has applications in telecommunication services like
video conferencing and collaborative computing. They consider a case wherein each request
from users consists of a set of calls between various pairs of nodes, and a request cannot
be partially accepted/rejected. Recently, Bose (2009) has studied another version of the
problem wherein the calls belong to two priority classes: the calls belonging to the higher
priority class are shorter in length and generate more revenue but consume more bandwidth

compared to the calls belonging to the lower priority class.

Other extensions of BPP account for the delays arising as a result of calls waiting at
nodes due to congestion on the links. Excessive delays may arise if the solution to BPP,
or its variants, result in certain links getting utilized close to their bandwidth capacities.
Explicit consideration of such delays in the modeling and solution of BPP is important to
guarantee quality service to customers. Amiri et al. (1999), Rolland et al. (1999), and Han
et al. (2012) explicitly account for such network delays due to congestion by incorporating
queuing delay terms in their model. All of these papers model the links on the network as a
network of independent M/M /1 queues with the implicit underlying assumption that call ar-
rivals are Poisson and their service times on links have exponential distribution. Amiri et al.

(1999) discourage such delays in their model by penalizing them in the objective function,



while Rolland et al. (1999) and Han et al. (2012) impose a constraint to limit such delays.
Bose (2009) extends the problem to a setting where calls may be classified into different
priority classes. For this, he models each link as a preemptive priority M/M/1 queue. Amiri
(2003) extends the multi-hour BPP, earlier studied by Amiri and Barkhi (2000), with delay
guarantees. The problem presented by Gavish and Hantler (1983) is also related to BPP
with delays due to congestion, although the acceptance/rejection of calls is not a decision

in their problem.

The single path requirement in BPP, which arises in various telecommunication services
like video teleconferencing, etc., makes the problem NP-hard (Parker and Ryan, 1993). As
such, various solution methods are presented in the literature. Anderson et al. (1993);
Laguna and Glover (1993), for instance, use Tabu Search metaheuristic, while Cox et al.
(1991) apply Genetic Algorithms. Lagrangean relaxation has been a popular choice of solu-
tion method in the literature, reported by Gavish and Hantler (1983), Rolland et al. (1999),
Amiri et al. (1999), Amiri and Barkhi (2000), Amiri (2003), Amiri (2005), and Amiri and
Barkhi (2012). Branch-and-Price and Column Generation is used by Parker and Ryan
(1993), while Park et al. (1996) and Villa and Hoffman (2006) report the use of Branch-and-
Price-and-Cut and Column Generation. Han et al. (2012) use Branch-and-Price technique

with their Dantzig-Wolfe decomposition based reformulation of their model.

From the review of literature, we observe that all the studies on BPP that account for de-
lays on telecommunication links due to congestion are based on the simplifying assumption
that call arrivals are Poisson and service times on links have exponential distribution (Gav-
ish and Hantler, 1983; Amiri et al., 1999; Rolland et al., 1999; Amiri, 2003; Bose, 2009; Han
et al., 2012). This is primarily to make the problem, which is already otherwise NP-hard,
tractable. The current study is an attempt to overcome this limitation in the extant liter-
ature by presenting a more generalized model. Through this work, we make the following

contributions to the literature on BPP:

1. We present a generalized model for BPP with queuing delay costs, where the links in
the network are modeled as independent M/G/1 queues.

2. Using simple transformation and piecewise linearization of queuing delay cost function,
we linearize the model and present an efficient and exact approach based on cutting

plane algorithm to solve the resulting model.

The remainder of the paper is organized as follows. In Section 2, we formally describe the
problem and present its non-linear integer programming formulation. Section 3 describes

an approach to linearize the model, followed by an exact solution methodology to solve



the resulting mixed integer linear programming problem (MILP). Illustrative example, com-
putational results, and insights are reported in Section 4. Section 5 concludes with some
directions for future research.

2. Problem Formulation

We introduce the following notations used to describe the problem.

N : Set of nodes in the network

1,7 :  Indices for nodes in the network; i, 57 € N
E : Set of undirected links in the network
(1,7) : Undirected links in the network; i < j

M : Set of calls

m Index for a call; m € M

O(m) : Origin node of call m; O(m) € N
D(m) : Destination node of call m; D(m) € N

am :  Demand (bits per unit time) of call m

r’™ Potential revenue from call m

Qij : Bandwidth capacity of link (4, )

1/ . Mean of message length

o : Standard deviation of message length

cv . Coefficient of variation of message length; cv = po
c : Unit queuing delay cost per unit time

In line with the literature (Gavish and Hantler, 1983; Amiri et al., 1999; Rolland et al.,
1999; Han et al., 2012), we assume that the arrivals of calls/messages on the network occur
according to a Poisson process. Further, links are assumed to have finite capacities @);; for
transmission of messages, and that nodes have unlimited buffers to store messages waiting
for transmission. However, unlike the existing literature, we allow the message lengths (in
bits) to follow a general distribution with a mean 1/u, standard deviation o, and coefficient
of variation cv = po. The service rate (in bits per second) of the link (7, j) is proportional
to the capacity of the link @;;. Then, the service time per message on link (z,j) also fol-
lows a general distribution with a mean 1/u@);;, standard deviation ¢/@Q);;, and coefficient
of variation cv = po. Each link is thus modeled as a single server M/G/1 queue, and the

telecommunication network is modeled as a network of independent M/G/1 queues.

Assume the bits composing message m € M arrive at a rate d™ per unit time. Further,

let X773 (X37) = 1if call m is routed through link (7, j) in the direction from i to j (j to i), 0



otherwise. Then, the arrival of bits on link (7, j), due to superposition of Poisson processes,

follows a Poisson process with a rate ) d™(X7 + X7}) per unit time, and the arrival

meM
rate of messages per unit time on link (7, j) is Aij = p >, ) d™(X7F + X37). The average
utilization of link (i, j) is given by:

Aij D ment A" (X3 + XTY)

Pii = pQi; B Qij (1)

Under steady state conditions (p;; < 1) and first-come first-serve (FCFS) queuing discipline,
the mean sojourn time (waiting time in queue + service time) of a message on link (i, ),
which is modeled as an M/G/1 queue, is given by the Pollaczek-Khintchine (PK) formula
. ] = 14-cv? >\i,' 1
as: E[w”] o ( 2 ) P«Qi]’(#@i’j*)\ij) T 1Qij
the weighted average of the expected delays on links: %Z(l ier A E [w;;], resulting in the

. The expected network delay can be estimated as

following;:
1 1+ CUZ (/\7, ‘)2 /\z
EW] = —~ {( ) ; + (2)
A (”Z)E:E 2 pQij(nQij — Aij) Qi
where A =y ., d™ is the total arrival rate of messages in the network. Substituting

Nij = 1Y mer A (XFF + X37), as defined above, this can be further expressed as:

_ 1 Z {(1+CU2) (ZmeMdm(‘XiZL_‘_XJT’;L))2 + ZmeMdm(X$+X;?)}
2 Qij(Qij = Dmens A™(XJ} + X77) Qi

(3)

Using the above notations, the problem BPP under queuing delay that we study can be
stated as follows: given a set of calls M, their associated potential revenues (™, m € M) and
bandwidth requirements (d"™, m € M), arising at an instant on an undirected telecommuni-
cation network consisting of nodes N and links £ with fixed arc/link capacities (@, (¢,7) €
E), determine a subset of calls M "' C M and a subset of E' C E for each m € M ', such
that the total net revenue minus queuing delay costs is maximized. Let Y™ = 1 if call m
is accepted, 0 otherwise, then the mathematical model for BPP with queuing delays can be

stated as:



[PN] :

m m m))2
max Z(X,Y) = 3 mym 0 Y {<1+> (g O + X7
ij

=, 22 \\T2 ) @iy - S G+ X
dm(Xm 4+ Xm
+ ZmEM ( 1] jl) (4)
Qij
ym if i = O(m);
st Y XP =) Xp =< —y™ ifi=D(m); V(i,j) € E,;m € M (5)
JeN JeN 0 otherwise
> dmM(XT 4+ X)) < Qy V(i,j) € E (6)
meM
XZ? € {0,1} V(i,j) € E,me M (7)
Y™ e{0,1} Ym e M (8)

The first term in the objective function (4) is the total revenue from accepted calls. The sec-

ond term captures the average queuing delay cost due to all accepted calls, where C' = ¢/A

(a constant). Constraint set (5) are the flow conservation equations on each link for each

call. Constraint set (6) ensures that the total demand on each link is less than its bandwidth

capacity, required for the stability of the queue (\;; < p@;;). Constraint sets (7) and (8)

are binary restrictions on the variables. For cv = 1, the above formulation reduces to the

M /M /1 model studied by Amiri et al. (1999) and others.

The formulation [PN] is a non-linear integer program. In the following section, we

present an approach to transform the above model, using auxiliary variables, into an MILP,

and a cutting plane based method to solve it.

3. Solution Methodology

After rearranging the terms in (2), E[WW] can be rewritten as:

1 Aij A
Bl =y 3 5 {0t g (et )

_ - (1 + C’UQ) ZmGM dm(XZJn + XJT)
AN =~ 2 Qij — D pmen A™(XT} + X77)

+ (1 — ch)

Qij

|



We define non-negative auxiliary variables R;;, such that:

1Qi — Nij  Qij — D enr d™(XG + XT7)

Rij =
Then,

o dMXp+ X =

meM

i 10
Qs (10)

Substituting (9) in the expression for E[W] above gives:

d™( X+ X7
A Z {1+cv Rij+(1—cv2)zm€M Cgijzj+ ]Z)}

szE

We use the following lemma to linearize [PN].

Lemma 1: The function f(R;;) = 1f§§ij is concave in R;; € [0,00).

Proof:

Differentiating the function w.r.t. R;;, we get the first derivative (;;Tf a HI%U)Q > 0, and
the second derivative 5 Rf m < 0, which proves that the function is concave in R;;
for R;; > 0.

|

Lemma 1 implies that the function f(R;;) = 5 HZ% can be approximated by a large set of

piecewise linear functions that are tangent to f(R;;) at points {R e, such that:

R;; 1 R},

-— = min e i T (—J)hz
1 + Rij heH (1 + Rzg) (1 + RZJ)
This is equivalent to the following set of constraints:

y Rh
Ry _ 1 oo (R
1+ Ri; = (1+ R})? (1+Rh)

V(i,j) € Eh e H

Using (10), the above set of constraints can be rewritten as:

Qij Qi (R})?

d"(X7 + X7 = 5 Rij < s
Z J J (1—1—3%)2 J (1+R?j)2

meM

V(i,j) € E,he H (11)

provided 3h € H such that (11) holds with equality.



The above substitutions result in the following linear MIP model:

[PL(H)]

max 1Y - % 2 {(1 +ov?) Ry + (1= cv?) Zomear 10X+ X5 } (12)

meM (i,j)eE Qi

st (5) — (8), (11)
Ry >0 Vij)eE  (13)

For equivalence between [PN| and [PL(H )], there should exist at least one h € H such
that (11) holds with equality. Proposition 1 confirms that there indeed exists one such
h € H at optimality.

Proposition 1: At least one of the constraints (11) in [PL(H)] will be binding at optimality.
Proof:

After rearranging the terms, (11) can be rewritten as:

Ri; > (1+ RY) — (Rl (14)
Since R;; appears in the objective function with a negative coefficient, [PL(H )| attains its
optimum value only when R;; is minimized. This implies that V(i,j) € E, 3h € H such
that (14) holds with equality if (1 + R%)szEMdgqu?JrXﬁ) — (R})* >0, else R;; = 0.
Further,

2 ZmEM dmCSXlTJn + XJT) . (R?j>2
ij

=(1+ RZ)Qpij - (RZ‘)Z (using (1))
= (pij — 1)(RY)? + 2pi; R + py;

ij + /Pij
o e [0, Pu VP
’ L — pi;

h
0<(1+Rj)

1 Vh € H (since p;; <1 and R;; > 0 using (9))

Thus, to prove that 3h € H such that (11) holds with equality, we need to show that

R?j € [0, %ﬁﬁ} Since thj is an approximation to R

ij, We obtain:

Aij )
_ using (9
pQij — Nij ( ©)

Pij
1 — pij
Pij +/Pi

1 — pij

IN



This proves that V(i, ) € E, 3h € H such that, at optimality, (11) always holds with equal-
ity. |

Proposition 2: For every subset of points {R};}nepocn, v(PL(H?)) is an upper bound
to [PL(H)], and hence to [PN], where v(e) is the optimal objective function value of the
problem (e).

Proof:

Suppose, at any iteration, we use a subset of tangent points {R?j}hqugH, and solve the
corresponding problem [PL(H?)], which yields the solution (X%, Y% R?) with the objective
function value v(PL(H?)). Since [PL(HY)] is a relaxation of the full problem [PL(H)],
v(PL(HY)) > v(PL(H)), and hence v(PL(H?)) provides an upper bound, given by:

¢ dm (X[ 4+ X
UB =v(PL(H")) = Z Yy’ — 5 Z {(1 + cv2) Rfj + (1 — cv2) ZmeM ( J J )
meM (ig)EE Qi
(15)
[ |
Proposition 3: For every subset of points {RZ}hE mach, the lower bound to [PN] is given

by:

1 CU2 (ZmEMd ( i?q ]Tq))2
_ q qQ) myma _ }
LB—Z(X,Y)—E r"Y (E {( >Q”(

meM i,j)EE 2 Qi]’ - ZmeM dm(Xi?q + Xﬁq)
dm(X™ 4 xm™
+ ZmeM (622] Ji )} (16)
ij

where (X?,Y? RY) is the optimal solution to [PL(H?)].

Proof:

For every subset of points {R}}remacu, the solution (X%, Y7 RY) to [PL(HY)] is also a
feasible solution to [PN], and hence the objective function (4) evaluated at the solution

(X9,Y? RY), which is given by (16), gives a lower bound to [PN]. [ |

3.1. Solution Algorithm

The model [PL(H)] consists of a large number of constraints (11). However, not all of
them need to be generated a priori. The solution algorithm starts with an initial subset
H' C H. H' may be empty. However, our preliminary computational experiments show that
starting with a non-empty H' helps in faster convergence of the algorithm. The resulting
[PL(H"')] is solved, giving a solution (X', Y R'). The upper bound (UB') and the lower

|



bound (LB') are computed using (15) and (16) respectively. The better of the last and the
new lower bounds is retained as the new LB!'. If UB! equals LB' within some accepted
tolerance (€), then (X', Y!) is an optimal solution to [PN], and the algorithm terminates.

Else, a new set of points R?j"e“’ is generated using the current solution (X!, Y!, R') as follows:
Rhnew — __ Smen @™ (X5 X

ij Qij =X men (XX
and added to [PL(H')] to arrive at [PL(H?)]. Next, [PL(H?)] is solved, giving a new

solution (X?,Y? R?) and UB?. The new lower bound is obtained as the greater of LB' and
Z(X?,Y?)}. If UB? equals LB? within the set tolerance (€), then the algorithm terminates

New cuts of the form (11) are generated using these points,

with (X?,Y?) as an optimal solution. Else, the process is repeated until UB? equals LB?

within the set tolerance for some iteration ¢. The complete algorithm is outlined below:

Algorithm 1 Solution Algorithm for [PL(H)]
1: g+ 1;UBY! < 400; LBI™! <+ —o0;
2: Choose an initial set of points {R!;}reqs to approximate the function R;;/(1 + R;;)
V(i,j) € E .
while (UB*! — LB /UB' > ¢ do
Solve [PL(HY)] to obtain (X?,Y? RY).
Update the upper bound: UB? < v(PL(H?)).
Update the lower bound: LB? < max{LB%! Z(X% Y1)}

Compute new points: RZ»"““ = Qfﬂi ;f&:?ijx}q) V(i,j) € E
H «— HYU { hypew }

g+—q+1

10: end while

Proposition 4: Algorithm 1 to solve [PL(H)] terminates in a finite number of iterations.
Proof:

. m o Aij o Emelw dm(X{?+Xﬁ)
Given that X7 € {0,1} and Rj; = ;5~45— = S SR TS S Ok
that R;; can take is finite. Therefore, in order to prove that Algorithm 1 is finite, it is

the number of values

sufficient to prove that the generated values of R?j are not repeated.
Consider an iteration ¢, where Algorithm 1 has not yet converged, that is, UB? > LBY.
Further, suppose (X4, YY) is the solution to [PL(HY)]. Then, the new points R?j"e’” generated

at iteration ¢ are given by:

Dmen 4" (X" + X57)

RZ’}‘new — —
! Qij = D menr A™ (X35 + X5

V(i,j) € E

Suppose the values of R;‘j"ew were already generated in one of the earlier iterations

10



V(i,j) € E. Then:

2

Rhnew 1 Rhnew

(11) 5—~L— < — R}, + (ﬂ—h V(i,j) € E
1+ R} 1+ Rl 1+ Rj;

=Rl»» <Rl  V(i,j)€E

We now have:

mymg_ C Domen AT (XGT+ XG)
UBY = Z rY q—; Z (1+01)2) jo—l—(l—ch) eM Qij] J }
meM (i,7)€EFE
dm( XM 4 XM
< Z rmy’™i — % Z {(1 + cv?) R?j”w + (1= cv?) Lomens A" (X7 + X )}
meM (i,j)EE Qi

m mq mq
== Z rmy™a — g Z (1 + CU2) ZmEM d (XZ] :;qui )mq
2 Qij = D en A™(XG T + X5T)

meM (i,))EE
dm XTfLQ_i_qu
+ (1 o CUQ) ZmGM ( 1J ji )
Qij
—S ey Y <1+CU2> (ZmeMdm(X$q+§gq))2 .
meM (i,§)EE Z QU(QU - ZmeM dm<Xij + ij‘ )
+ S (X5 + X319
Qij

1+ cv? d™ (X757 + X))
<max (LBq_l, Z Fmyma (o Z { ( + cv ) (ZmGM ( jm mé )) -
— v 2 Qij(Qij — X ppens A™(X35" + X53)

+

Domen @ (X" + X5
Qij
=LB1

This contradicts our initial assumption UB? > LB?. Therefore, at a given iteration, at
least one of the values of R?j generated is different from all the previously generated values.
Furthermore, the number of values that R?j can take is finite, and hence the algorithm
terminates in a finite number of iterations.

4. Computational Study

We report our computational experience with the solution methodology described in

Section 3. The exact solution algorithm is coded in Visual C++, while [PL(HY)] at every

11



iteration q is solved using IBM ILOG CPLEX 12.4. The experiments are conducted on a
machine with the following specifications: Intel Core i5-3230M, 2.60 GHz CPU; 4.00 GB
RAM; Windows 64-bit Operating System. In Section 4.1, using an illustrative example
(adopted from Laguna and Glover, 1993) with 10 nodes and 20 calls, we demonstrate the
impact of variability in service times of the links on the optimal selection of calls and their
routes in the network. The computational performance of proposed solution approach on

networks with varying sizes are presented in Section 4.2.

4.1. Illustrative Example

Figure 1 shows the network topology for a problem instance with 10 nodes. The band-
width capacities (Q);;) of different links on the network are given in Table 1. The call table
listing the bandwidth requirements (d™) and potential revenues (™) for 20 calls is shown in
Table 2. The optimal solution obtained using the method described in Section 3 is presented
in Table 3, which displays the optimal routing (collection of links) for each call that is ac-
cepted, as well as the total gross revenue (GR) and the total delay cost (DC) , for different

values of coefficient of variation cv and unit delay cost (C').

Table 3 demonstrates that the value of cv plays an important role in the call selection.
For example, for C' = 5, Call-9 is rejected at cv = 0.5, but gets accepted at higher values
of cv = 1,1.5,2. On the other hand, for C' = 5, Call-11 is accepted at cv = 0.5, but gets
rejected at higher values of cv = 1,1.5,2. Call-16 exhibits an even more interesting pattern:
for C' = 15, it is accepted at cv = 0.5; rejected at cv = 1,1.5; and again accepted at cv = 2.
However, for C' = 20, Call-16 is accepted at cv = 0.5; rejected at cv = 1; accepted at cv = 1.5;
and again rejected at cv = 2. Table 3 further suggests that cv also plays a vital role in the
route selection for the selected calls. For example, for C' = 5, Call-16 is routed using links
0—-8 7—0; 8 —4 at cv = 0.5,1,2. However, the same call is routed using links 0 — 8;
2—0;7—2; 8—4 at cv = 2. Similar observations can be made for {Call — 12;C' = 15} and
{Call — 19;C' = 20}. These results demonstrate the fact that service time variability plays
a vital role in the optimal call and route selections in BPP, which, in turn, effect the total
net revenue. This example thus illustrates the importance of accurately modelling service

time variability for BPP.

Table 1: Bandwidth Capacities (Q;;) of Links (i, j) for the Illustrative Example

)
t o 0o o o0 o 1 2 4 5 5 6 7
J 12 v 8 9 3 7 8 7T 8 7 8
Qi 25 35 40 20 15 10 20 15 10 15 10 10

12



Figure 1: Network Topology for a 10-Node Illustrative Example

Table 2: Call Table for the Illustrative Example

Call Origin node Destination node Call demand Revenue

m O(m) D(m) dm rm
1 0 2 10 420
2 0 7 7 380
3 0 5 6 400
4 0 4 6 390
5 1 6 5 500
6 1 5 5 490
7 1 4 7 400
8 2 9 2 150
9 2 3 4 450

10 2 4 8 500

11 3 5! 6 850

12 5 2 3 200

13 6 9 5! 370

14 7 1 6 500

15 7 9 5} 340

16 7 4 2 120

17 8 1 6 460

18 8 2 8 450

19 9 5 5 360

20 9 1 5 170

13



Table 3:

Solution Obtained for the Illustrative Example

cC=5 C =10 C =15 C =20
cv cv cv cv
Call m 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2 0.5 1 1.5 2
1 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2 0-2
2 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
3 0-7; 07, 0-7; O-T; 0-7;  0-7; 0-8; 0-8; 0-7; 0-8 0-8 0-7; 0-7; 0-8;, 0-7; 0-T;
7-5 7-5 7-5 7-5 7-5 7-5 8-5 8-5 7-5 8-5 8-5 7-5 7-5 8-5 7-5 7-5
4 0-8 08 08 08 | 08 08 08 08 | 0-8 08 08 0-8 | 0-8 0-8 0-8 0-§;
8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4 8-4
o-v; o-7; o-7; o-7; | O-7; o©0-7; oO-7; O-7; | O-7; oO-7; O-7; O-7; | O-7; O-7; O-7; O-T;
5 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0;
7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6 7-6
0-8; 0-8 08 08 | 0-8 0-8 0O-7; O-7; | 0-8 0O-7; O0-7; 0-8; | 0-8 0-8 0-8 0-8;
6 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0; 1-0;
8-5 8-5 8-5 8-5 8-5 8-5 7-5 7-5 8-5 7-5 7-5 8-5 8-5 8-5 8-5 8-5
7 - - - - - - - - - - - - - - - -
3 0-9; 09, 09 09 |09 09 09, 09 |09 09 09 09 | 09, 09 09; 0-9;
2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0
0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; 0-1; O0-1;
9 - 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3; 1-3;
2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0 2-0
10 - - - - - - - - - - - - - - - -
0-8;
1-0;
11 31 - - - - - - - - - - - - - - -
8-5
1o 57, 57, 57, 57 | 5T, 57 57 5T | 5T, 5T, 5-T; g:zf 57, 5-T; g:gf g:gf
7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 7-2 3.0 7-2 7-2 3.0 3.0
13 - - - - - - - - - - - - - - - -
14 o0-1, o-1; o-1; oO-1; | O-1; o©O-1, oO-1; oO-1; | O-1; O-1; O-1; O-1; | O-1; O-1; O-1; O-1;
7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0
15 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9; 0-9;
7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0 7-0
0-8; 0-8; 0-8; g:gf 0-8; 0-8; 0-8; g:gf 0-8; g:gf
16 7-0; 7-0; 7-0; 7_2f 7-0;  7-0; - - 7-0; - - 7_2f 7-0; - 7_Qf -
8-4 8-4 8-4 8 8-4 8-4 8-4 8 8-4 8
17 - - - - - - - - - - - - - - - -
18 72, T7-2;  7-2;  7-25 | 7-2;  T7-25 T2, 7-2; | T-2;  7-2;  T-25 T2, | T-2;  T-2;  T-2;  T-2;
8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7
0-8; 0-8; 0-8; 0-8; 0-8 0-8  0-8; 0-8;, 0-8; 0-8; 0-8; 0-7;
19 - 8-5; 8-5; &bH5; | 8b; 85; 85, &bH5; | 8&H; 85; 8-5 - 8-5;  T7-5; - -
9-0 9-0 9-0 9-0 9-0 9-0 9-0 9-0 9-0 9-0 9-0 9-0
20 - - - - - - - - - - - - - - - -
Gross Revenue | 5013 4948 4848 4707 | 4868 4747 4573 4368 | 4727 4563 4344 4073 | 4585 4407 4118 3842
Delay Cost 132 128 183 266 190 256 306 429 285 328 459 451 380 437 442 537
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Figure 2 shows the effect of varying cv and C', over a wider range of values, on the total
gross revenue, total delay cost and the total net revenue (NR = GR - DC) for the above
illustrative example. The figures suggest that as cv or C increases, the total net revenue
decreases. This is expected since a higher cv or C' causes either (i) a higher congestion
related cost if the set of accepted calls remains unchanged; or (ii) calls with lower potential
revenue getting accepted if they are associated with lower bandwidth demands. In either
case, the total net revenue is expected to decrease. Further, when a higher cv or C' causes
the former (i), then the total gross revenue is expected to remain unchanged. However, when
it causes the latter (ii), then the total gross revenue is also expected to decrease with an
increase in cv or C. Hence, the total gross revenue in Figure 2 either remains unchanged or
decreases with an increase in cv or C. However, the change in the total delay cost, as cv or
(' increases, is non-monotonic. This, although appears counter-intuitive, can be explained
as follows. When a higher cv or C' does not cause any change to the set of accepted calls,
then the delay cost is expected to increase. However, when a higher cv or C' causes calls
with lower bandwidth demands getting accepted, then the total delay cost is expected to

decrease due to a decrease in congestion in the network.

4.2. Computational Results

For our computational study, we adopt the data generation scheme as reported by Amiri
et al. (1999) to generate 10 sets of networks for each value of |N| = {10, 20, 30, 40, 50}. For
each of these networks, a call table is generated for P = {50, 60, 70, 80,90}, where P is the
percentage of the maximum possible types of calls (a call type is specified by an origin-
destination node pair) for the given network that are included in the call table. Thus, we
have 10 x 5 x 5 = 250 different problem sets. Each of these sets is solved for 4 different values
of cv (cv = 0,0.5,1,1.5) and for 5 different values of C' (C' = 0.5,1,5, 10,15, 20), which to-
gether result in 250 x 4 x 5 = 5000 problem instances. For each of the test instances, we start
with a priori set (H') of points to approximate the function f(R;;) = R;;/(1 + R;;) using
its tangents f(R,-j) at these points. These points are generated such that the approximation
error measured by ]?(Rz-j) — f(Ry;) is at most 0.001 (Elhedhli, 2005). Our initial compu-
tational experiments reveal that starting with an a priori set of points (H') significantly
improves the performance of the solution algorithm as it then requires fewer iterations/cuts

and hence smaller CPU time for the algorithm to converge. The value of € used in the

convergence criterion is set at 107% in all the experiments.

The results of the computational experiments, which are averages over 10 different net-

works, are presented for each combination of |N|, P, C' and cv in Table 4. The table reports
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Figure 2: Gross Revenue (GR), Delay Cost (DC) and Net Revenue (NR) versus Coefficient of Variation of
Service Times (cv) and Unit Delay Cost (C) for the Illustrative Example
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the total gross revenue (GR), delay cost (DC') expressed as percentage of the total gross
revenue, CPU time (in seconds), and the minimum, maximum, and the average link utiliza-
tions. The results clearly demonstrate the stability and the efficiency of our proposed exact
solution method over a wide range of problem instances: it succeeds in finding optimal solu-
tions to several instances with different unit delay costs and service time variability within
a couple of minutes, with the maximum CPU time being 2153 seconds (for |N| = 50; P =
90; C' = 0.5; cv = 1).

The efficiency of our solution algorithm is best highlighted by comparing its results,
both the optimal objective function values and CPU times, with those from the Lagrangean
relaxation based solution method reported by Amiri et al. (1999) for the special case of cv = 1
(M/M/1 queue model for the links). For the completeness of the paper, the mathematical
model and the Lagrangean relaxation based solution algorithm reported by Amiri et al.
(1999) are briefly presented in the appendix. The comparison of the the results are presented
in Table 5, which demonstrates that our proposed solution method is, on an average, 3 to
10 times faster than the Lagrangean relaxation approach. Moreover, our proposed method
solves the problem to optimality whereas the Lagrangean relaxation leaves an optimality

gap of 2 to 7% on an average, and 11% in the worst case.
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5. Conclusion

In this paper, we presented a model to analyze the impact of service time variability
on the optimal call selection and routings in communication networks, commonly known
as the bandwidth packing problem. We formulated a more generalized model of BPP with
queuing delays by modelling the links, which process the calls arriving on the network, as
M/G/1 queues. We presented a non-linear integer programming model, and linearized it
using simple transformation and piecewise linear approximation. We further proposed an
efficient solution approach, based on the cutting plane method, to solve the resulting lin-
earized model to optimality. Through a computational study, we demonstrate the efficiency
and the stability of the proposed solution algorithm in solving within minutes problem in-
stances of the size of 50 nodes with varying service time variability delay costs. The proposed
method also outperforms the Lagrangean relaxation approach, reported in the literature for

the special case when services times on links are exponentially distributed.

The work reported in this paper can be extended in several ways. One such extension is
to model the links as GI/G/1 queues, although the solution method for it is not immediately
obvious. Another possible extension is to consider giving different priorities to calls from

different classes of customers.
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APPENDIX

We briefly present the mathematical model and the Lagrangian relaxation based solution
approach reported by Amiri et al. (1999) for the special case when cv = 1 such that the
links in the network are modeled as M/M/1 queues. For this, we introduce an additional
set of variables W' as defined below:

Wm { 1 if call m uses link(, j)in either direction;
ij

0 otherwise.

The non-linear integer programming model of this problem is :

Z eM dezm
[Pypp] i max Y ey —C Y i L (17)
meM (i.4)€E Qij = Lmen "W
st Xjj + X7 < W V(i,j) € Esme M (18)
Z d"Wi < Qi V(i,j) € E (19)
meM
Wi, € {0,1} V(i,j) € Eome M (20)

(5), (7). (8)

On dualizing the constraint set (18) using non-negative lagrangean multipliers o7 V(i, j) € £
and m € M, the problem [Py/a/1] decomposes into two sets of subproblems: (i) [L17%]
Vm € M; and (ii) [L2E,] V(i,j) € E, as given below:

[L17%] : max 7Y™ — Z o (X7 + XG7) (21)

(i,j)€E
s.t. (5),(7),(8)
[L2%,] : max Z Wit —C

meM

s.t (19), (20)

Qij = Dmens A"WT

(22)

The solution algorithms to solve [L174], LP relaxation of [L2£.] and to generate feasible
solutions are presented below:

The pseudocode to solve the BPP using Lagrangian Relaxation method is outlined below:
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Algorithm 2 Solution Algorithm for [L17%]

1: Solve [L17%] a shortest path problem with o7 as the link costs
20 0F (r'™ > 37 yep oy (X7} + X(}) then

3: (Y™ =1)

4: else

5 YMm=0and X7 =0V(i,j) € &

6: end if

Algorithm 3 Solution Algorithm for LP Relaxation of [L2¥p] for link (4, j)

1: Sort the calls (m € M) in non-increasing order of ;7 /d™. Use index m’ to represent
the calls in this order.
m’ <0
while m' < |M| do
m' <—m' +1
S P AW

, 1/2
6: Wy < min {1, ﬁ [(Q” ~S) - (Cd;"mgij> ] }

ij

7. if oY > 0 and Wy > 0 then

Wi — W
9: else
10: W 0
11:  end if
122 if W' <1 then
13: W[J”/ — 0 V{k:m' <k <|M|}, and stop.
14:  end if

15: end while
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Algorithm 4 Solution Algorithm for Generating a Feasible Solution
1: Aij — Qij V(Z,]) ek
2: DC+0; A+ 0
3: Sort the calls (m € M) in non-increasing order of v(L17%;) obtained from Algorithm 2.
Use m/ to represent the calls in this order.
4: Get the the values of X;}l’ Ym' € M, (i,j) € E obtained using Algorithm 2
5 - m' <0
6: while m’ < |M| do
7
8

m < m' +1
if d™(X2 + X)) < Ay V(i j) € E then
St @ (XE £ XE)

9: A C’E(i’j)eE Qo XE X DC
10: if ¥ > A then

11: Y™ 1

12: Aij — Aij — dm'(XZT' + XZL» V(Z,j) ek
13: DC + DC+ A

14: else

15: Y™ ¢ 0and X[V + 0V(i,j) € E

16: end if

17:  else

18: Y™ ¢ 0and X[V < 0V(i,j) € E

19:  end if

20: end while

Algorithm 5 Lagrangean Relaxation Based Solution Method
L aff < 0V(i,j) € Eand m € M; UB < +o00; LB < —oocjiter < 1;max_iter <
500; € < 1076
2: while (UB — LB)/LB > ¢ AND iter < max_iter do
Solve L1}, Vm € M using Algorithm 2.
Solve L2¥, V(i,j) € E using Algorithm 3.
UB + ZmEM U(LlLR) + Z(i,j)EE U(L2LR)
Generate a feasible solution using Algorithm 4
LB + U<PM/M/1)
Update «} using sub-gradient method.
9:  dter < iter +1
10: end while
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