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Abstract 

Background: Indian cities are among the most polluted globally, yet assessments of short term 

mortality impacts due to pollution have been limited. Furthermore, studies examining temperature – 

pollution interactions on mortality are largely absent. Addressing this gap remains important in 

providing research evidence to better link health outcomes and air quality standards for India.  

Methods: Daily all-cause mortality, temperature, humidity and particulate matter less than 10 microns 

(PM10) data were collected for five cities – Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla 

spanning 2005 - 2012. Poisson regression models were developed to study short term impacts of PM10 

as well as temperature – pollution interactions on daily all-cause mortality.  

Results: We find that mortality associated with a 10 µg/m3 PM10 increase is highest for Shimla 

(1.36%, 95% confidence interval = -0.38% to 3.1%) and the least for Ahmedabad (0.16%, 95% CI = -

0.31% to 0.62%). The corresponding values for Bangalore, Hyderabad and Mumbai are 0.22% (-

0.04% - 0.49%), 0.85% (0.06% - 1.63%) and 0.2% (0.1% - 0.3%) respectively. The relative health 

benefits of reducing pollution are higher for cleaner cities (Shimla) as opposed to dirtier cities 

(Mumbai). Overall we find that temperature and pollution interactions do not significantly impact 

mortality for the cities studied.  

Conclusions: This is one of the first multi-city studies that assess heterogeneity of air pollution 

impacts and possible modification due to temperature in Indian cities that are spread across climatic 

regions and topographies. Our findings highlight the need for pursuing stringent pollution control 

policies in Indian cities to minimize health impacts. 

Keywords: particulate matter; PM10; Health effect; Temperature-pollution interactions; time-series; 
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Air Pollution in Indian Cities: Short Term Mortality Impacts and Interactions 

with Temperature 
 

1. Introduction 

Short term health impacts of air pollution have been extensively studied for developed 

countries using time series and case-crossover studies (Lee et al., 2014; Li et al., 2013; Samet 

et al., 2000; Samoli et al., 2008; J. D. Schwartz, 2004). These findings have played an 

important role in determining air quality standards in the respective countries. For instance, 

the U.S. Environmental Protection Agency (USEPA) reviews health research every five years 

to recommend revisions to National Ambient Air Quality Standards, as mandated by the 

Clean Air Act (Bell, Samet, & Dominici, 2003; USEPA, 1970). However, epidemiological 

studies, to inform air pollution policy, are largely limited in the context of developing 

countries such as India (Balakrishnan et al., 2011).  

 

Indian cities today are among the most polluted in the world and it is estimated that outdoor 

air pollution leads to approximately 670,000 deaths annually (Lim et al., 2013). In India, the 

Central Pollution Control Board (CPCB) set up under the Air Act of 1981(MoEF, 1981) , is 

mandated with setting and reviewing the National Ambient Air Quality Standards (NAAQS). 

Current standards, for particulate matter set by the CPCB (CPCB, 2009) are much higher than 

those recommended by the World Health Organization (Krzyzanowski & Cohen, 2008). In 

addition, unlike other countries (Bell et al., 2003; Dominici, Peng, Zeger, White, & Samet, 

2007), the CPCB does not take into account findings from health literature when deciding on 

air quality standards (Balakrishnan et al., 2011). A periodic review of epidemiological 

evidence informs policy makers about current health risks associated with air pollution and 

sets the agenda towards finding a balance between reducing health impacts and the costs of 

implementing further air pollution controls (Dominici, McDermott, & Hastie, 2004).  
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One potential reason for the lack of tight coupling between ambient air quality standards and 

health outcomes may be limited epidemiological evidence in the Indian context. A 

comprehensive review of air pollution and health in Asia found only three time-series studies 

that examine the short term impacts of air pollution on mortality for the cities of Delhi and 

Chennai (Balakrishnan et al., 2011; HEI, 2010; Rajarathnam et al., 2011). 

 

However, studies for other cities are needed for at least two important reasons. The first 

reason is that for a country like India, cities vary widely in terms of development pathways, 

sources and levels of pollution and policy responses to curb pollution. This presents 

challenges for generalization of findings from single city studies to the whole country. 

Second, a changing climate may likely alter pollution levels and subsequently modify health 

risks over time (Jacob & Winner, 2009; Ren, Williams, & Tong, 2006; Tagaris et al., 2009).  

Consequently, temperature and pollution interactions for cities that lie in different climatic 

regimes may be quite different. An understanding of these health risks would play an 

important role in shaping policy to thwart air pollution.   

 

To address the aforementioned research gaps, we use a time-series approach using semi-

parametric Poisson regression to study the short term mortality impacts of particulate matter 

(PM10) as well as temperature – pollution interactions for five cities – Ahmedabad, 

Bangalore, Hyderabad, Mumbai and Shimla. Being situated in different climactic zones of 

India, we hope that the observations derived from our findings on these cities will give a 

fairly good idea about the environment – mortality interaction patterns prevalent in India as a 

whole.   
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2. Methods 

2.1 Mortality data 

Daily all-cause mortality data were collected from the birth and death registers of the 

municipal corporations of Ahmedabad, Bangalore, Hyderabad, Mumbai and Shimla. For 

most cities, information on age and cause of death were not available. Table 1 summarizes 

the climactic characteristics and topography of the above cities.  

 
Table 1. Cities distributed by climate zone  

Climate zone Representative cities Topography 

Hot and dry Ahmedabad Plains 

Cold Shimla Hilly regions 

Temperate Bangalore Plateau 

Composite Hyderabad, Lucknow Plains 

Warm and humid Mumbai Coastal areas 

 
India is divided into five climate zones namely – hot and dry, warm and humid, composite, 

temperate and cold. The rationale for choosing these cities was that they are each 

representative of a different climate zone. In addition to climate zone, these cities represent 

varied topography – plains, plateau, coastal areas and hilly regions. Air pollution levels vary 

from city to city based on sources of pollution and policy measures. Additionally, different 

weather patterns may modify pollution related health risks leading to wide spatial 

heterogeneity. Thus our choice of cities provides a snapshot of differential health risks across 

India.   

2.2 Weather and PM10 data 

Daily data on maximum and minimum temperature, relative humidity and dew point 

temperature were collected from the Indian Meteorological Department (IMD). The IMD has 

a record of daily weather variables since the year 1948. Daily measurements of PM10 were 
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collected from the Central Pollution Control Board (CPCB) database. Under the National 

Ambient Air Quality Monitoring Program (NAMP) the CPCB monitors four criteria 

pollutants i.e. Sulphur Dioxide (SO2), Oxides of Nitrogen (NOx), Total suspended particles 

(TSP) and particulate matter less than 10 microns (PM10) for 342 stations located in 127 cities 

across India.  

 

Typically two measurements are taken per week for each station implying that 100 - 120 

observations are available per year. These measurements are made available through the 

CPCB website and the values reported are a 24-hour average. Every city has a different 

number of air quality monitors that range from one in Shimla to nine in Hyderabad. For a 

given year, if any monitor had less than 75% of recorded observations (i.e. less than 90 

observations), then it was not used in the analysis. Scatterplots of daily mortality, PM10 

concentrations and temperature for the different cities are shown in the supplementary 

material.  

  

To create a population level exposure series for particulate matter, we used the centring 

approach described by Schwartz  (2000).  For each monitor, the mean (over all observations) 

of that particular monitor was subtracted from each observation. This demeaned data was 

then divided by the standard deviation of that particular monitor to get a standardized series 

for that monitor. This process was repeated for all monitors in a given city. The standardized 

series across all monitors was averaged to get one single series. Finally, this single series was 

multiplied by the standard deviation of all monitors taken together and the mean of all 

monitors taken together was added back to each observation (Schwartz, 2000). The resultant 

series was the final exposure series used in the regression model.  
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2.3 Analytical models 

We adopted a semi-parametric regression framework to develop the exposure – response 

relationship between air pollution and mortality for the sampled cities (Balakrishnan et al., 

2011; Peng, Dominici, & Louis, 2006; Rajarathnam et al., 2011). The logarithm of daily 

expected deaths was modelled as a function of daily air pollution measurements in the 

presence of other confounding variables such as temperature and humidity. Smooth functions 

were used to control for effects of daily temperature, humidity and seasonal and long term 

trends as these are non-linearly related to mortality (see supplementary material figures). 

Thus the regression equation can be expressed as:  

 

Log[E(Yij)]    =  βPM10i,j-1 + ∑ ��
��� (xij) + DOWij + εij                                            …(1)… 

 

where Yij  is the daily mortality count for the i th city on the j th day and is assumed to follow an 

over-dispersed Poisson distribution. The pollution (PM10) measurement for the i th city on the 

j th day lagged by one observation is represented using βPM10i,j-1. However, as PM10 is 

measured once every three days, today’s deaths (t) are related to the PM10 value three days 

prior (t-3). The covariates xij represent daily temperature, relative humidity and time for the i th 

city on the j th day. The effects are expressed by an unknown smooth function �(•) 

constructed using natural cubic splines. Details about the structure of  �(•) are given in the 

supplementary material. An indicator variable for each day of week is given by DOWij. The 

error term is modelled using εij. The parameter of interest is β associated with the pollution 

variable (PM10). This parameter gives an estimate of the increase in mortality associated with 

a unit change in PM10 concentrations.  
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For temperature, humidity and time, the amount of smoothness (i.e. optimal degrees of 

freedom) was determined based on the approach by Dominici et al. (2004). The underlying 

idea is that β is sensitive to degrees of freedom selected for temperature, humidity and time. 

The approach by Dominici et al. (2004), where optimal degrees of freedom are chosen such 

that they predict PM10 instead of daily mortality, provides asymptotically unbiased estimates 

of the β parameter. The details of the algorithm implemented to arrive at these optimal values 

have been provided as supplementary information.  

 

Mortality impacts related to pollution may be delayed i.e. exposures on preceding days may 

determine current health outcomes (Bhaskaran, Gasparrini, Hajat, Smeeth, & Armstrong, 

2013; Braga, Zanobetti, & Schwartz, 2001). To account for this, single lag models (lag 1) was 

embedded in Equation (1). The lack of daily PM10 measurements did not allow for use of 

distributed lag models as this may introduce large errors (Braga et al., 2001; Zanobetti, 

Wand, Schwartz, & Ryan, 2000).  

 

2.4 Sensitivity analysis  

In order to compare some plausible scenarios, a sensitivity analysis was undertaken where the 

estimates (β) were tested using (i) zero lags for the pollution variable; (ii) minimum 

temperature instead of maximum temperature and (iii) including other pollutants such as 

sulphur dioxide.  

 

2.5 Temperature – pollution interactions  

To study the interaction effects of temperature and pollution (PM10) on mortality, a two step 

approach as suggested by Ren et al., (2006) was adopted. The first step involved fitting 

Equation (1) with an interaction term to capture the joint effects of pollution and temperature. 
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This model is given in Equation (2). The term tij*PM10ij expressed the interaction between 

daily temperature and pollution while its effect is quantified by the coefficient α.  

 

Log[E(Yij)]    =  βPM10i,j-1 + ∑ ��
��� (xij) + α(tij*PM10ij) + DOWij + εij                   …(2)… 

 

If the interaction term (or α) is found to be significant, then a second model is used to 

understand if interaction effects are more significant during hotter or colder temperatures.  

 

2.6 Software 

All analysis was performed in the statistical environment R version 2.15.1. The package mgcv 

(version 1.7-24) was used to fit the models described in equations (1) and (2). The package 

ggplot2 (version 0.9.3.1) was used for graphical representations.  

3. Results 

3.1 Summary statistics 

As seen in Table 2, there is wide variation among different cities when it comes to daily 

pollution levels, mortality, temperature, as well as number of complete observations available 

for analysis. The highest PM10 levels are observed for Mumbai (174.4 ± 86.6) and the lowest 

for Shimla (54.4 ± 25.2). The daily number of deaths varies across cities and seems to be 

linked to population size.  Shimla had the lowest number of daily deaths (4.2 ± 2.7) whereas 

Mumbai (225.6 ± 30.7) had the highest.  
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Table 2. Observed values for different variables across cities (mean ± standard deviation) 

City 

Temperature (°C) Relative 

Humidity 

(%) 

Daily 

Deaths 

PM10 

(µg/m3) 

No of 

complete  

observations 
Maximum Minimum 

Ahmedabad 34.3 ± 4.6 21.5 ± 5.6 56.7 ± 17.8 100 ± 18 93.9 ± 58.7 602 

Bangalore 29.4 ± 2.7 18.7 ± 2.3 66.6 ± 15.5 120.7 ± 17 108.3 ± 69.8 307 

Hyderabad 33.6 ± 3.8 20.7 ± 3.6 53.1 ± 17.6 74.7 ± 16.2 80.4 ± 21.9 498 

Mumbai 32.3 ± 2.4 22.7 ± 4.05 69.2 ± 13.8 225.6 ± 30.7 174.4 ± 86.6 2012 

Shimla 20 ± 5.1 11.2 ± 5.3 NA 4.2 ± 2.7 54.4 ± 25.2 962 

*NA – No data available 

 

Each city had a different number of air quality monitors. The number of air quality monitors 

ranged from one in Shimla to nine in Hyderabad. For every air quality monitor, percentage of 

missing data by year varied (see Table S1 in supplementary information). Thus, air pollution 

impacts were estimated for the period of 2008 - 09 for Hyderabad and Bangalore; from 2005-

2009 for Ahmedabad; from 2005 - 2011 for Mumbai and 2006 – 2009 for Shimla. The 

implication is that since different periods are being studied for different cities, making 

comparison of results across cities somewhat difficult.     

 

3.2 Exposure – response estimates 

The percentage increase in mortality associated with a 10 µg/m3 increase in PM10 is reported 

in Table 3. The highest increase was seen for Shimla (1.36%) and the least for Ahmedabad 

(0.16%).  Bangalore and Mumbai showed similar results with a 0.22% and 0.20% mortality 

increase respectively.  
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Table 3. Percentage increase in mortality for every 10 µg/m3 PM10 increase 
Sensitivity analysis 

Core model No Lag for PM 
Minimum 

temperature SO2 included 
Ahmedabad 0.16% 0.06% 0.12% -0.32% 
(95% CI) (-0.31 to 0.62) (-0.42 to 0.55) (-0.36 to 0.61) (-1.01 to 0.38) 

Bangalore 0.22% 0.16% 0.17% 0.23% 
(95% CI) (-0.04 to 0.49) (-0.11 to 0.43) (-0.09 to 0.43) (-0.18 to 0.64) 

Hyderabad 0.85% 0.48% 0.83% 0.41% 
(95% CI) (0.06 to 1.63) (-0.30 to 1.27) (0.04 to 1.62) (-0.69 to 1.51) 

Mumbai 0.20% 0.18% 0.16% 0.13% 
(95% CI) (0.10 to 0.30) (0.08 to 0.27) (0.06 to 0.25) (0.04 to 0.23) 

Shimla* 1.36% 0.97% 0.54% - 
(95% CI) (-0.38 to 3.1) (-0.83 to 2.7) (-1.17 to 2.27) 

*No humidity and SO2 measurements were available for Shimla; Values in the brackets 
represent 95% confidence intervals.  
Negative values imply that the effect of pollution on mortality is not significant 
 

The sensitivity analysis showed that mortality estimates were lower when no lag for pollution 

was used, across all cities. The estimates of the core model did not change significantly if 

minimum temperature was used as a confounding variable. The inclusion of SO2 reduced the 

impact of PM10 on mortality for Hyderabad and Mumbai, although, these differences were not 

significant. In addition, no significant interaction effect (at a 5% level) between temperature 

and pollution on mortality was observed. Table 4 shows the estimates, standard errors and p-

values for the interaction term between temperature and pollution.   

Table 4. Interaction effects of temperature and pollution for all cities 

City β co-efficient Std. error p – value 
Ahmedabad 0.00328 0.00202 0.11 
Bangalore 0.00607 0.00473 0.20 
Hyderabad 0.00759 0.00757 0.31 
Mumbai -0.00380 0.00281 0.16 
Shimla -0.00007 0.00054 0.89 
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3.3 Comparison with other studies  

Our results are in close agreement with previous studies (Balakrishnan et al., 2011; 

Rajarathnam et al., 2011; Romieu et al., 2012), which find 0.44% (95% CI = 0.17 to 0.71) for 

0.15% (95% CI = 0.07 to 0.23) increase in mortality for every 10 µg/m3 PM10 increase for 

Chennai (Balakrishnan et al., 2011), and Delhi (Rajarathnam et al., 2011), respectively. 

Studies from cities in the United States have shown 0.3% to 0.5% increases in mortality with 

every 10 µg/m3 PM10 increase (Samet et al., 2000). More recent studies for Latin America 

also corroborate these findings - 0.48% to 1.26% mortality increases for every 10 µg/m3 

PM10 increase were observed for cities across Brazil, Chile and Mexico (Romieu et al., 2012). 

These findings imply that the short term mortality risks associated with pollution are not very 

different across cities. However, exposure of the large Indian population in to outdoor 

pollution translates into a significant increase in mortality.   Figure 1 compares the percentage 

change in mortality for every 10 µg/m3 increase in PM10 across different studies.  
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Figure 1 shows the central estimate and 95% confidence intervals for percentage increase 
in mortality with every 10µg/m3 increase in PM10. We compare estimates for five cities 
analyzed in this study and with those from selected previous studies.  
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4. Discussion 

Our study was designed to explore the differences in short term impacts of air pollution on 

mortality and possible modification due to temperature in Indian cities that are spread across 

climactic zones and topographies. The results add to the existing body of epidemiological 

knowledge in the context of a developing country, like India.  

 

An interesting finding of our analysis is that cities such as Ahmedabad and Mumbai that have 

higher levels of pollution do not experience a significant increase in mortality for every 10 

µg/m3 increase in PM10. In contrast, the percentage increase in mortality is highest for Shimla 

which is among the cleanest cities. These results are corroborated by recent studies that have 

attempted to develop a new set of exposure – response relationships linking pollution and 

health (Lim et al., 2013; Smith et al., 2013). One of their main findings was that the impact of 

pollution on health may indeed be non-linear in nature i.e. when baseline pollution levels are 

high, health benefits associated with reduction in PM10 may be very small as compared to a 

situation where baseline pollution levels are low (Lim et al., 2013; Smith & Peel, 2010; Smith 

et al., 2013).  

 

The import of these findings is that small reductions in pollution in cleaner cities will yield 

large health benefits, whereas in less cleaner cities, even large reduction in pollution may 

yield only modest health benefits in a relative sense. Although this seems counter-intuitive, it 

is not to suggest that the focus should be on reducing pollution in cleaner cities alone. On the 

contrary it underscores the need for rapid and aggressive policy measures in both types of 

cities to curb air pollution. Ambitious targets towards achieving ambient air quality standards 

should be set in highly polluted cities. On the other hand, cleaner cities could leverage 

significant health gains even by focussing on small reductions in pollution.  



 

 

 

IIMA  �  INDIA 
Research and Publications 

Page 15 of 32 W.P.  No.  2014-04-01 

The pollutant of choice in our study was particulate matter less than ten micrograms in size 

(PM10). This is because, it is the most routinely monitored air pollutant in India. Although 

studies show that fine particulate matter (PM2.5) has more severe health impacts, this 

pollutant is not yet monitored in India on a regular basis.  

 

The differential health impacts of single versus multiple pollutant models are of interest in 

epidemiology, although it is unclear whether including more than one pollutant in the 

analysis is necessarily more beneficial as opposed to single pollutant models (Tolbert, Klein, 

Peel, Sarnat, & Sarnat, 2007). We focussed primarily on the impacts of PM10 on mortality.  

Inclusion of sulphur dioxide (SO2) along with PM10 did not change our estimates 

significantly, similar to previous findings (Rajarathnam et al., 2011). High percentage of 

missing data precluded incorporating nitrous oxides (NOx) in our modelling framework. 

Thus, our results seem to be fairly robust and may not be influenced significantly if more 

pollutants are added.   

 

In the context of our modelling framework, we did not find significant impacts of 

temperature-pollution interactions on mortality for the cities studied.  This may be because 

temperature – pollution interactions are highly complex and non-linear and therefore may not 

have been captured adequately in the current model framework. Some studies e.g. Ren et al., 

(2006), have used more complex approaches such as modelling of the interaction using 

locally weighted smoothing functions (LOESS). However, a key limitation of such complex 

models is the inability to interpret estimates in an intuitive manner. Furthermore, the results 

from previous studies are varied implying that interaction effects may be city specific in 

nature. For instance, within the United States alone, Ren et al., (2008), found that while 

ozone modified the temperature mortality relationship in northern cities, no such effects were 
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observed for southern cities. Further research is needed to better understand how temperature 

and pollution interactions influence health risks across cities in India.  

 

One key limitation of our dataset is that there were significant missing data for the different 

air quality monitors across cities except Mumbai. This affected the parameterization and 

structure of the semi-parametric model used in our analysis. Furthermore, the fact that 

pollution estimates were not significant for Ahmedabad and Shimla may be a reflection of 

measurement error. Needless to say, better monitoring will help in developing more accurate 

exposure – response relationships across cities. 

 

To create a consistent exposure series, Balakrishnan et al. (2011), developed a spatial model 

for Chennai. A 0.5 square kilometre grid was superimposed on a map of zones in the city. For 

each grid cell, PM values of the nearest AQM (measured as distance from centroid of grid to 

AQM) were assigned. For each zone, the PM exposure series was an average of the air 

quality reading on a particular day weighted by the number of grid cells it was assigned to in 

the zone. This approach was preferred to a simple average or centering approach used in this 

study. Whereas, a spatial model has distinct advantages, it requires a large amount of 

disaggregated information such as daily number of deaths in different zones of the city. Since 

that information was not available for cities in the current study, a centering approach was 

adopted. The advantage of the centering approach is that although a difference in 

measurements across monitors may influence variability of the exposure series and lead to 

underestimates, the slope co-efficient (i.e. β) corresponding to the pollution parameter (i.e. 

PM10) remains unchanged if one or several AQM’s are used (Balakrishnan et al., 2011; 

Rajarathnam et al., 2011; Wong, Ma, Hedley, & Lam, 2001). 
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Though it has been pointed out that impacts of air pollution is primarily linked to cardio-

respiratory mortality(Pope III et al., 2002; Samoli et al., 2014; USEPA, 2009) , the present 

study only examined all-cause mortality. This was because information on cause-of-death and 

age groups was not available for the cities which were considered. Mortality in India is 

underreported and on an average only 67% of all deaths gets registered, with high variability 

across different states (Dhar, 2013). Of these, it is only institutional deaths that contain 

information on cause of death. It is reasonable to suggest that enhancing the quality of 

mortality registration data is vital for future studies.  

 

In conclusion, the study of air pollution on mortality remains an important area of research in 

the Indian context. Clearly there remains a need to strengthen data quality and carry out 

similar studies for many more cities. In addition to the time-series approach used in this 

study, cohort studies are required to understand air pollution related health risks in India. 

Epidemiological evidence can help guide policy by providing evidence to tightly couple 

health outcomes and air quality standards, thereby minimizing the impacts of outdoor air 

pollution in India. 
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eAppendix 

Table eS1. Percentage of missing values for different air quality monitors (AQM) 

2005 2006 2007 2008 2009 2010 2011 

Ahmedabad 

AQM1 13 22 18 70 na na na 

AQM2 14 23 13 74 na na na 

AQM3 63 26 20 18 na na na 

AQM4 na na na 43 na na na 

Bangalore 

AQM1 na na na 15 16 na na 

AQM2 na na na 35 19 na na 

AQM3 na na na 0 21 na na 

AQM4 na na na 23 48 na na 

Hyderabad 

AQM1 na na na 8 71 na na 

AQM2 na na na 20 29 na na 

AQM3 na na na 10 10 na na 

AQM4 na na na 22 28 na na 

AQM5 na na na 11 11 na na 

AQM6 na na na 10 10 na na 

AQM7 na na na 10 10 na na 

AQM8 na na na 18 27 na na 

AQM9 na na na 11 10 na na 

Mumbai* 

AQM1 26.3 32.1 23 63 49.9 24.7 47.7 

AQM2 na na 57 11.2 8.8 4.4 2.7 

Shimla 

AQM 1 na 0 0 0 0 na na 
 

The percentage missing has been computed assuming that any monitor having 120 observations for a 
given year will imply 100% data.  
*Mumbai AQM’s had over 135 measurements for each year. Hence, percentage missing has been 
computed assuming that 360 observations for a year imply 100% data.  
**na – implies that no data was available for those years 
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Algorithm for optimal degrees of freedom for confounding variables 

This study arrived at the optimal degrees of freedom for each of the confounding variables by 

using the algorithm developed by Dominici et al., (2004).  The idea behind the algorithm is to 

estimate the optimal degrees of freedom (i.e. smoothness) for each variable in the regression. 

The algorithm has four steps which are as follows: 

 

1. A smooth function of time (or temperature or humidity as the case may be) was 

regressed on the daily values of particulate matter (PM10) using different degrees of 

freedom that range from 1 to n. For each of these a generalized cross validation score 

(GCV) was obtained. The GCV score is a measure to assess the goodness of fit of a 

model. The lower the GCV better is the model fit. 

 

The above model is shown in equation (1), where xij  represents the variable of interest 

(time, temperature or humidity) for the i th city on the j th day, and the effect is captured 

by the smooth function s. The smooth function used was a natural cubic spline whose 

structure has been described in equations (2) and (3). The pollution level for the i th 

city on the j th day is given by PM10ij. The degree(s) of freedom that yielded the lowest 

GCV score was selected and this was labelled as d.  The equation can be written as  

 

PM10ij = α0 + s (xij)               degree(s) of freedom  = {1, 2, 3…n}     … (1)… 

 

The expression for the natural cubic spline used for the function s is given by a 

piecewise polynomial of the form 

s1 (x) if    x1 <  x  < x2 

    S (x) =  s2 (x) if    x2 <  x  < x3  …(2)…  

       … 
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      sn-1 (x) if   xn-1  <  x  < xn 

 where sk (x) = ak (x – xk)
3 + bk (x – xk)

2 + ck (x – xk) + dk   …(3)… 

 for k = 1, 2, … n-1 

 

2. The above degrees of freedom (i.e. d) was multiplied by a factor λ > 3. Let this be 

denoted as d*. It has been proved theoretically (Dominici et al., 2004) that if d * 

degrees of freedom is used to model the PM10-mortality relationship, then the estimate 

of β for the pollution variable is asymptotically unbiased (Dominici et al., 2004).  

 

3. Daily mortality was regressed on particulate matter and a smooth function of time 

with degree(s) of freedom varying from 1 to d*. The equation can be written as  

 

Log [E(Yij)] = α0  + βPM10ij + sij (xij)  degrees of freedom = {1,…,d*} …(4)… 

 

where Yij  is the daily number of deaths for the i th city on the j th day and is assumed to 

follow an over-dispersed Poisson distribution. From the above analysis, we can obtain 

the asymptotic bias and variance of air pollution risk estimates for each of the degrees 

of freedom {of s(xij)} from 1 to d*.  

 

4. Finally, a bandwidth selection procedure as described by Dominici et al. (2004) is 

used to select the optimal degrees of freedom. To do this, fitted values for deaths were 

obtained for equation (4). Using these fitted values, a bootstrap procedure was 

implemented to randomly generate 100 bootstrap samples (#$%
&,'

)	of the air pollution 

risk estimate (β).  
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5. For each of the 100 samples generated, the regression model (4) was fitted using 

varying degrees of freedom for the smooth function of time starting from 1 all the 

way to d*. This process resulted in generating 100 values of β for each degree of 

freedom. The estimate of the bootstrap average of β was computed as: 

#$%
(,' =	 �

)
		∑ #$%

&,')
�                 …(5)…. 

6. Using these newly generated β values, the unconditional squared bias (USB) and 

unconditional variance (UV) was estimated as described by Dominici et al., (2004). 

The USB provides an estimate of the difference between the average of β generated in 

the bootstrap for every degree of freedom and that of the β value corresponding to d* 

degrees of freedom (#$*+
' ). The UV gives an indication of how precise these USB 

estimates are. The formulae for calculating USB and UV are respectively:  

,-. =		 �
/
		∑ 0	#1%

(,' −	#$*∗4
' 	5/

�
2 

       … (6)… 

 

,6 =		 �
/
		∑ �

)7�
	/

� ∑ 0	#1%
&,' −	#$%

(,' 	5)
�

2 
                 … (7)… 

 

The degrees of freedom that give the lowest USB was selected as these are closest to 

the unbiased estimate of β. Among these USB estimates, the one that had the lowest 

variance was chosen as it is the most precise estimate of β. The degrees of freedom 

thus selected, is the optimal degrees of freedom. The optimal degrees of freedom for 

the smooth functions of temperature, humidity and time considered in our study are 

shown in Table S.2.  
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Table eS2. Optimal degrees of freedom estimated for different cities via bootstrap 

City Temperature Humidity Time 

Ahmedabad 7 5 13 

Bangalore 4 5 5 

Hyderabad 6 3 30 

Mumbai 8 4 24 

Shimla 9 - 28 

*df/yr  – Degrees of freedom 
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Figure eS.1 The scatter plots in these three panels show the association between daily number of 

deaths, daily pollution measurements and daily measurements of maximum temperature over time for 

Ahmedabad 
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Figure eS.2 The scatter plots in these three panels show the association between daily number of 

deaths, daily pollution measurements and daily measurements of maximum temperature over time for 

Bangalore 
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Figure eS.3 The scatter plots in these three panels show the association between daily number of 

deaths, daily pollution measurements and daily measurements of maximum temperature over time for 

Hyderabad 
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Figure eS.4 The scatter plots in these three panels show the association between daily number of 

deaths, daily pollution measurements and daily measurements of maximum temperature over time for 

Mumbai 
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Figure eS.5 The scatter plots in these three panels show the association between daily number of 

deaths, daily pollution measurements and daily measurements of maximum temperature over time for 

Shimla 

 


