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Abstract

We introduce a stochastic optimization based datisupport system (DSS) for asset-liability
management of a life insurance firm using a mu#gse, stochastic optimization model. The
DSS is based on a multi-stage stochastic lineagraro (SLP) with recourse for strategic
planning. The model can be used with little or mowledge of management sciences. The
model maximizes the expected value of total resgyeicy holders’ reserve and shareholders’
reserve) at the end of the time period of planniMg discuss the issues related to database

design structure, DSS interface design, databadatimg procedure, and solution reporting.

Keywords: Decision support system, stochastic optimizafioincial institutions, strategic planning,

asset liability management, insurance
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Database Structure for a Multi Stage Stochastic Optimization
Based Decision Support System for Asset — Liability
Management of a Life Insurance Company

1. Introduction and Motivation

Asset Liability Management (ALM), the practice oimaging risks arising due to a mismatch between
assets and liabilities, is one of the key aspdutisiofaced by all financial institutions. The mhing of
assets and liabilities can be modeled by mathealagguations representing inflows and outflows. The
ALM model also considers the financial flow relatedhe carry over of the gains (or losses) frora on
period to the next and the objective function @ thodel is to maximize the present value of the

amount at the end of the planning horizon.

Dhar & Stein [5], Holsapple & Whinston [19], Fayyqti2], Sprague & Watson [26,], Turban and

Aronson [27] are notable amongst the numerous paibett have been published, that focus on the
database design aspect of DSS and its applicatfoqsocess manufacturing industries. However,
literature is rather scarce when it comes to shglyhe development of a DSS for addressing ALM
related problems. In this paper, we introduce &hststic optimization based DSS for asset-liability

management of a life insurance firm using a mi@tge, multi-period stochastic optimization model.
1.1 Context of the research

The life insurance industry is an extremely contpetiindustry wherein a firm is faced with stiff
competition not only from other players in the istty but also from other competing financial
institutions such as banks and pension fundstddund inflows. Life insurance policies are noden

looked at only as risk mitigation transactions, &isb as an avenue for generating investmentsnsetur

The growth of a firm, in this context, significantielies on its ability to maximize the utility tands its
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investors by maximizing the worth of its investm®nBut unlike other financial institutions, life
insurance firms have to deal not only with fluctongteconomic conditions but also the uncertain life
expectancy of its investors. Uncertainty and mpdtiiod problems are inherent to managing financial
institutions. These uncertainties compound the Iprobof ALM in a life insurance firm and hence,

make it more challenging. In this paper, we attetoatddress the following questions in detail:

1. How is the database design of SLP in ALM similathitat of SLP in process industries?

2. What are the difficulties encountered in develomngulti-stage multi-scenario DSS?

3. What are the key featurega multi-scenario multi-stage DSS?

4. What are the challenges in the implementation efupdate mode in a multi-scenario multi-period
DSS?

5. How the variable and constraint generation procesifferent from a multi stage SLP based DSS

to that of a two stage SLP based DSS?

1.2 Review of Related Research

Stochastic programming is one of the tools avadlabl deal with such uncertainties. In a survey of
stochastic programming applications, Birge[2] claithat using stochastic programming technigues,
robust “near optimal” solutions can be obtainedégisions regarding allocating resources whilenigci
an uncertain future. Mathematical models of adability management have been extensively studied
by academicians and practitioners; a few key studie the ones by Markowitz [21,22], Carigtoal.
[3]Jand Kusy & Ziemba [20]. In the SLP, the sceaarior asset returns can be generated from differen
sources like different interest rate models (Muleéewl.[23]) or by the use of autoregressive modelling

on past data as suggested by Carino, Myers & Zidbjba

The framework provided by Dolk [6] for data, modeld dialogue management is a good starting point
for this study. In this paper, we draw on the firgdi from existing literature on structured modeling

(Geoffrion [15, 16, 17]) and modeling language, meatatical programming, and database optimization
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interface literature Dutta [7], (Dutta & Fourer [, Fourer [13],) to develop a robust model fd&S

for the firm we are interested in. Foureraét[14] discusses the features of modelling langsagehis
study also draws ideas and concepts from a sirffidanework for modeling languages developed by
Valanteet al.[28].

While several researchers ([Carino & Ziemba [4]si@aet al.[3]) have attempted to develop a SLP to
model uncertainty in ALM and there have been sott@pts to develop a DSS on process industries,
this is probably the first attempt to develop a Sid3ed DSS for strategic planning for an insurance
firm. Moreover while the earlier researchers hagdrassed only the asset side risks, in this woek, w
also model liability side risks. We believe tligis research will be useful for two audiences. Tirst

is academicians who are looking for new reseanglasaand second, practitioners in insurance

companies, who are looking for the applicationuaftsDSS.

In this paper, we introduce a stochastic optimimatiased DSS for an ALM problem for an insurance

firm with the following features:

1. User friendliness, so that an executive with lititeno mathematical background can comfortably
use this DSS

2. Multi — period planning

3. Multiple scenario optimization

4. Flexibility to modify periods, scenarios, assets] dability classes

5. Flexibility to explore “what — if” scenarios

1.3 Outline

Section 2 consists of the discussion on the dessmes and challenges faced in designing a multi-
scenario, multi-period database and briefly intealthe different elements of the database as well a
the complete DSS. It looks at the correspondendbeofiles of data management system in the DSS
with the variables and constraints in the lineargpam. In Section 3, we discuss the steps in multi-
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scenario, multi-period optimization - constraingriable and coefficient generation, solution of the
optimization problem and reading of optimal valirg® the database. In Section 4, we briefly discuss
the features of the DSS and its strategic relevancéhe firm. Finally, Section 5 highlights the

challenges foreseen in the development of the D8&uha and the expected contribution of this study

to the field of database optimization.

1.4 Two-stage recourse model

A general two-stage recourse model (Sen & Higlg]] 2an be formulated as an extension to the dassi
stochastic problem as follows.

¢ = the cost vector of the ith stage

A = the coefficient matrix at stage 1

Ay = the coefficient matrix at stage 2 in differeaésarios, fors =1,2,3 s € Q

b,= the right hand side of the SLP at stage 1

b,s = the right hand side of the SLP in different so@s, fors=1,2,3 s€Q

X,= First stage decision variable

X1s/X2s= First/second stage decision variables in diffeseenarios, fors =1,2,3

Minimize Zps [c1x1s + Caxp5] 1)
SES
s.t.
Aix1s = by SEQ 2)
Bsx1s + AgsXxas = bas s€Q 3)
X1 —%x13=0 SEQ (4)
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Lis <= x5 <= Uys, Lys <= x5 <= Ups s€Q (5)
The constraintsA;x,; = b; include the immediate constraints (first stageiaides only). This is
termed as the first stage of the problem. The mandariables appear in the second stage wherein the
random parameters,(B, A,, b,) are uniquely realized for each scenario s. Onin@fmost important
notions within a stochastic programming formulatisrthat ofimplementabilityor non-anticipativity
This means that under uncertainty, the first si@ggsions are implemented before an outcome of the
random variable is observed. Since this decisiandsle when the outcome of the random variable is
still unknown, it cannot be dependent on any paldicoutcome of the random variable. This explcitl
recognized the first stage variables as non-auiticip. The variables;xare dependent on the outcome
of the realization of the random variables. But tbhestraint x — xs = 0 forces all the outcomes to be
the same as;x
Thus, a linear program with uncertainties can bedefex into a stochastic linear program. This
stochastic linear program can be modeled into eraeistic equivalent LP which can then be solved

as a generalized LP but with the objective functibanged to maximizing expected value.

2. Database design for multi-scenario multi-period modls

In this section we discuss the first question ascidieed in page 2 and address the similarity of thi
work with that of optimization based DSS in ProcksRistries (Dutta [7], Fourer [13], Dutta & Fourer
[9]). One of our more recent work(Gupta et al.[1difcusses SLP based DSS in process industries. In
this case, the multi-scenario, multi-period modaeldsset-liability management in a life insuraniom f

has five key or fundamental elementémes, Scenarios, Accounts, Assetd Liabilities. In our recent
work (Guptaet al [18])), we had six primary files Times, Scenarios, Materials, Facilities, Actigti

andStorage AreasThe five key elements are explained as follows:
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Timesare the periods of the planning horizon represkbjediscrete numbers (1, 2, 3...). The length of
these periods can vary. For an ALM problem, claseetperiods are shorter and farther periods are

longer, to take care of uncertainty in the finahperameters.

Scenariosare the possible realizations of the uncertairampaters. These can also be represented by
discrete numbers (1,2, 3 ...) wherein each scenamicesponds to one realization of the uncertain

parameters. A set of such scenarios is collectiteriyjed as a scenario set.

Accountsare classified into two different accounts: theigdlolders’ account and the shareholders’
account. The two accounts are operated independamdl are connected to each other via surplus and

deficient variables.

Assetsform the set of the investment opportunities alad for the firm. Each of these asset classes

provides a return to the firm dependent on thegoerénce of the underlying asset.

Liabilities of an insurance firm are the outflows promisedHhsyinsurance firm to its customers. These
include maturity outflows, death outflows, and sader claims.
The algebraic form of the model is provided in Apie 1.

2.1 Database Structure of the Data Models

The database structure mainly has two sub-databBEsediles of the first sub-database are defired a
thedata filesor files of data management systéhe files of the second sub-database, which gonta
the information of the stochastic linear programe, @lledthe files of model management system or

model filesThe complete database structure for the stochatimization model is shown in figure 1.
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Figure 1: Database Structure for the Stochastiin@gdtion Model

Premiuminfiow: | _Policy Outflows _| | _Parameter | TrnsCstio | A Ret
PrmifiD Al w « [PoiRhdomD | A Parameter | | —+-M {accup 1 . |psstRtntiD [ A
LiabiD - ——lLiablD ], SurRatval | R N [AssetiD 1 AssetiD__ | 1]
TimelD [ B - TimeiD TG DiscRate R —r{TimeID 1 Timeid | | —
ScenlD [ - ' ScenlD 1 | ~—1ScenlD [ ScenlD 1 |-N
Prmifval R Matofval_ | R [TosCstval | ® PreRtnval | R
OthoOfVal R | 1 Account [ 1 | R
PolSurOfval | R [ [~ |AcctiD R Assets | |
ComExpVal | R | AcctName | T AssetiD X =
| AssetName | T AssetTimeSc
I . Uabilities [PrInival | ® w [AstTensenid A
OpExID A LiablD | | Scenarios |, | [sHnitvval__| ® AcctiD [
TimelD 1 LisbName | A % lsceniD 1 L fasseus
ScenlD 1 ScenName T TimelD |
OpExval R ' l I | ScenProb | R diaRe: N [scenip |1 }—
Time k w |[ndRsvio 1"y - BuyMin_| R
4> [TimeiD [ L AcctiD [ [Buymax | R
| TimeName | T I [ summation | InDRsvVal | R [BuyOpt__|®
rveTimeSc Branches 1 | S: ioni] A |selimin R
RVTmSeniD | A | o TimelD [l ‘ [seimax__ | R
AcctiD 1 t - [sceniD - SurDefTimeScen Seliopt | R
TimelD T come Time TPOIRRAOT | R SuDeTmSc | A HoldMin | R
SceniD [ InTmSenlD_| A _|,, | [Totbrmi w1 " [TimeiD [ HoldMax_| R
RsvTmScnval R | ) L [TotCommexg] R | _M_Fcenlb 1 HoldOpt | R
—=_IYimeiD 1 SuTmScnVal| R TmsCst | R
N_lsceniD 1 DefTmScnVal R
. InTmScnVal | R
1 = ONE RECORD
N = MANY RECORDS [ variables |1 Constraints
VarNum [ ¥\ ConstNum | 1
1D v1 A |lovi A
[ovz A [ov2 A
[Dv3 A [ova A
IDva A IDva A
VarName [T ConstType | A
LoBound R [ Coefficients | ConstName] T
UpBound |a ' uiD A RHS R
VarCoeff R - [VarNum [ ™ [ConstDual | R
VarO R ConstNum _| 1 [
VarRedCost_|R Value R

2.2 Database Implementation of Primary Files

We implement this database on tHeBimension platform, a relational database managemsystem
developed by Adams & Beckett [1]. First, we devetlog files for the five key elements of the dat&bas
The five boxes, labeled as [Time], [Scenarios],déts], [Liabilities] and [Accounts] correspond teet

five key elements of the database. Items withifhdsuix denote the file’s data fields.
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The [Accounts]and[Liabilities] files have the data fields of only the unique Haldhe name associated
with them. For example, for th&g¢couni file, each record has the entries of the [AccelAxtctiD and
[Accounts]AcctName. Similarly, for thdLiabilities] file, each record has the entries of the
[Liabilities]LiablD and [Liabilities]Liabname .Fothe [Scenarios] file, there is [Scenarios]Scenld an
[Secnarios]ScenName and an additional entry ofri&des]ScenProb, which contains the probability of
the occurrence of the scenario. For the [Time] fileere is an additional entry of [Time] Branches,
which contains the information on the scenario stecture for the model. For the [Assets] filegrén
are two additional fields for the information oretimitial asset allocation in the asset for the two

accounts.

2.3 Database implementation of Secondary Files

The other files necessary for the implementatiothefmodel are created by indexing the key elements
We shall show this by explaining two key files metdatabaseAssetTimeScérfile or Asset-Time-

Scenario file and thé”plicyOutflow$ file or Ploicy Outflow file .

The [AssetTimeScen] provides the basic structuerled to define the key decision variables. As the
variables are defined over the subscripts of aslsats, time period, scenario and account type, the
AssetTimeScerfiles are indexed over the following four variahle]AssetTimeScen]TimelD,
[AssetTimeScen]Scenl D, [AssetTimeScen]AssetlD and [AssetTimeScen]AcctlD. Thus, the primary
key is a composite dAssetTimeScen]TimelD, [AssetTimeScen]ScenID, [ABseScen]AssetiDand

[AssetTimeScen]AcctlD

CT——
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Figure 2: Linkages of Asset Time scenario Sub File

Accounts 1 Assets
AcctiD | <2 i »|AssetiD 1
AcctName T AssetName T

PHInitVal R
[ AssetTimeScen | SHInitval R
AstTmScnID A
LN facctip "
AssetlD |
TimelD | [
" [sceniD R
BuyMin R
BuyMax R
BuyOpt R
SellMin R

Scenarios 1 ‘ SellMax R . Time
ScenlD | je— SellOpt R » TimelD I
ScenName L) HoldMin R TimeName L]
ScenProb R HoldMax R Branches |

HoldOpt R
TrnsCst R

In Table 1, we show the one-to-one correspondefidields of the [AssetTimeScen] file and the

optimization model described in Appendix 1

Table 1: One-to-one correspondence of variablesin [AssetTimeScen] file

S. No Variables of SLI Fields of database fil

1 Xptis [AssetTimeScen]HoldO
2 Xf/ﬁiys [AssetTimeScen]|BuyOpt
3 Xgel [AssetTimeScen]SellOpt

Further, the following fields [AssetTimeScen]HoldMi  [AssetTimeScen]HoldMax,
[AssetTimeScen]BuyMin, [AssetTimeScen]BuyMax, fAgseScen]SellMin, [AssetTimeScen]SellMax,
and [AssetTimeScen]|TrnsCstre time, scenario, asset, and account depenthent;are modifiable
either through the input layouts in the databaseydmporting data from an external text file; batte
permitted by the DSS. The optimal values of the ehodare stored in the fields

[AssetTimeScen]HoldOpt, [AssetTimeScen]|BuyOpt andAssgtTimeScen]SellOpt of the

L —
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[AssetTimeScen] file. These values are loaded fiftoensolver output after receiving the optimal value

from the optimizer.

In Table 2, we show the one-to-one correspondericefields of the [AssetTimeScen] file and
parameters of the optimization model. Further, &&bkhows the one-to-one correspondence of fields

of the [PolicyOutflows] file and parameters of thgimization model.

Table 2: One-to-one correspondence of parameters 8LP and Asset Time Secnario files

S. Parameter of SLF Fields of databas
1 Lmtis [AstTmScn JHoldMin

2 Umtis [AstTmSci] Holdmay

3 L’I’ﬁ’s [ AstTmScn ]BuyMin

4 U]’\’/ﬁlys [ AstTmScn |BuyMax
5 L3eH. [ AstTmScn ]SellMin

6 Usel [ AstTmScn ]SellMax
7 Yiis [ AstTmScn ]JTrnsC:

Table 3 : One to One correspondences of parameten$ SLP and Policy Outflow file of Database

S. No | Paramete Fields of database fil
of SLP
1 Lis [PolicyOutflows]MatOfVa
2 Qs [PolicyOutflows]DthOfVa
3 Es [PolicyOutflows]SurOfVa
4 CCis [PolicyOutflows]ComExpVe

2.3 Scenarios and Time Related files
The set, Scenarios, is the core of any stochasiteinlt is linked to the primary file [Scenarioghd
relational files [AssetTimeScen], [AssetRetn] regmmting Asset Return, [ReserveTimeScen]

representing Reserve Time Scenario, [IncomeTimdSeepresenting Income Time Scenario,

L e——
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[SurDefTimeScen] representing Surplus Deficit TirBeenario. Similarly, it is also linked to
[PolicyOutflows] representing Policy Outflow, [Pramminflows] representing Premium Outflow,
[OpEX] representing Operating Expenses, [TransGesgtlesenting transaction cost. These files contain
scenario dependent information about the respegi@rameters and variables. The set, [Time] links
along with set [Scenarios] capture the time-scendeipendent information of the various parameters.

The simple structure of the [Scenarios] fileskown in figure 3.

Figure 3  Structure of ScenariosFil

[ o ]
AsstRtntiD_| A OpExID A SuDeTmSc A PrmifiD A
AssetiD | | N [TimeiD | TimelD ] LiablD |
TimelD | —{ScenID | ScenlD | TimelD |
ScenlD | N—W OpExval R SuTmscnval | R i—”— ScenlD |
PrcRtnVal | R Deffmsenval | R Prmifval R
IncRtnVal R ‘ [
2 Scenarios i |
s T 1 e
ScenName | T RsrvTmScnlD_| A AstTmScnlD_ | A
PoIRItdOfID | A ScenProb | R AcctiD | AcctiD |
LiablD [ ‘ TimelD i AssetiD i
TimelD | ‘ N —-1ScenlD | TimelD |
ScenlD L RsvTmscnval | R rN-ch.‘lo i
MatOfVal R TrnsCstiD A BuyMin R
DthOfval R AcctiD 1 BuyMax R
PolSurOfval | R N |TimelD | i BuyOpt R
ComExpVal | R ScenlD | SummationiD | A SellMin R
TrnsCstval | R TimelD | SellMax R
’ N [SceniD i Sellopt R
R 7j'_ TPolIRItdOf R HoldMin R
InTmScniD_| A T TotPrmif R HoldMax R
AcctiD | TotCommexp | R HoldOpt R
TimelD | TrnsCst R
ScenID 1| 1= ONE RECORD
InTmScnVal | R N = MANY RECORDS

2.4 Model Files

As stated aboveylodel Filesis an alternative database form of an LP reprasient (figure 4). This
contains three files, namely [Variables], [Constts], and [Coefficients]. The variables file contathe
model parameters - upper bound, lower bound, aadlfective function coefficient of each decision
variable. The file [Constraints] lists the congitaiand the parameters associated with each cimhstra
namely the right hand side of each constraint. &htke file which receives the dual values assedia
with each constraint. The [Coefficients] file maiims all the pairs of constraints and variablesctviis

analogous to the technological coefficient in pesc@dustries which is non-zero.
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Figure 4 Model File
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3. Optimization

In this section, we discuss the difficulties in altiistage DSS over a two stage DSS [Gugital. [18])

and answer the second question that we have askguhge 2. We also partially answer the fifth
question on page 2. As we know, the uncertaipiesent in the ALM problem are dealt with, witle th
help of scenarios. These scenarios are generatldthvé help of a scenario generator. The scenario
structure over this five period horizon is choserla — 8 — 4 — 2 — 1 and it creates 768 scenarlos.
indicates that 12 scenarios will be generated theeimmediate (first) period, 8 scenarios in theosel
period over each preceding scenario of the firsiodeand so on. This data model is developed using
Microsoft Excel. The model generates scenarios theeperiod length and also generates the data sets
to be input to the database management moduleedD86. We can enter data manually or through a
scenario generator. As the manual process is tediwe can enter data that follows a particular
statistical distribution and import the data withany manual intervention. Gupgd al.[18] discussed
the SLP based DSS, but in that case, the modebnlggwo stage and the probabilities of the secon
stage were entered manually. In this case sincedlod possibilities are very large, manual ensrmot
feasible. Hence the concept of a scenario geneaatomatically enters the data related to parameter
of SLP that follows a particular distribution. Teteps of optimization are as follows and shown in

Figure 5, which describes the optimization steps.

L —
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b)

Table 4: Description of Periods

t Name Quarter Descriptiot
0 Initialization - Initialization
1 Q01 1 Quarter 1 en
2 Y01 3 Year 1 en
3 Y02 4 Year 2 en
4 Y03 4 Year 3 en
5 Y05 8 Year 5 en

Figure 5 : Optimization Steps

Generate ImportDataset to Validate
Scenario Sat DSS Impor:ed l_)a:z
Diagnostics
. e e Constir:i:xets
SOLN.TX 8
( D SLP (SLPTXT) oy o

Expott'Optim:l Read Display
Solution to Solution Solution
Database

The scenario generator module develops the scegatsoand loads the data required for the data
files of the DSS. The generated scenario set igiitag into the database management module

The database management system then checks theaskatéor data inconsistency errors and
prompts them to the user, if any. In this case sethe diagnostics to check that the data is deitab

for running a SLP.

L —
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c) The module then generates the linear programmiaglem through the matrix generator code. It
goes through four steps, the Constraints Generd&iocess and the Variables Generations. The

data for the [Constraints], [Variables] and [Cog#fnts] file are loaded.

d) The information about the SLP generated is wriitdpn an ordinary text file to be input to the

optimizer. We use the industry standard MPS ver&iothis model (SLP.TXT).

e) This LP problem (SLP.TXT) is input to the CPLEX#&l. On the user prompt, the solver takes the

MPS version of the problem and returns a matrisieer of the solution (SOLN.TXT)

f) The optimal solution generated by the optimizeinmiported into the database in their respective

fields. These are explained in Figure 5.

g) The module then runs the output format requestatmlts the optimal decisions to the user along
with critical information related to the model lik&aR (Value-at-Risk) or conditional Value at Risk

(CVaR).

4. Features of the DSS
In this section we discuss the answer to the thirdstion on page 2. The primary objective of this
study is to establish a database optimization fixter which is user-friendly, generic and flexible.
Further, the DSS should also be robust and leasegtible to failures. While the features may appea
to be somewhat simiar to Dutgd al.[11], we must understand that our application danmentirely
different. Here, we are an application in Finan&ngjinnering. The next few sub-sections descrilve ho
this has been achieved in the DSS proposed ip#per.
4.1 User-friendliness
In this research, we develop a user-friendly D3ficivcan be used regularly by a manager with a
minimal advanced knowledge of MS/OR. The DSS operah three modeddata, Updateand
Optimal TheData mode is required for data entry, and @gimal mode displays the optimal values

of the decision variable in addition to the upped éower bounds on the variables. Thedatemode
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is required to automatically make changes in Muzlel filescorresponding to small (one or two)
changes in th®ata files Switching between these modes is simple andrigptaiely menu driven.
Generating the LP representation, optimal solutipdating and solution reporting can be done very
easily through the menus. First , it enhances #egfliendliness of the DSS in many ways. This can
be incorporated by having input layout interfacegtsat reentry of data is not required. Every input
layout has a drop-down list to facilitate choicetod primary data. Second, if the data can beete
from a spreadsheet, there are less chances of mamaa The third advantage is that the reduced
costs and constraint duals that are importanteperted in the optimal layouts. In addition to #hes
features, we can avail of the advantages of seveasiires like included layouts to create a custom
designed layout as desired by the user.
4.2 Generality and Flexibility
The DSS is flexible so that can be used by anyratisairance firm by substution of parameter values.
The model management system and steps of optimizatimain unchanged. The DSS should be
flexible and generic in nature so that it evolvéthwhanges in the model and the fundamental el&snen
of the model. . For example, the addition of anotheset class in the [Assets] file is accomplished
through an added record in the [Assets] file amdesponding addition records in the data filestesla
to the [Assets] file. Similarly, any changes in fh@bilities] file, [Scenarios file], are easilmanaged.
The scenario structure as defined in the [Time] d&n also be modified.
The stochastic model adapts itself to any such gésitin the primary files and generates the correct
linear programming model. The critical part of gextieg non-anticipativity constraints can completel
adapt itself to the data in the data files andés from any need of user interference. In caséiribar
program itself needs to be changed, then a modeksts to incorporate the changes in the formulation
and varibale generation and constraint generatioogss, and this can be done very easily.
4.3 Diagnostics to ensure robustness
Implementation of diagnostic rules eliminates maoynmon errors during data entry and updation.
These rules are as follows.

ee——
W.P. No. 2014-06-02 Page 17 of 37



IIMA e INDIA
N Research and Publications

Rule 1: The probability attached to each scenario in BR Should be non-negative and less than or

equal to one.

Rule 2: The sum of probabilities associated with all $eenarios in an SLP should be exactly equal to

one.

Rule 3 The user is restricted from typing the nameshef instances of the primary elements in the
secondary data files. The choice is restrictedh dropdown list populated by the records in the

primary files

Rule 4: The number of records in a time and scenario mdga file should be less than or equal to the
Cartesian product of the number of records in Thmés], [Scenarios], and other files which are éidk
in a one-to-many relationship. For example, in fRss] file, the number of records should not exceed
the product of the records in the [Assets], [Tiraell [Scenarios] files. This is accomplished by hgvi

a unique key of a secondary data file as a unigugposite of the unique keys of several primamsfil

Rule 5: The optimal values of decision variables from thptimizer should not differ in numerical
values for the first time period. These are thetfstage implementable decisions. For a tree-type
scenario structure, the same holds true for evieifgl scenario set from a common parent scenarie. Th
non-anticipativity constraints implemented in thiePSthrough the matrix generator code ensure that

this holds true. This provides a major challength@xmatrix generation code.

Rule 6: Unless it is specified otherwise, the lower andardimit of a variable are set at default values

(at zero and infinity respectively).

Rule 7: The constraints, variables and coefficients filesn the backbone of the stochastic linear
program, and these records are created by thexnggnierator code which retrieves data from the data

files. Thus, manual editing and changing of therds in the model files are disabled completely.
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Rule 8 Any change in the linear program has to be thnothg data files only. This is because the
information in the model files is generated by thatrix generator code from the information in the
data files. An independent editing or updating 0§ aecord in the model files may possibly cause a
violation of the integrity of the stochastic modalsingle parameter in the data files could be used
more than one data point in the model files. Sg, @rdating of the record in the model files should
ideally reflect in all such locations in the moditds. Since this cannot be achieved by any diatimos
rule on the model files, we implement the rule #uay updation of the model files must be through th
updating of the data files. The Update module waléh be able to reflect all the necessary chaimges

the model files.

4 4 Interaction with Other Environments

The scenario generator and the optimizer are eaftdonthe DSS. The DSS provides user-friendly

interfaces to interact with these environments.

a) The user can enter data through multiple meansit llayouts can be used to enter the parameters
of the model. Also, entire data can be creategiaaxsheets and can be imported into the database
through the menu driven procedures or by a drestmand of the database.

b) The generated LP is written in the standard MP&&br This MPS format is widely accepted by all
optimizers, including CPLEX. It is possible to ws®y other matrix represenation of the problem by
having a different matrix generator code.

c) The DSS can also export optimal data in a simpteagisheet format which can be utilized for

further analysis.

4.5 Report Generation
The DSS should also have the feature of generatipgrts as required by the user. It should als@ ha

the interface to provide an easy snapshot of thienapsolution.

CT——
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The DSS generates the solution summary in simplgy-o-understand formats as shown in a Grand
Summary or a Periodwise Summary. Further infornmatio the optimal solution is easily available in

the output layouts of the respective data files.

The optimal solution generated by the optimizerdse® be reported in a coherent manner to the user.
In the field of asset-liability management, sucheport must contain information about the expected
value of the account reserves, the risk factors, €wvo types of solution summary reporting are
available for the user: Grand Summary and Perica\8igmmary. The information provided in these
two layouts is completely different and is orientediards the ALM problem. Some brief details of the

two types of solution summary reporting are asfod:

Grand Summary: In this summary, the user is provided with a baeépshot of the return and risk
profile of the optimizer output. The value of thepected reserves at the end-of-period represeats th
‘returns’ profile for the asset allocation stratedhe Value at Risk (VaR) and Conditional Value at
Risk (CVaR) represent the ‘risk’ profile of the asallocation strategyn finance managementalue

at risk (VaR) [29] is a widely usedisk measur®f therisk of losson a specifigportfolio of financial
assets. It represents what is the maximum lossighpossible for 1% or 5% level. The Conditional

value at risk represents the conditional expedataticthe financial loss. At 1% or 5% [30]
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Figure 6 Asset Time Scenario File: Input Display

Asset Time Scenario

24 of 32
Account Name: Share B

Asset Identifier 2

Asset Name Bonds E]
First Record

Asset Identifier 1

Last Record Time Name [vaar1 [«
Time Identifier 2
Previous Record .
Scenario Name | §nonH [+]
Scenario Identifier 4

Next Record
Transection Cost 0.05

Cancel

Buy Min 250 Hold Min 320 Sell Min 130
Delete Record Buy Max 40000 Hold Max 65000 Sell Max 10000

Figure 7 Period wise Summary

o )
Periodwise Summary
Period | 4 |
| Expected Overall Reserves Rs. 55411.72 |
| Expected Policyholder reserves | Rs. 28878.93 |
| Expected Shareholder reserves | Rs. 26532.79 |
| Expected Premium Inflows | Rs. 5281.91 |
| Expected Policy Related Outflows I Rs. 1581.46 |
| Expected Policyholder Income | Rs. 4780.09 |
| Expected Shareholder Income Rs. 4380.38 |
. J
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Periodwise Summary:This provides a periodwise snapshot of the optioogbut. It lists the expected
reserve levels at the period of choice, the expeirtteome from investment in the two accounts, the
expected premium inflows, and the expected politgted outflows. Figure 6 provides an illustratadn

this layout.

Figure 8 Grand Summary

Grand Summary
Net worth at End-Of-Period Less Discounted Shortfalls INR 84426.91
Expected Policyholder Reserves at End-Of-Period INR 38836.48
Expected Shareholder Reserves at End-Of-Period INR 45688.29
Value-at-Risk at 1% INR 48757.53
Value-at-Risk at 5% INR 56760.48
Conditional Value-at-Risk at 1% INR 46970.7
Conditional Value-at-Risk at 5% INR 5229.9

5. Challenges in developing the DSS
In this section we provide the answers to quedtiom raised on page 2 and discuss the challenges of
database management in a multi-stage, multi-saemaavironment. Primarily we face two important
challenges. One is addressed through an update amoldanother through the implementation of non-
anticipativity constraints.
5.1 Update mode
This mode provides immense flexibility to the DS$ itareduces the amount of time needed for
rerunning the program. Once the data is loaded tiodatabase, there are two key processes for
obtaining the optimal solution:

1. The first is the generation of the constraintsjaldes and coefficients files; and

2. the second is the optimization process in the apém
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The problem at hand deals with more than 15000&big&s and more than 150000 constraints. The
generation of variables, constraints, and coefitsids a time consuming process, especially while
dealing with large scale mathematical models. Tipelde mode is intended to reduce this time by
incorporating small changes directly into the [\hites] and [Constraints] files which reduces theeti
needed to generate the MPS format of the updatgalgm. If there is no deletion of records in thg ke
files, any modifications in the data fields candasily reflected in the [Variables] and [Constrsjritle
without the need to rerun the procedure for geimgyahe variables and constraints. In tpdate
mode, a parameter is updated at two locationslyfias its location in the data management systeath t
has the information about the financial paramedéthe model, and secondly at its specific location
the [Constraints] and [Variables] file of the modehnagement system . The difficulty here is in
accessing the required data point. However, thefiagelational database makes it easier to lcaade
modify the data point in the database.

5.2 Non-anticipativity Constraints
We now address the fifth question mentioned on epagOne of the requirements of a stochastic
optimization is to be able to make a decision ia thirrent time period based on a wide variety of
scenarios possible in the future. The robustneskenfolution is dependent on the effective modelin
of these scenarios. One of the challenges in gengr#éhe constraints in the MPS format is in
formulating the non-anticipativity constraints. Riwe first stage decision variables, all the dedisi
variables must have the same optimal value for theime implementable, whereas from the second
period onwards, for each set of child scenarioxesting a common parent scenario, the decision
variables in the parent period need to have theesgtimal values. This requires that we equatthall
first stage decision variables. The developmertooistraints to ensure these conditions are maadain
is a challenging task in developing a multi-scemamiulti-stage DSS. Thus, a better optimal solution

through stochastic optimization is obtained by éasing the complexity of the modeling process.
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One way of implementing a multi-scenario optimiaatmodel is to create independent scenarios and
to formulate the model accordingly. Here, all sc@saare completely independent of each other and
complicated non-anticipativity constraints need bet used to model the same. But this does not
correctly reflect real life conditions. Developiragstochastic linear program for a set of completely
independent scenarios is a a challenging task,tleaadomplexity is limited only by the number of

scenarios included in the model. The tree repregpbmpletely independent scenarios is shown in

Figure 9.
Figure 9: A Completely Independent Tree Figure 10 : Better Representation ofe€lr
oA oA
x 4
@ ® B XO
PR ’ @ B
@ e Y O
oY @ C
- @® C
O ‘®
Y Y
“@®p ‘@D

This type of modeling can be modified to even madel life scenario trees. A more realistic scemari
tree can be shown (Figure 10). The modeling forrdadistic scenario tree, as shown above, can be
accomplished by modifying the modeling techniquedufor independent scenario structures. The key
here is to correctly model the parent-child streetdor example, if two scenarios A and B (in time
period n) are the children of the same parent siené (in time period n-1), then the preceding
parameters and the variables impacting the twoast®EnA and B must be the same. For example, the
premium inflows in the time n-1 for both the scémamust be the same. The parametric part of the
problem is taken care of in the scenario genenatich ensures that these parameters adhere to the

scenario structure.
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So, now the model has two independent scenariositiuthe same parameters for the parent scenarios.
But even with this restriction, the model is shite to optimize the variables based on the infdiona
available about the future in the individual sc@mrThus, the model could have two different value
for the variables in the parent scenario. Thisls® &nown as the anticipatory effect in stochastic
modeling, where the value of the decision varidhl¢he parent scenario is based not on the entire
bouquet of future scenarios but on the individudlife scenarios. At each node, we need a unique
optimal decision with respect to all future develmmts. To avoid this, we implement non-
anticipativity constraints. In these constrainte tecision variables in the parent scenario fothal
successor scenarios are forced to the same vdius, or our illustration, for each decision valein

the parent scenario X, we would have one constegjoating the individual decision variables for the
preceding scenarios A and B. A full detailed illasibn is given in Appendix 1. This is relativelgsy

in a two stage SLP, but more challenging in a nati¢tge SLP.

The non-anticipativity constraints thus replicatee tscenario structure in the stochastic linear
programming formulation. The matrix generator cogmerates the constraints and variables for any
scenario tree defined in the database by the neldieds. To do this, we first generate constsaiior

all the respective branches of the scenario treenTwe identify the location of each scenariohia t
scenario tree from the Time-Scenario combinatida.dehus, for a set qf successors from a common
predecessor, we hapel non-anticipativity constraints for each decisiamiable.

6. Conclusion

In this study, we introduce a multi-scenario mpkiriod DSS of asset-liability management for an
insurance firm. Though database optimization imgetation has been studied extensively for many
process industries, we demonstrate the same féd &h environment. The challenges in developing
database management systems to work in a syncteomay with large scale modeling problems are
addressed in this research. Also, in terms of nmagitieal modelling, this is possibly the first at{gnat

liability side modelling.
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The work can be extended to many areas. This D88srte be tested with the real or pseudo real data.
In our forthcoming paper [ ] we discuss this ahdvg the impact of Var, and CVar on the variatiohs o
parameters value.

We can use simulation in order to test the DSSz¥linear programing and fuzzy stochastic linear
programming are operations research tools for niglémprecise information about the future. The
database system developed for the DSS is capablering with fuzzy data sets. A similar extension

of this work can be done to incorporate stochdstizy linear programming models as well.

Figure 11: A generalized Tree Figure 12 : A More reorganizeze
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Appendix 1:

Sets/indices
1={1,2,... T}is the set of time periods in the ptamg horizon, indexed by t.

§={1,2,... l} is the set of asset classes in the AbMdel, indexed by i.
J={1,2,... J}is the set of liability classes in tA&M model, indexed by |
S ={1,2,... S}is the set of scenarios used in theévAinodel,

A = {M,N} is the set of accounts in the ALM mode¥ is the notation used for the policyholders’

account and N is the notation for the shareholdmsbunt.

Parameters
Xwmoi / Xnoi= Initial fund value invested in asset i from thdigyholders’ / (shareholders’) account, for

each €$

Fis/ Lgs=Premium inflows / Maturity outflows in the time ni@d between t-1 and t towards liability

class j under scenario s, for ea@djseS andtet

Qys/ Egs= Death claims / Policy surrender outflows in timeet period between t-1 and t towards liability

class j under scenario s, for eacdjseS and te t

CCy/ COy= Commission / Operating expenses in the time geftid, t) towards liability class j under

scenario s, for eachej), seS and te t

Rlis/RPis= Income return / Price return on asset class ésted in time period t-1 until time period t

under scenario s, for eachsj seS and te 1

Yis= Transaction cost towards buying or selling ofasset i in the period t under scenario s, for each

i€e$, seSandtet
B/ (1- B)= Ratio of surplus sharing with the policyholdetrshareholders’ account.
pis= Probability of occurrence of scenario s in tipegiod t forseS and te t

r = Discount rate for the model.
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Variables

Policyholders’ or Shareholders’ account

Xuis | X nis= Amount of money invested in asset i at the bagmof time period t under scenario s

from the policyholders’ account or shareholderoaat) after buying and selling transactions for the

period t are done, for eachs, seS and te t

Xf,ﬁ%’s/ X3¢l =" Amount of asset i bought / sold at the beginmihtime period t under scenario s from

the policyholders’ account, for each$, seS and te t

X2/ x3ell=" Amount of asset i bought / sold at the beginmifiime period t under scenario s from

the shareholders’ account, for ea&d$j seS and te t

Vs — Shortfall of policyholders’ income over the coisions and operating expenses which is to be

funded by the shareholders’ account, for eae8 and te t

vis — Surplus of policyholders’ income over the consitias and operating expenses which would be
shared in the ratip and 1 -8 between the policyholders’ and the shareholdexsdant, for each sS

and te t

Derived Variables

Xmo! Xno= Initial liabilities accumulated in the policyh@ds’ / shareholders’ reserve

D:s/ His= Total income earned in the policyholders’ / shatders’ account in the period t under
scenario s, for eacheS and te t

Tutis/ Tntis= Total transaction costs incurred on transactinrie policyholders’ / shareholders’

account of asset i in time period t under scergrfor each 3, seS and te t

TPO. =Total policy related outflows in the time peribetween t-1 and t under scenario s, for each s

eSandter

Fs = Total premium inflows in the time period betwaehand t under scenario s, for eactSsand te

T

CCis =Total commissioning expenses in the time perievben t-1 and t under scenario s, for each s

eSandter
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M./ Nis= Accumulated reserves in the policyholders’ / shatders’account at the end of time period t

under scenario s, for eacleS and te t

Bounds
Lo /L3 = Lower bound on the amount of money worth of asg&it can be bought / sold at the

beginning of the period t under scenario s froniggbblders’ account, for eacte, s€S and te t

Lmis/Umiis= Lower / Upper bound on the amount of money ¢laatt be invested in asset i at the

beginning of period t under scenario s from pola@gers’ account, for eactei$, seS and te t

Uf,[’g’s 1 Usell = Upper bound on the amount of money worth oftistbat can be bought / sold at the

beginning of the period t under scenario s froniggbblders’ account, for eacte, s€S and te t

Uniis/Lnis =Lower/Upper bound on the amount of money thatlmmvested in asset i at the beginning

of period t under scenario s from shareholdersbant; for each €3, seS and te t

L2 1 13¢i= Lower bound on the amount of money worth of asgit can be bought / sold at the

beginning of the period t under scenario s fromredalders’ account, for eacle§, seS and te t

U 1 ugeti=upper bound on the amount of money worth of aistsett can be bought / sold at the

beginning of the period t under scenario s fronredalders’ account, for eacle§, seS and te t

Constraints: A node in the scenario tree is defined by the peticand the scenario ‘sps as the

probability of the scenario s for a given perioduch that

Z Pts =1 Forallt et (A1)
S

Initial Reserve Constraints

The initial reserves in each of the accounts isdilne of all the initial investments in various dsse
classes in the respective account. We define thasstraints for the initial reserve variables facle of

the two accounts.

Xmo = Z Xmoi seS (A2)
g
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XNo = Z XNoi seS (A3)
7

Investment Reserve Constraints

The reserves at the end of the time petiatk invested in various assets. For the firsiogethe initial

reserves are invested in the various asset classbe beginning of the period. In the later pesjod
investment at the beginning of any period made from the accumulated investment reservésea
end of the previous period-1). Limitations of investments would be individualiyodeled by having

separate constraints.

Xmo = Z XMiis seS  (A4)
T
XNo = Z XN1is seS  (A5)
T
Mis = Z Xm(t+1)is te{l,..,T-1},seS  (A6)
i
Nis = Z XN (t+1)is te{l,..,T-1}, seS (A7)
i

Income Constraints:

Returns are generated from investments made iagbket classes. This income is reduced because of
the transaction costs incurred in restructuringadeet portfolio. By restructuring the asset ptidfave
imply the buying and selling among the asset ckabssed on the additional inflows less outflows and
the expectation of the future uncertainties. Incame@enerated from investments made from both

policyholders’ account as well as the shareholdasrsbunt.

The income earned by the investments from the yiudiders’ account i®.s and is given by

Dis = Z{(this + RPis)Xmtis = Twitis) tet,seS (A8)
g

The first term in the summation indicates the mgugenerated from the investments in the respective
asset classes. The second term in the summatiatedetihe transaction costs incurred in the paticul
asset class. The transaction costs are modeleguatien A10 based on the asset balance constiaints
Al2.

The income earned by the investments from the bbltters’ account i8l, and is given by
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Hes = Z{(this + RPis)Xntis = Tntis) tet,seS (A9)

1

Transaction Cost Constraints:

Transaction costs are incurred when the assetofiorté restructured by buying or selling of assets
Each of these transactions incurs a cost. Buyingetling in any asset class is charged a certan fe
This fee is generally based on the value of thesesactions (amount of asset worth bought or sold).

Transaction cost for investments from the policdeo$’ account in the asset class i for the period t
under scenario s is given By;;s and is calculated as

Tutis = Viis (Xnrss + Xiris s, tetseS  (A10)
Transaction cost for investments from the sharefisldaccount in the asset class i for the period t

under scenario s is given By and is calculated as

Tais = Yeis (Xook + X304 i€, ter,seS (All)

Asset Balance Constraints:

The asset portfolio is reorganized by buying olirsglof assets over periods. As the firm receivesh
inflows, it restructures its asset holding portioby buying fresh investments into the asset ctasse
These investments are also reorganized based @xpleetation of future uncertainties. This balaoice

asset holdings over periods is modeled by utiliratf the asset balance constraints.

For the policyholders’ accoud(f}ﬁ's andX3¢lL are modeled as

b :
Xmtis = Xmce-1yis T Xmitis — Xnitis €5, te1,SES  (A12)
For the shareholders’ accouKfy;. andX;&i; are modeled as

Xntis = Xne-1)is T XIIZII;i); — XRis ies, terseS (AL3)

Upper and Lower bound constraints for InvestmeRtdi€y holders’ Account):

The investment in any assetss must be within the lowand uppe bounds for the asset cla

These bounds are expressed for the policyholdecsumt as
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LMtiS < XMtiS < UMtiSi Eg, te T,S ES(A14)

Ll;}[itli’s < XI’\’/I’Q’S < Uf\’,ﬁfsi €$, te 1,5eS(A15)

Li/ﬁils < Xi’[e’clils < Ulffletlilsi €9, te TvSES(AlG)

LNtiS < XNtiS < UNtiSi ES, te T,S ES(Al?)
L2 < XPW < bW eg te1,5€S(A18)

Ntis — “*Ntis — ~ Ntis

L3ell < X$etl < Usglli es, te 1,5€S(A19)

Total Commissioning Expenses Constraint:

The total commissioning expenses is the summatidheocommissioning expenses incurred over all

liabilities for a given time-scenario combination
CCes = ) CCys tetses (A20)
j

Total Premium Inflows Constraint:

The total premium inflows in a given time-scenacimmbination is the summation of the premium

inflows obtained over all liabilities for the givéime-scenario combination

Fis = Z Fys ter,seS (A21)
j

Total Policy Related Outflows Constraint:

TPO, is the total policy related outflows which is tekemmation of maturity outflows, death claims
and surrender outflows and is given by

TPOs = Z(Ltjs + Qys + Eyjs) tet,seS (A22)
j

Surplus-Deficit Constraints:

The income earned by the investments from the yludilciers’ account should offset the commissions

and other operating expenses. The RHS of const#@Btrepresents these expenses. The first term of
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the LHS represents the income earned in the paidghns’ accountu,s andws are deficient and surplus

variables respectively. These are used to baldmecatiove inequality.

If the income is less than the expenses, then éfieitdis funded by the shareholders’ accounthére
is a surplus, the surplus is divided between tlaetdtolder’'s account and the policyholders’ accamnt
the pre-determined rati@).

Dis + Ugs — Vis = COys + CCy tet,seS (A23)

End-of-Period Reserves (Policy holders’ Account):

In case of a deficiency;s would be funded by the shareholders’ accountabe®f a surplus,s would
be shared in the proportion pfand 1 - between the shareholders’ account and the polidghs

account.

Hence, the total policy holder reserve at the drttieperiod t would be
MtS = M(t—l)S + FtS - TPOtS + BVtS te T,S ES (A24)

Maturity outflows would include the bonus payouttbe maturing policies and would be developed
from the aggregated scenario generation module. cBmemission expenses are also liability class
(policy product) dependent; but as they are toffsebagainst income generation they are not iredud

in the policy related outflows.

Deficit Make-up Constraints:

As the shareholders’ account is the buffer for @eficit in the policyholders’ account, the valuetlois
reserve prior to any surplus transfer should batgrehan the possible deficit.
N(t—l)S + HtS = Uts ter,s eS (A25)

End-of-Period Reserves (Share holders’ Account):

Thus, the shareholders’ reserve at the end ofehiegt would take into account any surplus or aefi
transfers to the policy holders’ account as wellhasincome generated by its own investments.
NtS = N(t—l)S + HtS + (1 - B)VtS - UtS te T,S ES (A26)
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Non-anticipativity constraints

The decision variableXyyis, X, X3ed, Xntis Xnoo X3otiwould be constrained over the succeeding
scenarios to ensure that the succeeding scenaviostlie same parent scenario have the same decision

variables as inputs.
A general scenario tree is provided in Figure 10

The variables in the scenarios 11 and 12 (t=2grating from the common preceding scenario 1,
would be represented as

buy sell buy sell i
Xn2it Xnzivr XNziv XM2it Xmzirr XMziz» fOr scenario 11 (denoted as 1) and

Xnzizr Xeol X3, Xanains Xorsto, X3el for scenario 12 (denoted as 2)

For scenario 1, the same variables would be repregalifferently for the two tree branches (t=1)
buy sell buy sell i

Xn1itr Xn1iv XNiiv Xmiiv Xurip Xmiir, for scenario 11 and

buy sell buy sell ;
Xn1izr XN1iz XNtizr XMmi1iz Xmiizr XMiizs fOr scenario 12

But these two correspond to the same set of vasaltlence, the non — anticipativity constraints for
this particular example would be as follows

Xn1i1 = Xniizl €5, t€1,5€S(A27)

Xmiir = Xmiiz- 1 €9, te1,5€S(A28)

xR = XPW . jes, te1,5€S(A29)

Xurn = Xyrp- 1€5, te 1,5€S (A30)

Xselh = X3l - ies, te1,5€S(A31)

X]Svfl”il = If,[eﬁzi €3, te1,5€S (A32)
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Obijective function

The objective function for the linear programmingdel would be to maximize the expected
value of the total reserve (policyholders’ reseples the shareholders’ reserve) at the end of the
timeframe T in addition to minimizing the expectéidcounted value of the deficits encountered (if
any) in between. The first summation term denthesexpected end-of-period overall reserve value.
The second summation term denotes the discounted whthe shortfalls encountered in the stochastic

model.

Maximize

Z PTs (MTS + NTS) - z Z stUts(1 + r)T_t (A33)
S T s

The non-negativity constraints apply to all theigien variables.
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