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Abstract

Quality of decisions in inventory management problems depends on accuracy of param-

eter estimates used for decision making. In many situations, error in decision making is

unavoidable. In such cases, understanding sensitivity of objective function to sub-optimal

decisions is necessary for better implementation of the model. We study sensitivity of

expected demand-supply mismatch cost to sub-optimal ordering decisions in the newsboy

model. We demonstrate through establishing a lower bound for cost deviation that the

newsboy model is sensitive to error in ordering decisions. We generalize our conclusions to

the discrete case too.

1 Introduction

The newsboy problem is one of the most well-researched and widely applicable inventory

management problems (Choi, 2012), much like the economic order quantity (EOQ) model. It is

about finding the optimum order quantity of a product whose demand is unknown at the time of

procurement decision and mismatch between demand and supply at the end of the selling season

attracts penalty. This classic inventory problem was first addressed by Arrow et al. (1951) in

their seminal paper “Optimal Inventory Policy”.

The simplest case of this problem, which we refer to as the standard newsboy problem, can

be found in textbooks on operations management and inventory management (e.g., Silver et

al., 1998, chap. 10). Due to its wide applicability, different variants of the standard newsboy

problem have been developed in past six decades. Good review of these works can be found in

Silver et al. (1998), Khouja (1999), Qin et al. (2011), and Choi (2012).

The standard newsboy model and its extensions assume knowledge of certain parameters

and the decision variable(s) depends on them, e.g., optimal order quantity in the standard

newsboy problem depends on unit under-stocking cost, unit over-stocking cost, and demand

distribution function. Same is true for other inventory optimization models. One common

implementation issue with these models is the possibility of error in estimation of the model

parameters. Sometimes, estimation error in one or more model parameters is unavoidable;

then the chance of operational decision (derived using parameter estimates) being the optimal
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(calculated using the true values) is very little. Khanra & Soman (2013) discussed this issue for

the newsboy model. In these situations, sensitivity analysis helps in understanding the impact

of sub-optimal decisions on the objective function. Depending upon the severity of the situation,

further actions can be taken to improve the decision making.

Though the newsboy problem is well researched, sensitivity analysis of the newsboy model

has not received its due attention. Lapin (1988, chap. 6) mentioned the nature of change

(positive or negative) of order quantity as cost parameters change. Order quantity is increasing in

under-stocking cost and decreasing in over-stocking cost. Gerchak & Mossman (1992) identified

the impact of demand variability on order quantity. It increases with demand variability if it is

greater than the mean demand; the relation is opposite if it is lesser than the mean. Due to

convex nature of the newsboy model (Muckstadt & Sapra, 2010, p. 123), cost always increases (or

profit always decreases) whenever parameter estimation error occurs (irrespective of its nature).

The work of Eeckhoudt et al. (1995) on risk-averse newsboy problem confirms the observations of

Lapin (1988). Lau & Lau (2002) studied impact of demand variability on newsboy type retailers,

their observations are similar to that of Gerchak & Mossman (1992).

All the studies mentioned in the last paragraph deal with the direction of change. Other

components of sensitivity analysis, i.e., symmetry, magnitude, and distribution of deviation

remained largely unexplored. Recent work by Khanra & Soman (2013) addresses the questions

of symmetry and magnitude of cost deviation. They identified two main elements of sensitivity

analysis of inventory optimization models like the newsboy model: i) sensitivity of objective

function to sub-optimal decisions and ii) sensitivity of decision variable(s) to parameter estimation

error. These elements can be studied separately as they are independent of each other. Focus of

this study in on the former.

Khanra & Soman (2013) identified the link between symmetry (skewness) of cost deviation1

and that of the demand density function. A symmetric demand density function leads to

symmetric cost deviation; similar relations hold for left-skewness and right-skewness. As a

consequence of this relation, cost deviation is right-skewed if cf < 1/2 and left-skewed if

cf > 1/2 (cf is critical fractile2) for symmetric unimodal distributions (e.g., normal distribution).

They demonstrated magnitude of cost deviation when demand is normally distributed and found

the newsboy model to be sensitive to sub-optimal ordering decisions, much more sensitive than

the EOQ model. They also explored order quantity deviation and identified mean demand as

the most important parameter in influencing the order quantity.

The above mentioned findings regarding direction and symmetry of cost deviation of the

newsboy model are valid in every situation. The same is not true for magnitude of cost deviation;

the study of magnitude by Khanra & Soman (2013) is limited to normal demand distribution;

though, they hinted that their findings may be valid for symmetric unimodal distributions. In

1Deviation of expected demand-supply mismatch cost from its minimum is referred to as cost deviation.
Similarly, deviation of order quantity from its optimal is referred to as order quantity deviation.

2Optimal order quantity in the standard newsboy problem is given by F (Q∗) = cf , where F is the demand
distribution function (Silver et al., 1998, chap. 10).
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this work, we generalize their observations regarding magnitude of cost deviation by establishing

a lower bound of cost deviation for unimodal demand distributions. We also generalize our

conclusions to the discrete newsboy model by comparing it with its continuous counterpart.

The remainder of the paper is organized as follows. We begin with identifying some properties

of unimodal distributions in Section 2. In Section 3, a lower bound of cost deviation is established

and comparisons are drawn to the EOQ model. Section 4 deals with the discrete case. Finally,

we conclude in Section 5.

Notations and assumptions

a Lower limit of demand. a ≥ 0.

b Upper limit of demand. a < b <∞.

r Ratio of demand limits. r = a/b, r ∈ [0, 1).

F () Distribution function of stochastic demand. F (a) = 0, F (b) = 1. To ensure existence

of density function, we assume absolute continuity of F (Royden, 2004, p. 110). We

further assume strict monotony of F in [a, b] so that Q∗ is unique3.

f() Density function associated with F . Mere existence of f is assumed; hence, f can

be discontinuous4 at countable number of points in [a, b].

µ Mean demand.

c Mode of unimodal demand. We assume that a < c < b.

m Location indicator of the mode. m = (c− a)/(b− a), m ∈ (0, 1).

θ Probability of demand not exceeding the mode of unimodal demand, i.e., θ = F (c).

Since F is strictly increasing in [a, b] and a < c < b, θ ∈ (0, 1).

cu Unit under-stocking cost. cu > 0.

co Unit over-stocking cost. co > 0.

cf Critical fractile. cf = cu/(co + cu), cf ∈ (0, 1).

Q Order quantity. Q ≥ 0. Q∗ denotes its optimal.

C(Q) Demand-supply mismatch cost for a supply of Q.

δQ Deviation of order quantity from its optimal.

δC(δQ) Deviation of expected mismatch cost from its minimum for order quantity of δQ.

2 Properties of unimodal demand

We follow the definition of Gkedenko & Kolmogorov (1968, p. 157) for unimodal distribution,

i.e., F is convex in [a, c] and concave in [c, b]. This definition of unimodality is broader than

3Optimum order quantity in the newsboy model is given by F (Q∗) = cf (Silver et al., 1998, chap. 10). A
strictly increasing F , then, ensures uniqueness of Q∗. A strictly increasing F in [a, b] also implies that f(x) > 0
for almost all x ∈ (a, b) whenever it exists.

4This is a generalization of conventional assumption of continuity of f , a requirement for differentiability of
E[C(Q)] by Leibniz’s rule (Protter & Morrey, 1977, p. 284).
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the conventional definition involving the density function. For unimodal distributions, strict

monotony of F need not be assumed separately5. The family of unimodal distributions with

support [a, b], mode c, and F (c) = θ is represented by UDa,b,c,θ. Using the definition of

unimodality and following equation, a partial bound for F ∈ UDa,b,c,θ can be established.

Given a, b, c, and θ, let us define F0 as the equation of straight lines connecting (a, 0), (c, θ)

and (c, θ), (b, 1), i.e.,

F0(x) =

x−a
c−a θ if x ∈ [a, c)

1− b−x
b−c (1− θ) if x ∈ [c, b].

(1)

F0 is a valid distribution; actually, F0 ∈ UDa,b,c,θ.

Lemma 1. F (x) ≤ F0(x) if x ∈ (a, c) and F (x) ≥ F0(x) if x ∈ [c, b) for every F ∈ UDa,b,c,θ.

Above result has following consequence for the optimal order quantity in the newsboy model.

Corollary 1. Q∗ ≥ Q∗0 if cf < θ and Q∗ ≤ Q∗0 if cf ≥ θ for every F ∈ UDa,b,c,θ, where Q∗0
corresponds to F0 ∈ UDa,b,c,θ.

See Appendix A for proofs of above results. Lemma 1 is depicted in Figure 1(a). The thick

line corresponds to F0. The thin curve corresponds to the truncated normal distribution. Note

that a combination of any convex increasing curve connecting (a, 0), (c, θ) and any concave

increasing curve connecting (c, θ), (b, 1) is a member of UDa,b,c,θ.

(a) UD100,200,140,0.5 (b) PUD100,200,140

Figure 1: F0 for unimodal and proportional unimodal distributions

Figure 1(b) represents a subclass of UDa,b,c,θ, the family of proportional unimodal distributions

(denoted by PUDa,b,c). The thin curve corresponds to the triangular distribution (a member of

PUDa,b,c). Proportional unimodal distribution is defined as following.

5Unimodality ensures that f(x) > 0 ∀x ∈ (a, b). If f(a′ > a) = 0, F (a′) = 0; then a can not be the lower
limit. Similarly, if f(b′ < b) = 0, F (b′) = 1; then b can not be the upper limit. Positive f in (a, b) ensures strict
monotony of F in [a, b].
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Definition 1. A unimodal distribution F in [a, b] with mode c is proportional if

F (c+ t2)− F (c)

F (c)− F (c− t1)
=
b− c
c− a

whenever
t2
t1

=
b− c
c− a

∀t1 ∈ (0, c− a], t2 ∈ (0, b− c].

Putting t1 = c− a and t2 = b− c in the above definition, we get θ = F (c) = (c− a)/(b− a).

Hence, a proportional unimodal distribution can be specified without θ. Let us represent the

family of proportional unimodal distributions with support [a, b] and mode c by PUDa,b,c. Note

that every member of UDa,b,c,(c−a)/(b−a) is not a proportional unimodal distribution; actually,

PUDa,b,c ⊂ UDa,b,c,(c−a)/(b−a). Triangular and uniform distributions fall in this subclass; in fact,

F0 ∈ PUDa,b,c is the uniform distribution in [a, b].

When c = (a + b)/2, PUDa,b,c is the family of symmetric unimodal distributions in [a, b].

The normal distribution is a symmetric unimodal distribution. We introduce this subclass of

unimodal distributions because a stronger lower bound of δC can be established for F ∈ PUDa,b,c.

3 Lower bound of cost deviation

We use the same ratio-based measure for deviation as Khanra & Soman (2013). δQ = (Q−Q∗)/Q∗

and δC = (E[C(Q)]− E[C(Q∗)])/E[C(Q∗)]. Using the standard results of the newsboy model,

they derived the following expression for cost deviation.

δC(δQ) =

∫ Q∗(1+δQ)
Q∗ {F (x)− cf}dx

(µ−Q∗)cf +
∫ Q∗
a F (x)dx

. (2)

The presence of F in the expression of δC(δQ) makes the sensitivity analysis complicated. For

this reason, Khanra & Soman (2013) have considered a specific case of F , the normal distribution.

Here, we establish a lower bound for δC(δQ) for any unimodal F .

Equation 2 can be rewritten as δC(δQ) = N(δQ)/D, where

N(δQ) =

∫ Q∗(1+δQ)

Q∗
{F (x)− cf}dx. (3)

D = (µ−Q∗)cf +

∫ Q∗

a
F (x)dx. (4)

Note that N(δQ) is non-negative5 and D is positive6. We find lower bound of δC(δQ) by finding

an upper bound of D and a lower bound of N(δQ).

6Let Q∗(1 + δQ) = Q. If δQ < 0, Q < Q∗ and F (x) ≤ cf ∀x ∈ [Q,Q∗]. Then N(δQ) =
∫ Q∗

Q
{cf − F (x)}dx ≥ 0.

Similarly, if δQ ≥ 0, Q ≥ Q∗ and F (x) ≥ cf ∀x ∈ [Q∗, Q]. Then N(δQ) =
∫ Q
Q∗{F (x)− cf}dx ≥ 0.

7If Q∗ < µ, clearly, D > 0. If Q∗ ≥ µ, D =
∫ µ
a
F (x)dx+

∫ Q∗

µ
{F (x)− cf}dx > 0.
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3.1 Upper bound of the denominator

Proposition 1.

D <

D0 + 1
2cf(c− a)θ if cf < θ

D0 + 1
2(1− cf)(b− c)(1− θ) if cf ≥ θ

∀F ∈ UDa,b,c,θ, where D0 corresponds to F0 ∈ UDa,b,c,θ.

See Appendix B for a proof of the above result. Now, we find expressions for Q∗0 and D0 for

later use. Putting F0(Q
∗
0) = cf in (1), we get

Q∗0 =

a+ cf
θ (c− a) if cf < θ

b− 1−cf
1−θ (b− c) if cf ≥ θ for F0 ∈ UDa,b,c,θ.

(5)

Using (1), (4), and (5),

D0 =


cf
2

[
(1−cf)−(1−θ)2

θ (c− a) + (1− θ)(b− c)
]

if cf < θ

1−cf
2

[
θ(c− a) + cf−θ2

1−θ (b− c)
]

if cf ≥ θ for F0 ∈ UDa,b,c,θ.
(6)

Details of the above expressions can be found in Appendix C.

Putting D0 of (6) into Proposition 1,

D <


cf
2

[(
2− cf

θ

)
(c− a) + (1− θ)(b− c)

]
if cf < θ

1−cf
2

[
θ(c− a) +

(
2− 1−cf

1−θ

)
(b− c)

]
if cf ≥ θ ∀ F ∈ UDa,b,c,θ.

(7)

Using the defining property of proportional unimodal distribution, a stronger upper bound

of D can be established for F ∈ PUDa,b,c.

Proposition 2.

D ≤

D0 − 1
2cf(a+ b− 2c)− if cf < c−a

b−a

D0 + 1
2(1− cf)(a+ b− 2c)+ if cf ≥ c−a

b−a

∀F ∈ PUDa,b,c, where D0 corresponds to F0 ∈ PUDa,b,c.

See Appendix D for a proof of the above result. For symmetric unimodal demand (the special

case of proportional unimodal demand when a+ b = 2c), D ≤ D0. Superiority of upper bound

of D in Proposition 2 over that in Proposition 1 can be easily verified (see Appendix E).

Now, we find Q∗0 and D0 for F ∈ PUDa,b,c. Putting θ = (c− a)/(b− a) in (5) and (6),

Q∗0 = a+ cf(b− a) for F0 ∈ PUDa,b,c. (8)
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D0 =
1

2
cf(1− cf)(b− a) for F0 ∈ PUDa,b,c. (9)

Putting D0 of (9) into Proposition 2,

D ≤


cf
2 [(1− cf)(b− a)− (a+ b− 2c)−] if cf < c−a

b−a
1−cf
2 [cf(b− a) + (a+ b− 2c)+] if cf ≥ c−a

b−a ∀ F ∈ PUDa,b,c.
(10)

3.2 Lower bound of the numerator

We find lower bound of N(δQ) using properties associated with unimodality of F . Properties of

the integrand in (3), F (x)− cf changes with the location of x w.r.t. a, b, c, thereby changing

the lower bound of N(δQ). Theoretically, Q can assume any non-negative value. However, if

ao and bo are observed lowest and highest demands, it is very unlikely that one will order a

quantity that is outside the observed demand range8. Since [ao, bo] ⊆ [a, b], we can safely assume

that Q ∈ [a, b]. With this assumption, following lower bound of N(δQ) can be established (see

Appendix F for a proof).

Proposition 3. For every F ∈ UDa,b,c,θ, provided Q = Q∗(1 + δQ) ∈ [a, b],

N(δQ) ≥ Q∗0cf

2

[
c

c− a
δ2 +

1− θ
cf

{
Q∗0
b− c

(δ2Q − δ2) + 2

(
θ − cf
1− θ

− c−Q∗0
b− c

)
(δQ − δ)

}]
if cf < θ, where δ = min{δQ, c/Q∗0 − 1}.

N(δQ) ≥ c(1− cf)

2

[
c

b− c
δ2 +

θ

1− cf

{
Q∗0
c− a

(δ2Q − δ2) + 2

(
cf − θ
θ
− Q∗0 − c

c− a

)
(δ − δQ)

}]
if cf ≥ θ, where δ = max{δQ, c/Q∗0 − 1}.

3.3 The lower bound

If Dub is an upper bound of D, by Proposition 3,

Proposition 4. For every F ∈ UDa,b,c,θ, provided Q = Q∗(1 + δQ) ∈ [a, b],

δC(δQ) ≥ Q∗0cf

2Dub

[
c

c− a
δ2 +

1− θ
cf

{
Q∗0
b− c

(δ2Q − δ2) + 2

(
θ − cf
1− θ

− c−Q∗0
b− c

)
(δQ − δ)

}]
if cf < θ, where δ = min{δQ, c/Q∗0 − 1}.

δC(δQ) ≥ c(1− cf)

2Dub

[
c

b− c
δ2 +

θ

1− cf

{
Q∗0
c− a

(δ2Q − δ2) + 2

(
cf − θ
θ
− Q∗0 − c

c− a

)
(δ − δQ)

}]
if cf ≥ θ, where δ = max{δQ, c/Q∗0 − 1}.

(7) and (10) provide Dub for F ∈ UDa,b,c,θ and F ∈ PUDa,b,c respectively. We can express

8This may not be true if number of observations is very few.
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coefficients in Proposition 4 using the ratios, r = a/b, m = (c− a)/(b− a), cf = cu/(co + cu),

and θ as following.

For every F ∈ UDa,b,c,θ, provided Q = Q∗(1 + δQ) ∈ [a, b],

δC(δQ) > k0[k1δ
2 + k{k2(δ2Q − δ2) + 2k3(δQ − δ)}]. (11)

If cf < θ, k = (1 − θ)/cf and δ = min{δQ, q}, whereas k = θ/(1 − cf) and δ = max{δQ, q} if

cf ≥ θ. The constants, k0, k1, k2, k3, and q can be expressed as

Constant when cf < θ when cf ≥ θ

t, k0
cf

θ
,

r/(1− r) + tm

(2− t)m+ (1− θ)(1−m)

1− cf
1− θ

,
r/(1− r) +m

(2− t)(1−m) + θm

k1, k2
r +m(1− r)
m(1− r)

,
r + tm(1− r)
(1−m)(1− r)

r +m(1− r)
(1−m)(1− r)

,
1− t(1−m)(1− r)

m(1− r)

k3, q
(θ − cf)(θ −m)

θ(1− θ)(1−m)
,

m(1− t)
r/(1− r) + tm

(cf − θ)(m− θ)
θ(1− θ)m

,
−(1−m)(1− t)

1/(1− r)− t(1−m)
.

For proportional unimodal distribution, θ = m. Then k3 in (11) vanishes and k × k2 is the

new k2. For every F ∈ PUDa,b,c, provided Q = Q∗(1 + δQ) ∈ [a, b],

δC(δQ) ≥ k0{k1δ2 + k2(δ
2
Q − δ2)}. (12)

If cf < θ, δ = min{δQ, q}, whereas δ = max{δQ, q} if cf ≥ θ. The constants, k0, k1, k2, and q

can be expressed as

Constant when cf < m when cf ≥ m

k0, k1
r/(1− r) + cf

(1− cf)− (1− 2m)−
,
r +m(1− r)
m(1− r)

r/(1− r) +m

cf + (1− 2m)+
,
r +m(1− r)

(1−m)(1− r)

k2, q
r + cf(1− r)
cf(1− r)

,
(m− cf)(1− r)
r + cf(1− r)

r + cf(1− r)
(1− cf)(1− r)

, −(cf −m)(1− r)
r + cf(1− r)

.

The lower bound of δC(δQ) depends on four factors (cf, θ,m, r) that takes values between

0 and 1. This enables us to construct different scenarios by changing these factors and study

behaviour of the lower bound. For proportional unimodal distributions, θ is not required for

scenario construction. Even for general unimodal distributions, we do not need to study scenarios

with high difference between θ and m; those scenarios are rather impractical.

Figure 2 show the lower bound of δC(δQ) in different scenarios. Each diagram corresponds

to a combination of r and cf values; three values, 0.25, 0.5, and 0.75 (low, medium, and high)

have been considered for both. m = 0.5 is taken.

In each diagram, solid curves correspond to the lower bounds for different θ values for

F ∈ UDa,b,c,θ; θ = m− 0.1 is indicated by red, θ = m is indicated by blue, and θ = m+ 0.1 is
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Figure 2: Lower bounds of δC(δQ) when m = 0.5

indicated by green. The solid curve in black is the lower bound for F ∈ PUDa,b,c.

We also indicate δC(δQ) for the EOQ model (thick dotted curve) for easy comparison;

δC(δQ) = δ2Q/{2(1 + δQ)} for the EOQ model (Nahmias, 2001, p. 208). Dotted lines with slope

1 and −1 separate the error “dampening” and “amplifying” zones. If a curve (or part of it)

lies below these lines, the magnitude of the output error is less than that of the input error

(dampening of error). Conversely, if the curve (or part of it) lies above these lines, the output

error is more in magnitude than the input error (amplification of error).

Key observations

i) Lower bound curves are steeper than the EOQ curve. Most part of the lower bound curves
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lie above the ±1 slope lines for high r.

ii) Lower bound curves become steeper with increase in r. Other factors do not show strong

influence on the lower bound.

Our observations are similar to that of Khanra & Soman (2013). Greater steepness of the

lower bound curves compared to the EOQ curve conclusively demonstrates that the newsboy

model is more sensitive to error in order quantity than the EOQ model. Like the EOQ curve,

±1 slope lines act as benchmark. Locations of the lower bound curves imply that amplification

of error occurs in many situations.

From the behaviour of the lower bound curves as r changes, we can conclude that robustness

of the newsboy model decreases with increase in r. This behaviour can be explained by flattening

of the density function due to decreased r (as demand range increases). Then the numerator of

cost deviation, N(δQ) =
∫ Q
Q∗{F (x)− cf}dx =

∫ Q
Q∗(Q− x)f(x)dx decreases, thereby decreasing

δC(δQ). The effect reverses when r increases.

The special case of r = 0

Unlike m, θ, cf , which are unlikely to take extreme values, r can assume very low value. Figure

3 demonstrates the special case of r = 0. Construction of the diagrams is very similar to that of

Figure 2. As expected, the lower bound of cost deviation decreases, but still remains at par with

cost deviation of the EOQ model.

Figure 3: Lower bounds of δC(δQ) when r = 0 and m = 0.5

In our demonstration, we do not show the lower bound for low and high values of m.

Additional figures at the end of this document exhibit the lower bound for m = 0.35 and

m = 0.65. Construction of those diagrams are same as Figure 2. They exhibit similar behaviour

of the lower bound as observed in Figure 2.
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4 The discrete case

In the previous section, we have generalized the conclusion of Khanra & Soman (2013) that the

newsboy model is more sensitive than the EOQ model to unimodal demand distributions. In

this section, we generalize this further to include the discrete case.

In the discrete version of the newsboy model, both stochastic demand and order quantity

are integer valued. Expected mismatch cost for order quantity, Q is given by

E[C(Q)] =

Q−1∑
i=a

co(Q− i)p(i) +
b∑

i=Q+1

cu(i−Q)p(i) (13)

By marginal analysis (Muckstadt & Sapra, 2010, chap. 5), Q∗ satisfies

P (Q∗ − 1) < cf and P (Q∗) ≥ cf. (14)

The expression for cost deviation is not simple. Sensitivity analysis results of the continuous

case can not be established for the discrete case in the same manner. Here, we construct a

continuous equivalence of a given discrete newsboy model and demonstrate that cost deviation of

the discrete problem can be approximated by that of the equivalent continuous problem. Then

results applicable for the continuous equivalence can be extended to the discrete case.

4.1 Continuous equivalence

Continuous equivalence of a discrete newsboy model is a continuous newsboy model, where

cost parameters remain same, order quantity is allowed to assume non-integer values, and the

discrete demand is converted into a continuous demand. There are multiple ways of constructing

the continuous demand; we use the following one.

Definition 2. Continuous equivalence of a discrete demand with support a, b and mass function

p is a continuous demand with support [a − 1/2, b + 1/2] and density function f defined as:

f(x) = p(i) if x ∈ (i− 1/2, i+ 1/2] for i = a, a+ 1, . . . , b and f(a− 1/2) = p(a).

Above definition yields a valid density in [a− 1/2, b+ 1/2] as the corresponding distribution

function (it is defined as f is continuous almost everywhere) is increasing, continuous, and

F (a− 1/2) = 0, F (b+ 1/2) =

∫ b+1/2

a−1/2
f(x)dx =

b∑
i=a

∫ i+1/2

i−1/2
p(i)dx =

b∑
i=a

p(i) = 1.

In fact, F is strictly increasing. All of our assumptions about the distribution and density

functions for the continuous case are satisfied by this continuous equivalence. Hence, this

continuous equivalence, if unimodal, admits the lower bound of Proposition 4. It can be shown

that continuous equivalence of a discrete unimodal demand is unimodal (see Appendix G).
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Let us denote that mismatch cost and optimal order quantity of the continuous equivalence

by Ceq and Q∗eq. Following results establish the links between i) Q∗ and Q∗eq, ii) E[C(Q∗)]

and E[Ceq(Q
∗
eq)], and iii) E[C(Q)] and E[Ceq(Q)] for integer Q. These results allows us to

approximate δC(δQ) by its continuous equivalence, δCeq(δQ).

Before identifying above mentioned relations, let us identify the link between F and P . For

any integer Q ∈ {a, a+ 1, . . . , b},

F (Q+ 1/2) =

∫ Q+1/2

a−1/2
f(x)dx =

Q∑
i=a

∫ i+1/2

i−1/2
p(i)dx =

Q∑
i=a

p(i) = P (Q). (15)

Lemma 2. Q∗eq ∈ (Q∗ − 1/2, Q∗ + 1/2].

The above result is easy to verify. If Q∗ is the optimal order quantity for the discrete case,

by (14) and (15), F (Q∗ + 1/2) = P (Q∗) ≥ cf and F (Q∗ − 1/2) = P (Q∗ − 1) < cf . Since

F is continuous, the intermediate value theorem (Protter & Morrey, 1977, p. 61) tells that

∃ Q ∈ (Q∗ − 1/2, Q∗ + 1/2] such that F (Q) = cf . Hence, Q∗eq ∈ (Q∗ − 1/2, Q∗ + 1/2].

We can find following expression for Q∗eq using Lemma 2.

cf = F (Q∗eq) = F (Q∗ − 1/2) +

∫ Q∗eq

Q∗−1/2
f(x)dx = P (Q∗ − 1) + p(Q∗){Q∗eq − (Q∗ − 1/2)}.

⇒ Q∗eq = (Q∗ − 1/2) +
cf − P (Q∗ − 1)

p(Q∗)
. (16)

Lemma 3. For any Q0 ∈ {a, a+ 1, . . . , b} and Q ∈ (Q0 − 1/2, Q0 + 1/2],

E[Ceq(Q)]− E[C(Q0)]

co + cu
=

1

2
(1− d)2p(Q0) + (d− 1/2){P (Q0)− cf}, where d = Q− (Q0 − 1/2).

A proof of the above lemma appears in Appendix H. The above result is not much meaningful

in itself; however, it has some interesting consequences. These corollaries help in developing the

approximation for cost deviation.

Corollary 2. E[Ceq(Q)] = E[C(Q)] + (co + cu)p(Q)/8 for Q ∈ {a, a+ 1, . . . , b}.

An integer Q in Lemma 3 means Q0 = Q and d = 1/2, which gives us the above result. See

Appendix H for a proof of the next corollary.

Corollary 3. 0 < E[Ceq(Q
∗
eq)]− E[C(Q∗)] ≤ (co + cu)p(Q∗)/8.

Let z ∈ Z \ {0} and z ≥ −Q∗. Then a sub-optimal order quantity can be written as

Q = Q∗ + z. Deviation in order quantity is of the form: δQ = z/Q∗. By Corollary 2 and 3,

δC(δQ) =
E[C(Q)]

E[C(Q∗)]
− 1 =

E[Ceq(Q)]− (co + cu)p(Q)/8

E[Ceq(Q∗eq)]− α(co + cu)p(Q∗)/8
− 1, where α ∈ [0, 1].

W.P. No. 2013-11-01 Page No. 13



(co + cu)p(Q)/8 and α(co + cu)p(Q∗)/8 are positive and are likely to be much smaller

than E[Ceq(Q)] and E[Ceq(Q
∗
eq)]. Furthermore, (co + cu)p(Q)/8 ≥ α(co + cu)p(Q∗)/8 like

E[Ceq(Q)] ≥ E[Ceq(Q
∗
eq)]. Then

δC(δQ) ≈ E[Ceq(Q)]

E[Ceq(Q∗eq)]
− 1 = δCeq

(
Q

Q∗eq
− 1

)
= δCeq

(
Q∗

Q∗eq
(1 + δQ)− 1

)
.

By Lemma 2, Q∗/Q∗eq ∈ [1 − 0.5/Q∗eq, 1 + 0.5/Q∗eq). If Q∗eq = 10, Q∗/Q∗eq ∈ [0.95, 1.05) and if

Q∗eq = 50, Q∗/Q∗eq ∈ [0.99, 1.01). We take Q∗/Q∗eq ≈ 1. Then δC(δQ) ≈ δCeq(δQ).

Next, we test performance of the above approximation.

4.2 Sample calculation: Poisson distribution

We test the approximation for Poisson distribution. It is one of the most popular distributions

for modelling discrete demand (Silver et al., 1998, p. 122). To find δC(δQ) and δCeq(δQ) for given

δQ, we need to know E[C(Q∗)], E[C(Q)], E[Ceq(Q
∗
eq)], and E[Ceq(Qeq)], where Q = Q∗(1 + δQ)

and Qeq = Q∗eq(1 + δQ). Like the continuous case, it is reasonable to assume that a ≤ Q ≤ b.

Then we can expect Qeq = Q∗eq(1 + δQ) ∈ [a − 1/2, b + 1/2]. We get Q∗ and Q∗eq by (14) and

(16) respectively. Then we can find E[C(Q∗)] and E[C(Q)] using (13). We can find E[Ceq(Q
∗
eq)]

and E[Ceq(Qeq)] using Lemma 3 and (13).

δC(δQ) and δCeq(δQ) do not depend on co, cu “directly”, they depend on cf . We test

performance of the approximation for three values of cf (0.25, 0.5, 0.75). Since discrete modelling

is used for slow moving items (lower demand), we consider small values of µ (25, 50, 100). For

Poisson distribution, a = 0 and we take b = 500 (distribution is right-truncated). Figure 4 shows

the δC(δQ) plots; dots represent δC(δQ) for δQ = z/Q∗ and solid curves represent δCeq(δQ). A

flatter curve and nearby dots correspond to lower mean.

Figure 4: δC(δQ) for Poisson distribution

It can be observed that δC(δQ) plots for the discrete cases and their continuous equivalences

are very close to each other in every situation. In some cases, they are visibly inseparable. Little

mismatch is observed for µ = 25 when cf = 0.25. In general, the approximation works well.
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Performance of the approximation gets better as demand increases.

Due to similarity between the cost deviations for a discrete case and its continuous equivalence,

we can conclude for the discrete case by studying its continuous equivalence. It has already been

established that continuous equivalence of a discrete unimodal distribution is unimodal. Hence,

the lower bound of cost deviation (and associated conclusions) in Proposition 4 is applicable for

the discrete case with unimodal demand (with minor adjustments though).

5 Conclusion

Literature on sensitivity analysis of the newsboy model is not comprehensive; our understanding is

limited to direction of cost and order quantity deviations, symmetry (skewness) of cost deviation,

and magnitude of cost deviation for normal demand distribution. Our work contributes to the

study of magnitude of cost deviation by generalizing it beyond normal distribution.

We establish a lower bound of cost deviation for the family of unimodal distributions

(Proposition 4). A stronger lower bound is established for a subclass of unimodal distributions,

named as proportional unimodal distributions; symmetric unimodal distributions are a special

case of this subclass. These lower bounds are compared with cost deviation of the EOQ model

(Figure 2). We found the lower bound to be greater than cost deviation of the EOQ model. This

conclusively demonstrates that the newsboy model is more sensitive than the EOQ model. This

observation is in sync with that of Khanra & Soman (2013).

Our demonstration in Figure 2 also suggests that cost deviation increases with the ratio of

demand limits (r), i.e., error in ordering decision in a high r scenario (low demand range) costs

more than same amount of error in a low r scenario (high demand range). Khanra & Soman

(2013) had similar observation with normal demand distribution.

We generalized our results further by showing that the sensitivity behaviour of the newsboy

model does not change when modelled as discrete problem. A novel approach is taken for studying

the discrete case. We do not perform sensitivity analysis of the discrete case; we established a

continuous equivalence of the discrete model and shown that the resultant approximation works

well. This way, results for the continuous case are valid for the discrete case too.

Our study addresses the issue of magnitude of cost deviation in a broad setting. Still, much

more can be done to better our understanding of sensitivity of the newsboy model and benefit

from it. Since the newsboy model is sensitive to erroneous ordering decisions, it is important

to limit order quantity deviation to low magnitude. However, little is known about order

quantity deviation; the presence of multiple parameters makes this study complex. A thorough

investigation into parameter importance can be helpful in limiting the order quantity deviation.

The issue of distribution of cost and order quantity deviations remains unattended too.

W.P. No. 2013-11-01 Page No. 15



Acknowledgements

The authors are grateful to Prof. Chetan Soman of IIM Ahmedabad for his helpful comments.

Appendix A

We prove Lemma 1 and Corollary 1 for an arbitrary F ∈ UDa,b,c,θ.

Due to convexity of F (x) in [a, c], F (λa+(1−λ)c) ≤ λF (a)+(1−λ)F (c) = (1−λ)θ ∀λ ∈ (0, 1).

Denoting λa+(1−λ)c = x, i.e., λ = (c−x)/(c−a), F (x) ≤ {(x−a)/(b−a)}θ = F0(x) ∀x ∈ (a, c).

Similarly, due to concavity of F (x) in [c, b], F (λc + (1 − λ)b) ≥ λF (c) + (1 − λ)F (b) =

1 − λ(1 − θ) ∀λ ∈ [0, 1). Denoting λc + (1 − λ)b = x, i.e., λ = (b − x)/(b − c), F (x) ≥
1− {(b− x)/(b− c)}(1− θ) = F0(x) ∀x ∈ [c, b). Putting these pieces together, we get Lemma 1.

If cf < θ, Q∗ < c. By Lemma 1, F (x) ≤ F0(x) ∀x ∈ [a, c). Assuming contradiction, let

Q∗ < Q∗0 for some cf < θ. Then cf = F (Q∗) ≤ F0(Q
∗) < F0(Q

∗
0) = cf , which is impossible.

Hence, Q∗ ≥ Q∗0 if cf < θ. If cf ≥ θ, Q∗ ≥ c. By Lemma 1, F (x) ≥ F0(x) ∀x ∈ [c, b]. Assuming

contradiction, let Q∗ > Q∗0 for some cf ≥ θ. Then cf = F0(Q
∗
0) ≤ F (Q∗0) < F (Q∗) = cf , which

is impossible. Hence, Q∗ ≤ Q∗0 if cf ≥ θ. Putting these pieces together, we get Corollary 1.

Appendix B

We prove Proposition 1 for an arbitrary F ∈ UDa,b,c,θ.

Let cf < θ. Then a < Q∗0 ≤ Q∗ < c (by Corollary 1). By Lemma 1, F (x) ≤ F0(x) ∀x ∈ [a, c).

F (x) < cf ∀x < Q∗. Using (4),

D0 −D = (µ0 − µ)cf + (Q∗ −Q∗0)cf +

∫ Q∗0

a
{F0(x)− F (x)}dx−

∫ Q∗

Q∗0

F (x)dx

= (µ0 − µ)cf +

∫ Q∗0

a
{F0(x)− F (x)}dx+

∫ Q∗

Q∗0

{cf − F (x)}dx

≥ (µ0 − µ)cf.

Let cf ≥ θ. Then c ≤ Q∗ ≤ Q∗0 < b (by Corollary 1). By Lemma 1, F (x) ≥ F0(x) ∀x ∈ [c, b].

F (x) > cf ∀x > Q∗. Using (4),

D0−D = (µ0 − µ)cf − (Q∗0 −Q∗)cf +

∫ Q∗0

a
{F0(x)− F (x)}dx+

∫ Q∗0

Q∗
F (x)dx

= (µ0 − µ)cf +

∫ c

a
{F0(x)− F (x)}dx−

∫ Q∗0

c
{F (x)− F0(x)}dx+

∫ Q∗0

Q∗
{F (x)− cf}dx

≥ (µ0 − µ)cf +

∫ c

a
{F0(x)− F (x)}dx−

∫ b

c
{F (x)− F0(x)}dx.
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Now, µ =

∫ b

a
xf(x)dx = bF (b)− aF (a)−

∫ b

a
F (x)dx = b−

∫ b

a
F (x)dx.

⇒ µ0 − µ =

∫ b

a
{F (x)− F0(x)}dx =

∫ b

c
{F (x)− F0(x)}dx−

∫ c

a
{F0(x)− F (x)}dx.

Let
∫ b
c {F (x)− F0(x)}dx = B and

∫ c
a {F0(x)− F (x)}dx = A. Then

D0 −D ≥

cf(B −A) if cf < θ

−(1− cf)(B −A) if cf ≥ θ.

Figure 5 depicts A and B. Clearly, A ≥ min{A : F ∈ UDa,b,c,θ} = A0 = 0. However,

maximum does not exist for {A : F ∈ UDa,b,c,θ}. Hence, A < sup{A : F ∈ UDa,b,c,θ} = (c−a)θ/2.

Similarly, 0 ≤ B < (b− c)(1− θ)/2. Then −(c− a)θ/2 < B −A < (b− c)(1− θ)/2.

⇒ D <

D0 + 1
2cf(c− a)θ if cf < θ

D0 + 1
2(1− cf)(b− c)(1− θ) if cf ≥ θ.

Figure 5: A and B for F ∈ UDa,b,c,θ

Appendix C

We derive (6) in two parts: i) when cf < θ and ii) when cf ≥ θ.

Since µ =
∫ b
a xf(x)dx = bF (b)−aF (a)−

∫ b
a F (x)dx = b−

∫ b
a F (x)dx, (4) can be rewritten as

D0 =

[
b−

∫ b

a
F0(x)dx−Q∗0

]
cf +

∫ Q∗0

a
F0(x)dx

= (1− cf)

∫ Q∗0

a
F0(x)dx+ cf

∫ b

Q∗0

{1− F0(x)}dx. (17)
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Part-i) If cf < θ, Q∗0 < c. Putting F0(x) of (1) into (17),

D0 = (1− cf)

∫ Q∗0

a

x− a
c− a

θdx+ cf

∫ c

Q∗0

(
1− x− a

c− a
θ

)
dx+ cf

∫ b

c

b− x
b− c

(1− θ)dx

=
(1− cf)θ

c− a
(Q∗0 − a)2

2
+ cf(c−Q∗0)−

cfθ

c− a
(c− a)2 − (Q∗0 − a)2

2
+
cf(1− θ)
b− c

(b− c)2

2
.

Putting Q∗0 of (5) into the above expression,

D0 =
cf2(1− cf)

2θ
(c− a) +

cf(θ − cf)

θ
(c− a)− cf(θ2 − cf2)

2θ
(c− a) +

cf(1− θ)
2

(b− c)

=
cf

2

[
c− a
θ

{
cf(1− cf) + 2(θ − cf)− (θ2 − cf2)

}
+ (1− θ)(b− c)

]
=
cf

2

[
(1− cf)− (1− θ)2

θ
(c− a) + (1− θ)(b− c)

]
.

Part-ii) If cf ≥ θ, Q∗0 ≥ c. Putting F0(x) of (1) into (17),

D0 = (1− cf)

∫ c

a

x− a
c− a

θdx+ (1− cf)

∫ Q∗0

c

[
1− b− x

b− c
(1− θ)

]
dx+ cf

∫ b

Q∗0

b− x
b− c

(1− θ)dx

=
(1− cf)θ

c− a
(c− a)2

2
+ (1− cf)

[
(Q∗0 − c)−

1− θ
b− c

(b− c)2 − (b−Q∗0)2

2

]
+
cf(1− θ)
b− c

(b−Q∗0)2

2
.

Putting Q∗0 of (5) into the above expression,

D0 =
1− cf

2

[
θ(c− a) +

2(cf − θ)
1− θ

(b− c)− (1− θ)2 − (1− cf)2

1− θ
(b− c) +

cf(1− cf)

1− θ
(b− c)

]
=

1− cf
2

[
θ(c− a) +

b− c
1− θ

{
2(cf − θ)− (1− θ)2 + (1− cf)2 + cf(1− cf)

}]
=

1− cf
2

[
θ(c− a) +

cf − θ2

1− θ
(b− c)

]
.

Appendix D

We prove Proposition 2 for an arbitrary F ∈ PUDa,b,c.

For proportional unimodal demand, θ = (c− a)/(b− a). Since PUDa,b,c ⊂ UDa,b,c,(c−a)/(b−a),
using the arguments of Appendix B (the proof of Proposition 1),

D0 −D ≥

cf(B −A) if cf < (c− a)/(b− a)

−(1− cf)(B −A) if cf ≥ (c− a)/(b− a).

Note that B =
∫ b
c {F (x)− F0(x)}dx and A =

∫ c
a {F0(x)− F (x)}dx.
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Let (b− c)/(c− a) = k. Then using Definition 1,

F (c+ kt)− F (c) = k{F (c)− F (c− t)} ∀t ∈ (0, c− a] and

F0(c+ kt)− F0(c) = k{F0(c)− F0(c− t)} ∀t ∈ (0, c− a] as F0 ∈ PUDa,b,c.

⇒ F (c+ kt)− F0(c+ kt) = k{F0(c− t)− F (c− t)} ∀t ∈ (0, c− a].

⇒
∫ c−a

0
{F (c+ kt)− F0(c+ kt)}dt = k

∫ c−a

0
{F0(c− t)− F (c− t)}dt.

Replacing c+ kt = x in the first integral and c− t = y in the second integral,∫ b

c
{F (x)− F0(x)}dx

k
= k

∫ a

c
{F0(y)− F (y)}(−dy) ⇒ B = k2A.

Following the arguments of Appendix B, 0 ≤ A < (c− a)2/{2(b− a)} = Asup. Here B −A =

(k2 − 1)A; hence, (k2 − 1)−Asup ≤ B −A ≤ (k2 − 1)+Asup. Now (k2 − 1)Asup = (a+ b− 2c)/2.

Then (1/2)(a+ b− 2c)− ≤ B −A ≤ (1/2)(a+ b− 2c)+.

⇒ D ≤

D0 − 1
2cf(a+ b− 2c)− if cf < c−a

b−a

D0 + 1
2(1− cf)(a+ b− 2c)+ if cf ≥ c−a

b−a .

Appendix E

For proportional unimodal distributions, θ = (c − a)/(b − a). Then Proposition 1 takes the

following form

D <

D0 + 1
2cf(c− a)2/(b− a) if cf < c−a

b−a

D0 + 1
2(1− cf)(b− c)2/(b− a) if cf ≥ c−a

b−a

Let us denote right-hand side of the above expressions by Dud. Similarly, we denote right-

hand side of expressions in Proposition 2 by Dpud. To exhibit superiority of upper bound of D

in Proposition 2 over that in Proposition 1, we need to show that Dpud < Dud.

Dud −Dpud <

1
2cf(c− a)2/(b− a) + 1

2cf(a+ b− 2c)− if cf < c−a
b−a

1
2(1− cf)(b− c)2/(b− a)− 1

2(1− cf)(a+ b− 2c)+ if cf ≥ c−a
b−a .

If cf < (c− a)/(b− a),

Dud −Dpud <


cf
2

(c−a)2
b−a + 0 > 0 if a+ b ≥ 2c

cf
2

[
(c−a)2
b−a + (a+ b− 2c)

]
= cf

2
(b−c)2
b−a > 0 if a+ b < 2c.
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Similarly, if cf ≥ (c− a)/(b− a),

Dud −Dpud <


1−cf
2

[
(b−c)2
b−a − (a+ b− 2c)

]
= 1−cf

2
(c−a)2
b−a > 0 if a+ b > 2c

1−cf
2

(b−c)2
b−a + 0 > 0 if a+ b ≤ 2c.

Clearly, the bound of D in Proposition 2 is stronger than that in Proposition 1.

Appendix F

We prove Proposition 3 for an arbitrary F ∈ UDa,b,c,θ. If δQ = 0, the result holds vacuously. We

consider the δQ 6= 0 cases in four parts. Figure 6 and 7 show N(δQ) in different situations (value

of cf w.r.t. θ and sign of δQ).

(a) δQ < 0 (b) δQ > 0 (c) δQ > 0

Figure 6: N(δQ) when cf < θ

(a) δQ < 0 (b) δQ < 0 (c) δQ > 0

Figure 7: N(δQ) when cf ≥ θ

Case-IA: Let cf < θ and δQ < 0 (Figure 6(a)). Since cf < θ, by Corollary 1, a < Q∗0 ≤ Q∗ < c.

Since δQ < 0, a ≤ Q < Q∗ as Q ∈ [a, b].
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F (x) is convex in [a, c]. [Q,Q∗] ⊆ [a,Q∗] ⊂ [a, c]. So F{λa + (1 − λ)Q∗} ≤ λF (a) +

(1 − λ)F (Q∗) = (1 − λ)cf ∀λ ∈ [0, 1]. Putting λa + (1 − λ)Q∗ = x, cf − F (x) ≥ λcf =

cf(Q∗ − x)/(Q∗ − a) ∀x ∈ [a,Q∗]. Then

N(δQ) =

∫ Q∗

Q
{cf − F (x)}dx ≥

∫ Q∗

Q
cf
Q∗ − x
Q∗ − a

dx =
cf(Q∗δQ)2

2(Q∗ − a)

≥ Q∗0cf

2

δ2Q
1− a/Q∗

≥ Q∗0cf

2

δ2Q
1− a/c

=
Q∗0cf

2

c

c− a
δ2Q.

Here, δ = min{δQ, c/Q∗0 − 1} = δQ. Hence, we can rewrite above expression as

N(δQ) ≥ Q∗0cf

2

[
c

c− a
δ2 +

1− θ
cf

{
Q∗0
b− c

(δ2Q − δ2) + 2

(
θ − cf
1− θ

− c−Q∗0
b− c

)
(δQ − δ)

}]
.

Case-IB : Let cf < θ and δQ > 0 (Figure 6(b) and 6(c)). Since cf < θ, by Corollary 1,

a < Q∗0 ≤ Q∗ < c. Since δQ > 0, Q∗ < Q < b as Q ∈ [a, b]. Here

N(δQ) =

∫ min{Q,c}

Q∗
{F (x)− cf}dx+

∫ Q

min{Q,c}
{F (x)− cf}dx.

Let us consider the first integrand. Due to unimodality, f is increasing in [a, c]. [Q∗,min{Q, c}]
⊆ [Q∗, c] ⊂ [a, c]. For every x ∈ [Q∗, c], F (x) = F (Q∗) +

∫ x
Q∗ f(t)dt ≥ cf + f(Q∗)(x − Q∗);

for the same reason, F (Q∗) =
∫ Q∗
a f(t)dt ≤ f(Q∗)(Q∗ − a) ⇒ f(Q∗) ≥ cf/(Q∗ − a). Hence,

F (x) ≥ cf + cf(x−Q∗)/(Q∗ − a)⇒ F (x)− cf ≥ cf(x−Q∗)/(Q∗ − a) ∀x ∈ [Q∗, c].

Let us consider the second integrand. If Q ≤ c, the integral is zero irrespective of the

integrand as the integration limits are same. If Q > c, [min{Q, c}, Q] ⊆ [c, b]. By Lemma 1,

F (x)− cf ≥ F0(x)− cf = (θ − cf) + (1− θ)(x− c)/(b− c) ∀x ∈ [c, b].

Let g1(x) = cf(x−Q∗)/(Q∗−a) for x ∈ [Q∗, Q]. Let g2(x) = (θ− cf) + (1− θ)(x− c)/(b− c)
if Q > c, else (θ − cf) for x ∈ [min{Q, c}, Q]. Then

N(δQ) ≥
∫ min{Q,c}

Q∗
g1(x)dx+

∫ Q

min{Q,c}
g2(x)dx.

Let c = Q∗(1 + e). Then e = c/Q∗ − 1 ≤ c/Q∗0 − 1 = e0 (say). Let δ = min{δQ, e0}. Then

δ ≥ min{δQ, e} ⇒ Q∗(1 + δ) ≥ Q∗(1 + min{δQ, e}) = min{Q, c}. Since g1 is an increasing

function, for every x ∈ [min{Q, c}, Q∗(1 + δ)], g1(x) ≤ g1(Q
∗(1 + δ)) ≤ g1(Q

∗(1 + e0)) =

cf(c−Q∗0)/(Q∗0 − aQ∗0/Q∗) ≤ cf(c−Q∗0)/(Q∗0 − a) = θ − cf ≤ g2(x).

⇒ N(δQ) ≥
∫ Q∗(1+δ)

Q∗
g1(x)dx+

∫ Q

Q∗(1+δ)
g2(x)dx.
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∫ Q∗(1+δ)

Q∗
g1(x)dx =

cf(Q∗δ)2

2(Q∗ − a)
≥ Q∗0cf

2

δ2

1− a/Q∗
≥ Q∗0cf

2

c

c− a
δ2.∫ Q

Q∗(1+δ)
g2(x)dx =

Q∗(δQ − δ)
2(b− c)

{Q∗(δQ + δ)− 2(c−Q∗)}(1− θ) + (θ − cf)Q∗(δQ − δ)

≥ Q∗0
2

{
Q∗(δQ + δ)− 2(c−Q∗)

b− c
(1− θ) + 2(θ − cf)

}
(δQ − δ)

≥ Q∗0
2

{
Q∗0(δQ + δ)− 2(c−Q∗0)

b− c
(1− θ) + 2(θ − cf)

}
(δQ − δ)

=
Q∗0
2

(1− θ)
{
Q∗0
b− c

(δ2Q − δ2) + 2

(
θ − cf
1− θ

− c−Q∗0
b− c

)
(δQ − δ)

}
.

⇒ N(δQ) ≥ Q∗0cf

2

[
c

c− a
δ2 +

1− θ
cf

{
Q∗0
b− c

(δ2Q − δ2) + 2

(
θ − cf
1− θ

− c−Q∗0
b− c

)
(δQ − δ)

}]
.

Case-IIA: Let cf ≥ θ and δQ < 0 (Figure 7(a) and 7(b)). Since cf ≥ θ, by Corollary 1,

c ≤ Q∗ ≤ Q∗0 < b. Since δQ < 0, a ≤ Q < Q∗ as Q ∈ [a, b]. Here

N(δQ) =

∫ max{Q,c}

Q
{cf − F (x)}dx+

∫ Q∗

max{Q,c}
{cf − F (x)}dx.

Let us consider the first integrand. If Q ≥ c, the integral is zero irrespective of the

integrand. If Q < c, [Q,max{Q, c}] ⊆ [a, c]. By Lemma 1, cf − F (x) ≥ cf − F0(x) =

(cf − θ) + θ(c− x)/(c− a) ∀x ∈ [a, c].

Let us consider the second integrand. Due to unimodality, f is decreasing in [c, b]. [max{Q, c},
Q∗] ⊆ [c,Q∗] ⊂ [c, b]. For every x ∈ [c,Q∗], F (x) = F (Q∗)−

∫ Q∗
x f(t)dt ≤ cf − f(Q∗)(Q∗ − x).

For the same reason, F (Q∗) = F (b)−
∫ b
Q∗ f(t)dt ≥ 1−f(Q∗)(b−Q∗)⇒ f(Q∗) ≥ (1−cf)/(b−Q∗).

Hence, F (x) ≤ cf−(1−cf)(Q∗−x)/(b−Q∗)⇒ cf−F (x) ≥ (1−cf)(Q∗−x)/(b−Q∗) ∀x ∈ [c,Q∗].

Let g1(x) = (cf − θ) + θ(c − x)/(c − a) if Q < c, else (cf − θ) for x ∈ [Q,max{Q, c}]. Let

g2(x) = (1− cf)(Q∗ − x)/(b−Q∗) for x ∈ [Q,Q∗]. Then

N(δQ) ≥
∫ max{Q,c}

Q
g1(x)dx+

∫ Q∗

max{Q,c}
g2(x)dx.

Let c = Q∗(1 + e). Then e = c/Q∗ − 1 ≥ c/Q∗0 − 1 = e0 (say). Let δ = max{δQ, e0}. Then

δ ≤ max{δQ, e} ⇒ Q∗(1 + δ) ≤ Q∗(1 + max{δQ, e}) = max{Q, c}. Since g2 is a decreasing

function, for every x ∈ [Q∗(1 + δ1),max{Q, c}], g2(x) ≤ g2(Q
∗(1 + δ)) ≤ g2(Q

∗(1 + e0)) =

(1− cf)(Q∗0 − c)/(bQ∗0/Q∗ −Q∗0) ≤ (1− cf)(Q∗0 − c)/(b−Q∗0) = cf − θ ≤ g1(x).

⇒ N(δQ) ≥
∫ Q∗(1+δ)

Q
g1(x)dx+

∫ Q∗

Q∗(1+δ)
g2(x)dx.
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∫ Q∗(1+δ)

Q
g1(x)dx =

Q∗(δ − δQ)

2(c− a)
{−Q∗(δ + δQ)− 2(Q∗ − c)} θ + (cf − θ)Q∗(δ − δQ)

≥ c

2

{
−Q∗(δ + δQ)− 2(Q∗ − c)

c− a
θ + 2(cf − θ)

}
(δ − δQ)

≥ c

2

{
−Q∗0(δ + δQ)− 2(Q∗0 − c)

c− a
θ + 2(cf − θ)

}
(δ − δQ)

=
c

2
θ

{
Q∗0
c− a

(δ2Q − δ2) + 2

(
cf − θ
θ
− Q∗0 − c

c− a

)
(δ − δQ)

}
.∫ Q∗

Q∗(1+δ)
g2(x)dx =

(1− cf)(Q∗δ)2

2(b−Q∗)
≥ c(1− cf)

2

δ2

b/Q∗ − 1
≥ c(1− cf)

2

c

b− c
δ2.

⇒ N(δQ) ≥ c(1− cf)

2

[
c

b− c
δ2 +

θ

1− cf

{
Q∗0
c− a

(δ2Q − δ2) + 2

(
cf − θ
θ
− Q∗0 − c

c− a

)
(δ − δQ)

}]
.

Case-IIB : Let cf ≥ θ and δQ > 0 (Figure 7(c)). Since cf ≥ θ, by Corollary 1, c ≤ Q∗ ≤
Q∗0 < b. Since δQ > 0, Q∗ < Q ≤ b as Q ∈ [a, b].

F (x) is concave in [c, b]. [Q∗, Q] ⊆ [Q∗, b] ⊆ [c, b]. So F{λQ∗ + (1− λ)b} ≥ λF (Q∗) + (1−
λ)F (b) = 1− λ(1− cf) ∀λ ∈ [0, 1]. Putting λQ∗ + (1− λ)b = x, F (x)− cf ≥ (1− λ)(1− cf) =

(1− cf)(x−Q∗)/(b−Q∗) ∀x ∈ [Q∗, b]. Then

N(δQ) =

∫ Q

Q∗
{F (x)− cf}dx ≥

∫ Q

Q∗
(1− cf)

x−Q∗

b−Q∗
dx =

(1− cf)(Q∗δQ)2

2(b−Q∗)

≥ c(1− cf)

2

δ2Q
b/Q∗ − 1

≥ c(1− cf)

2

δ2Q
b/c− 1

=
c(1− cf)

2

c

b− c
δ2Q.

Here, δ = max{δQ, c/Q∗0 − 1} = δQ. Hence, we can rewrite above expression as

N(δQ) ≥ c(1− cf)

2

[
c

b− c
δ2 +

θ

1− cf

{
Q∗0
c− a

(δ2Q − δ2) + 2

(
cf − θ
θ
− Q∗0 − c

c− a

)
(δ − δQ)

}]
.

Appendix G

Here, we show that if the discrete distribution is unimodal with c ∈ {a, a+ 1, . . . , b} as the mode

(or one of the modes), its continuous equivalence is unimodal with every ceq ∈ (c− 1/2, c+ 1/2]

as a mode. Due to unimodality of the discrete distribution, p(i) is increasing in {a, a+ 1, . . . , c}
and decreasing in {c, c + 1, . . . , b}. We need to show that f is increasing in [a − 1/2, ceq] and

decreasing in [ceq, b+ 1/2].

Any x ∈ (a−1/2, b+1/2] can be uniquely written as x = (i−1/2)+y, where i ∈ {a, a+1, . . . , b}
and y ∈ (0, 1]. f(x) = p(i) if x = (i−1/2)+y for y ∈ (0, 1]. Let a−1/2 < x1(i1, y1) < x2(i2, y2) ≤
ceq. f(x1) = p(i1) ≤ p(i2) = f(x2) as a ≤ i1 ≤ i2 ≤ c. Hence, f(x) is increasing in (a− 1/2, ceq].

Similarly, let ceq ≤ x1(i1, y1) < x2(i2, y2) ≤ b + 1/2. f(x1) = p(i1) ≥ p(i2) = f(x2) as
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c ≤ i1 ≤ i2 ≤ b. Hence, f(x) is decreasing in [ceq, b+ 1/2].

We have not considered x = a − 1/2 in above arguments. f(a − 1/2) = p(a) ≤ f(x) ∀x ∈
(a− 1/2, ceq]. Thus, f(x) is increasing in [a− 1/2, ceq] and decreasing in [ceq, b+ 1/2].

Appendix H

First, we prove Lemma 3. Let us write E[Ceq(Q)] in the form of (13).

E[Ceq(Q)] =

∫ Q

a−1/2
co(Q− x)f(x)dx+

∫ b+1/2

Q
cu(x−Q)f(x)dx

=

Q0−1∑
i=a

∫ i+1/2

i−1/2
co(Q− x)p(i)dx+

∫ Q

Q0−1/2
co(Q− x)p(Q0)dx

+

∫ Q0+1/2

Q
cu(x−Q)p(Q0)dx+

b∑
i=Q0+1

∫ i+1/2

i−1/2
cu(x−Q)p(i)dx

=

Q0−1∑
i=a

cop(i)(Q− i) +
1

2
cop(Q0)d

2 +
1

2
cup(Q0)(1− d)2 +

b∑
i=Q0+1

cup(i)(i−Q).

Let ∆ = E[Ceq(Q)]− E[C(Q0)]. Using (13) for the expression of E[C(Q0)],

∆ =

Q0−1∑
i=a

cop(i)(Q−Q0) +
1

2
cod

2p(Q0) +
1

2
cu(1− d)2p(Q0) +

b∑
i=Q0+1

cup(i)(Q0 −Q)

= co(d− 1/2)P (Q0 − 1) + co

{
(d− 1/2) +

1

2
(1− d)2

}
p(Q0)

+
1

2
cu(1− d)2p(Q0) + cu(1/2− d){1− P (Q0)}

=
1

2
(co + cu)(1− d)2p(Q0) + (d− 1/2){(co + cu)P (Q0)− cu}.

Dividing both sides by (co + cu), we get the desired result.

Now we prove Corollary 3. By Lemma 2, Q∗eq ∈ (Q∗−1/2, Q∗+1/2]. Let d = Q∗eq−(Q∗−1/2).

P (Q∗) = F (Q∗ + 1/2) = cf +

∫ Q∗+1/2

Q∗eq

p(Q∗)dx = cf + p(Q∗)(1− d).

Plugging in above expression of P (Q∗) in Lemma 3,

E[Ceq(Q
∗
eq)]− E[C(Q∗)]

co + cu
=

1

2
(1− d)2p(Q∗) + (d− 1/2)p(Q∗)(1− d) =

1

2
p(Q∗)d(1− d).

Now, d ∈ (0, 1]⇒ d(1− d) ∈ (0, 1/4]. Hence, 0 < E[Ceq(Q)]− E[C(Q0)] ≤ (co + cu)p(Q∗)/8.
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Additional figures

Figure 8: Lower bounds of δC(δQ) when m = 0.35
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Figure 9: Lower bounds of δC(δQ) when m = 0.65
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