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Abstract
The paper introduces the application of a genenaltiple period, two stage stochastic
programming based Decision Support System (DSS3ninntegrated steel company. We
demonstrate that a generic, user friendly stoahagtiimization based DSS can be used for
planning in a probabilistic demand situation. V@aduct a set of experiments based on the
stochastic variability of the demand of finishededt A two stage stochastic programming
with recourse model is implemented in the DSS, tsiled with real data from a steel
company in North America. This application demoaists the need for stochastic
optimization in the process industry. The valuestdchastic solution resulted from the
implementation of steel company real data in th& DS 1.61%, which is equivalent to USD

24.61 million.

Keywords: Decision support system, process industries, opditon, stochastic

programming.
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A Multi-Period Two Stage Stochastic Programming Based Decision Support
System for Strategic Planning in Process Industries:
A Case of an Integrated Iron and Steel Company

1.0 Introduction and Motivation

This research is primarily motivated by earliebleations Fourer (1997), “Dutta & Fourer (2004)",
and Dutta, Gupta, & Fourer (2011) where a multiguepptimization based Decision Support System
(DSS) was developed for process industries. “Fo{r@®7)” described the fundamental principles of
relational database construction to represent eatipprogram. This work was carried forward to
develop single period deterministic optimizatiorheTapplication ranges from a steel company in
North America “(Dutta & Fourer, 2004)”, to a pharmeatical company in Western India “(Dutt

al., 2007)” and even further to an aluminum compariyut{a, Gupta, & Fourer, 2011)” in Eastern
India. The DSS was customized for an integratedl gtant in North-America, and demonstrated a
potential increase of 16-17% in the bottom linehaf company (Dutta, 1996), (Dutta & Fourer, 2004)
for a single period optimization. Similarly, the BSwvas further customized for an integrated
aluminum company and a pharmaceutical company, damonstrated a potential of 6.72% and
12.46% respectively. This high impact demonstrabgd differences in the objective function
motivated us to study the database constructiorciptes and application of stochastic optimization
based DSS for the process industry.

The database design principles and optimizatiomed&SS have been introduced and discussed by
Guptaet al., (2014 in review). In this research, we discus® ltomplex production systems like
integrated iron and steel manufacturing can be tedde a user friendly generic, Stochastic Linear
Programming (SLP) based DSS. We formulate a procehsstry mathematical model using two
stage stochastic programming with recourse. In pliser, the DSS has been tested with real data
from a steel company in North America. Howevergsiiit is generic, it can be used to model any
other similar process industry. This research prilgnéocuses on modeling uncertainty in the demand
for finished goods. However the multi-scenario, tirpkriod DSS is capable of simultaneously
modeling uncertainty in a number of parametershefrhodel including demand for finished goods,

cost of purchase of raw material, sell price ofstied goods, supply of raw materials, etc. This is
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probably the first attempt when a multiple peritachastic programming based DSS has been created

and tested with real data from a process industry.

The application of the stochastic programming 8aB&S demonstrated a significant potential

impact on the bottom line of the steel company. Téwults of the application are discussed using

stochastic programming’s key performance parametkesValue of Stochastic Solution (VSS),

Expected Value of Perfect Information (EVPI), angEcted Value of Expected Solution (EEV). We

investigate the optimization results, and perforoeaparameters to diagnose the reasons for the

change in the value of VSS and EVPI, and the way tthange with reference to the scenarios. We

draw inferences from the patterns of the solutmindifferent stochastic optimization models frone th

aforesaid experiments. The concluding remarks dsdbe impact of modeling uncertainty using

stochastic programming and the challenges in mactipplication. This research is an attempt to

demonstrate the significant impact of optimizatiemder probabilistic demand, and the way the

stochastic optimization can be done in a genericuser friendly manner.

The stochastic optimization based DSS is capabdeldfessing the following questions related to

strategic planning in a steel company:

1. How does the value of stochastic solution (VSShgeawith changes in demand variability?

2. How does the expected value of perfect informafeviPl) change with the increase in demand
variability?

3. How does the VSS change with the change in theedsprobability distribution of demand?

4. How does the EVPI change with the change in therelis probability distribution of demand?

This paper along with the earlier work by Guptaal., (2014 in review) is meant for two audiences.

One is the set of researchers who are trying toeldpvfundamental principles for database

construction for stochastic optimization. The set@nthe set of researchers who are trying to apply

the SLP based DSS in a complex industry like thegited iron and steel manufacturing industry.

1.1 Outline of the Paper

The paper introduces the need for an optimizatesed DSS, and its historical development process

by current researchers in the first section, aneves the literature on the application of modeling

demand uncertainty using stochastic programminthénsecond section. We also discuss the basic
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principles of stochastic optimization. The fundatatelements of process industry modeling and the
assumptions are discussed in a subsequent sesgiciiof 3). The optimization steps for the DSS are
discussed in section 4. In section 5, we discussWwe model demand variability in this research. In
section 6 we discuss the results of the experiméltie application of the two-stage SLP with
recourse model and DSS in a steel company is pesbeand generic inferences are drawn. We
conclude the paper with the future scope of theanesh.

2.0 Literature Review

A survey of stochastic programming by Birge, (19@ryues that using stochastic programming
models, it is possible to make flexible and robumgar optimal” decisions for allocating resources
when faced with an uncertain future. A collectidnrecent SLP test problems for eleven different
families of contexts are discussed in the litematoy Ariyawansa (2004). Another recent survey of
using stochastic programming in supply chain fodelmg demand uncertainty is presented by Sodhi
& Tang (2009). The survey was motivated by stotibgsogramming applications in asset liability
management problems. The study also presentedstange of a stochastic programming model to
manage the risk pertaining to unmet demand. Thesfa¢ the study is more on discrete production
and supply chain planning in contrast to the radegsresented in this paper for stochastic
programming application in continuous productiorfinished steel.

The stochastic models are developed for a variét§ietds including air fleet management by
Ferguson (1955), electrical power generations bgr&h (1984), reservoir water management,
telecommunication network planning by Sen (1994)arfcial planning by Mulvey (1991), and
Mulvey & Vladimirou (1992). A complete review of éhextensive literature on stochastic
programming and its applications in general antha context of process industries in particular is
beyond the scope of this paper. Extensive liteeatan probabilistic modeling and stochastic
programming can be referred to; these include B{1@97), Raghunathan (1992), Frauendorfer
(1992), Marti & Kall (1997).

A recent application of a stochastic quadratic progning model and a decomposition algorithm to
compute an optimal sales policy in dairy farms ohterra, New Zealand has been reported by Guan

& Philpott (2011). The sales policy developed watst tested using simulation against a deterministi
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policy. The model captures uncertainty in the rsilioply, price-demand curves and contracting. The
focus of the research presented in this paper egpphcation of a two stage stochastic programming
in an integrated steel plant; we looked for repbiierature in this area. The application Sumnedxifi

& Dror (2013) is in the context of the biform gamehere a single firm or a number of firms choose
their production capacities as the game’s strateglye first stage, and form coalitions in the s&to
stage to deliver the best value among them. Thdhghapplication is of a two stage stochastic
programming, it is quite different from the progasdustry production planning reported in our
study.

Fourer (1983) describes the algebraic formulatiba single period deterministic model for process
industry planning. In a further extension, DuttaF&urer (2004 and 2008) present a multi period
deterministic model. Dutta & Fourer (2004) testied multi-period model and the optimization based
DSS with a set of real data for a single periodit®et al. (2008), and Dutteet al. (2011)
demonstrated a significant impact using a multiggeplanning model in a pharmaceutical and an
aluminum company respectively with multi-periodadat

As discussed in the review of literature, therem@rklications on modeling uncertainty using SLP in
the airline industry, electric power generationledemmunication network planning, financial
planning etc. The literature reveals that thefétie or no work published on modeling uncertaiimy
process industries using stochastic programmings Thsearch realizes the need to address
uncertainty in model parameters, and extend thei petiod optimization model in Dutta & Fourer
(2004) to develop and implement a two stage SL&D$S.

We find that not much work has been reported onetiog uncertainty using a two stage stochastic
programming based DSS in a process industry. Tineiples of database construction and the design
of DSS have already been explained in our earlggrep Guptaet al. (2014 in review). In this
research, we introduce how the uncertainty in mpdehmeters can be modeled using a user friendly
generic, multi-period, multi-scenario optimizatibased DSS. The focus of the paper is to discuss the
application of the DSS with real data from a precéwdustry. The study primarily focuses on
modeling market demand (upper bounds on the uritinshed goods sold) as an uncertain

parameter. A set of experiments have been desigrtedt the multi-scenario optimization based DSS

e—
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with a set of real data from a steel company froontihN America. The experiments are designed by
varying volatility in the market demand and prollibof occurrence of the most possible economic
scenarios.

2.1 Two-stage Stochastic Program with Recourse

The two stages of the stochastic program are defiyea set of decisions taken in those stages. The
decisions taken in the first stage are the dedsiaimich are implemented before the realizatiorhef t
randomness in the system. The second stage dexiierthe ones which are implemented after the
realization of the randomness. The decisions takéme first stage are non-anticipative in nataeg

do not depend on the outcome of the randomnessfddus of the stochastic programming is to
rectify the decision taken for the first stage welladvance such that the solution remains the same
regardless of the outcome of the random realizatRwaders may note that the profit from the SLP
solution is a long run expected profit, and in shert run, the profit may be a little differentrindhe
profit resulting from the SLP solution. To simplifhe understanding of the two-stage stochastic
programming with recourse, we discuss an examgtghnis the first SLP with recourse, formulated
by Dantzig (1955). The term recourse is definedFogigniere (2002) as the decision variables
adapting to the different outcomes of the randomamaters at each time period. In a stochastic
program with recourse, the response of the randssnoé the model is corrected as a part of the
model. We introduce SLP using the deterministicivalant linear program developed by Dantzig
(1955). It is a generalized two-stage program.

c:= The cost vector of the first stage

c,=The cost vector of the second stage

X,= The first stage decision vector

X,=The second stage decision vector

X, and X are nonnegative decision vectors for all scenarios

p:= The likelihood probability of the occurrence oegario 1

p-= The likelihood probability of the occurrence oegario 2

ps=The likelihood probability of the occurrence oésario 3

Aij =The matrix representing technological coeffigis (assumed to be deterministic)

L —
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Bl

b= The random vector that varies in different sc@sas denoted as

Minimize Expected Contribution Z = {6, + pic;Xo @ + pcoX> @ + pscoX > @) (2.1)
Subject to

AXq = by (2.2)
ApX, + A X, , b®, (2.3)
AxXy + ApX, = b®, (2.4)
ApX, + A X®, , b, (2.5)

A stochastic program with three scenarios is preseabove. The superscript of the second stage
decision vector denotes the decisions in eacheo$tlenarios.

3.0 Process Flow of an Integrated Iron and Steel @apany

The material flow diagram of the integrated stdehpis presented in Figure 1. The integrated pkant
made of a network of facilities (or plants), rurgin sequence and in parallel. The raw materias ar
coal, iron ore, limestone, dolomite etc. Normathw materials (such as coal, ore, and limestone) ca
only be purchased, while finished products (baigts, plates, sheets axles, wheels) can onlyol s

in the market. Intermediates can often neithdsdagght nor sold. To keep our model general, we
define three limits — on amounts bougddld, inventoried — for each material, and alloe th
appropriate limits to be set to zero where no bgyselling or inventorying is possible.

The raw material is transformed at a collectiorfaaiilities such as steel melting shops, continuous
caster, electric arc furnace finishing mills etcvéry small number of raw materials is transformed
into a large range of finished steel through thenalal, heating, and fabrication process. The
finished steel produced varies in shape, size,cantposition which enhances their sell price with a

very wide variation, and thereby the scope of ojattion.
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Figure 1: Typical Material Flow for Production of a Final Product in Steel Plant

3.1 Definitions

The SLP model has six fundamental elements. Weibdesthe model elements in brief as follows:
Times are the periods of planning horizon, represenyediscrete numbers (1, 2, 3 ...).

Scenarios are the possible outline of a hypothesized chia@vents.

Materials are the physical items that figure in any of tledpction stages. A material can be an
input, intermediate, or finished product,

Facilities are the collection of machines that produce onenore materials from the other. For
example a Hot Mill that produces sheets from sialasfacility.

Activities are the productive transformation of the materiatch facility houses one or more

activities, which uses one or more input and predunaterials in certain proportioris.each activity

Ce—
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at each time, we have one or more input materiilsgttransformed into various output materials.
Production of hot metal at a blast furnace and pectdn of billets at a rolling mill are examples

of activities.

Storage-Areas are the places where raw materials, intermediatédinished goods can be stored.

In line with our earlier research, Dutta (1996)d &utta & Fourer (2008), we have added Scenarios

as an additional fundamental element as describ€iptaet al. (2014 in review).

3.2 Modeling Assumptions

The following assumptions are applicable to the etod

1. There are several facilities, which are in seriasparallel, or in a combination of series and
parallel.

2. In each facility, there is either one or more tbae activity.

3. There can be purchase, sale and storage of matatidhe raw materials stage, intermediate
processing stages, and finishing stage.

4. The purchase price of raw materials, the sellingepof finished goods, and the inventory
carrying costs vary over time and may also varyhwiiie stages of production such as raw
material supply, intermediate, and finishing.

5. At any time, a facility may use one or more materas input and output. Generally more than
one material is used to produce one product. Tlagivre proportion of various inputs and outputs
(generally called technological coefficients) in aetivity remains the same in a period.

Technological coefficients may vary with time.

Cee—
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Figure 2: Database Structure of a SLP based DSS

6. The capacity of each facility, each storage-ardmiie.

7. As the facilities may have different patterns ad\ntive maintenance schedules, the

capacity of the machines may vary over a periothod.

8. The demand variation of the final finished produstsepresented by a discrete probability

Page 11 of 38
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distribution.

4.0 Optimization

The end-to-end optimization process requires geinaraf the stochastic optimization model in the

form of variables, constraints, and coefficientssfiusing a matrix generator, which is then comrdert

to a MPS (CPLEX compatible input) format. The outpiithe optimizer is updated in the appropriate
fields of the database using the report writer. Ste@s of optimization are described below.

4.1 Optimization Steps

A typical process of optimization is described istap by step procedure. The principle steps are as

follows; see Figure 3.

1. Data describing manufacturing operation at differeme periods and potential scenarios is
collected and entered at appropriate files in ifferént files in the DSS.

2. Constraints of the SLP are generated in the [Caimé# file. The constant terms of the equations,
inequalities, LoRHS, HIRHS (ranges) are extracteomf the database and stored in the
[Constraints] file.

3. Variables of the associated SLP are generatedeif\Mariables] file in the DSS along with their
coefficients in the constraints. The data valuestlie lower bound, upper bound and objective
coefficient associated with the decision variabkes] the coefficients, are extracted from the
company’s data [entered in step 1 above] anddtiorehe [Variables], and [Coefficients] files
respectively.

4. The [Constraints] and [Variables] files are scanaed all of the essential information about the
linear program (LP) is written to an ordinary tdke in a compact format. This text file is the
input file to our solver.

5. The optimizer reads the LP from the input text fjjenerated in the MPS format (a CPLEX
compatible format). An optimal solution is genedagand the output of the optimizer is written in
another ordinary text file.

6. The output text file is read and the optimal valaes written at appropriate fields in the database

tables.

ee—
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Figure 3: Steps of Optimization

4.2 Features of the Multi-Period, Multi-ScenarioDSS

A detailed discussion on database constructiorciptes for SLP based DSS, and the features of the
DSS are discussed in our earlier publication Geaptl. (2014 in review). In this research, we state
the features of the SLP based DSS in brief.

1. The SLP model and SLP based DSS is so generiatthibws modeling: single scenario,
single period; single scenario, multiple period;ltiple scenario, multiple periods; and in
different process industries by changing the ingustal data.

2. The key strategic decisions that the DSS can asldaes impact of prices and costs
parameters on the final optimal product mix, idécdtion of bottleneck processes,
diversification decisions, and the economic viapitif a product promotion campaign.

3. The DSS is equipped with a set of diagnostic ruldge diagnostic rules were designed to
ensure that the optimization data entered in th& EScompletely error free before it is
processed by the CPLEX optimizer.

4. Data retrieval and storages procedures are theatifiéatures of this DSS.

5. The core task of this DSS are generation of tha tatthe [Constraints], [Variables], and
[Coefficients] file as mentioned in section 4.

6. The DSS is operated in three different modes - Dapaate, and Optimal.

a. TheData mode is used for entering and loading the comgpegific data, and scenario

specific data.
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b. TheUpdate mode is used to update the parameter valueslgitedhe variables,
constraints, and coefficients files. The featuréhefUpdate mode saves the total time

required to regenerate the SLP model; see Figure 4.

-
¥- SLP_DSS.4DB - 4D Developer - [Application]
EFHE Edit Mode Model Data Solve Import Help

B 2

Materials Times-Scenarios Update

SAVE
15 of 1896
Material Name :
FIRST
Material ID: 102
LAST
PREVIOUS Scenario Name ;
Scenario ID : 1
NEXT
Time Name :
Time ID : 3
CANCEL
DELETE Buy Min : 0 SellMin: 0| Inventory Min : i}
Buy Max : 0] SellMax: 462.57352 Inventory Max @ /999999909
Buy Price :|1220.3343]  Sell Price :|1220,3343] Inventory CCost :|39.752778;

A

Figure 4: Materials Time Scenario Update Layout
c. In the Optimal mode, a user can see the optimal solution anaptienal summary of
the cash flows. We report cash flows as nominaldiscounted cash flows. The issues
related to data reporting, data loading, and dptiates can be referred to in detail in the

authors’ earlier publication Dutta & Fourer (20083e Figure 5.

¥- SLP_DSS.4DB - 4D Developer - [Application]
mFiIe Edit Mode Model Data Solve Import Help

MG 2 eH

Materials Times-Scenarios Optimal

SAVE
51 of 1896
Material Name :
FIRST
Material ID: 113
LAST
PREVIOUS Scenario Name :
Scenario ID : 1
NEXT
Time Name :
Time ID : ]
CANCEL
in : in : Inventory Min : u]
DELETE Buy Min : 0/ Sell Min : u] Y
Buy Max : 0 SellMax:| 275525 Inventory Max: (399999999
SENSITIVITY Buy Price :332.05144| Sell Price : 822.05144| Inventory CCost :|45.549756]
Buy OPT : 0| Sell OPT : 27362.5
Inventory OPT : 0| Material DUAL : TH3.776157

Figure 5: Optimal Solution Reporting Layout of Material Time Scenario Layout
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5.0 Defining Models and Designing Demand Scenarios

In this section, we define the instances of thapation model, and the model's nomenclature. We
also design different demand scenarios based ovothglity in demand and change in probability of
demand scenario occurrence.

5.1 Instances of Stochastic Optimization Model

To measure the performance of the solution of thehsistic optimization model, we compare four
solutions - Mean Value solution Z), Perfect Information solution g4, SLP solution (4.5 and
Expectation of Expected Value solution:£9. They are described below:

1. Perfect Information Solution (Z5): This is the expected value of the solution frormhescenario
planning model individually solved as a multipledpd optimization model. The expected value of
the solution from each scenario planning modekigwined as the weighted average of the solution
of the individual scenario model with their corresgding probabilities as the weights . In stochastic
programming literature the solution is also knowraawait and see' solution. This solution may not
be implementable.

2. Mean Value Solution (Zyy): This is the solution of the multi-period optimizan model in which
uncertain demand parameters are replaced by tleetxpvalue of the demand. The mean value
solution may neither be feasible nor be achievabfgactice. In most of the instances it would &e f
from the realized solution.

3. Stochastic Linear Programming Solution (£.p): To capture the uncertainty in demand of
finished steel, a deterministic equivalent (DEg&n program is generated and solved. The solufion o
this model is called a stochastic solution. The SaRation in stochastic programming literature is
known as thehere and now’ solution.

4. Expectation of Expected Value Solution (Zv): This is the solution of the SLP where first stage
decisions are fixed and replaced with the optinadli® of the first stage decision variables of the

mean value model.

ee—
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5.2 Modeling Uncertainty

The modeling is done based on the assumption likafuture is unknown and uncertain. The model
sensitive parameters like demand and sell pricetheffinished steel may attain a different value
based on the economy of the local geography.

We assume three economic situations for the purpbseodeling in this study. First, there is an
economic crisis, and therefore the demand of thisHed steel is poor in the market. We call this a
poor (Low) economy. Second, there is not much tianain the economy. The demand of the
finished steel is as regular as expected. We luialisituation a regular (Reg) economy. Third, thisre

a boom in the economy therefore the demand fostied steel is strong in the market. We call this
situation a strong (High) economy. While modeliadj, the three economic situations need to be
considered, because any of these may occur witrelift probabilities.

To conduct the experiments on stochastic progragynaind optimization based DSS, we design a set
of scenarios based on two primary assumptionsjnim With Leunget al. (2006). The Cartesian
product of the three cases in Table 1 and Tablach eesult in a total of nine scenarios (Table 1 X
Table 2). Each scenario captures the three econsitm@tions named as Low, Regular , and High.
The following are the assumptions behind generdtisge scenarios:

1. Assumption I The probability of occurrence of economic sitaa comes from a
probability distribution. We assume three probapildistributions. A pre-determined
probability value is assigned to each economicasibn based on the assumed probability
distribution; see Table 1, Figure 6.

2. Assumption 2 The demand magnitude corresponding to the Low High economic

situation is evenly defined around the regular ecain situation; see Table 2, Figure 7.

Scenario Cases Economic Situation-> LOW REG HIGH
Case i (Right Skewed) 0.75 0.15 0.10
Case ii (Equally Likely) 0.33 0.33 0.33
Case iii (Left Skewed) 0.10 0.15 0.75

Table 1: Definition of Scenario Designs Generated

Cee—
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0.80 0.75 Probability Distribution 0.75
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Figure 6: Three Different Probability Distributions of Demand

Demand Cases Economic Situation-> LOW REG HIGH
Case 1: 20 % Demand Volatility 80% of D D 120% of D
Case 2: 30 % Demand Volatility 70% of D D 130% of D
Case 3: 40 % Demand Volatility 60% of D D 140% of D

Table 2: Definition of Random Demand Occurrence Cass Corresponding to Scenarios

1.20
1.00 {120%:}
(10D} N
AN
LOW REG HIGH

Figure 7: Demand Distribution at 20% Demand Volatilty
5.3 Important Parameters of the Stochastic Solution
The impact of optimization under uncertain demasdmeasured using the key performance

parameters of stochastic programming:

Cee—
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1. Value of Stochastic Solution (VSS)VSS is equal to the difference between thg And Zegy.
VSS is the impact on net (contribution to) profthem the available information is neglected.

2. % Improvement in NP: This signifies the percentage improvement in neh{ribution to) profit
from SLP. This is the value of VSS in terms of gettage of Zev.

3. Expected Value of Perfect Information (EVPI): This is equal to the difference between the Z
and Zp.

6.0 Application of the DSS in the Steel Company

We describe the application of the SLP model itealscompany. The company is an integrated steel
plant with an annual turnover of USD 1400 millietéted in North America. The company produced
104 final products. To demonstrate the scope dfropation, we describe the range of different

parameters (See Table 3).

Production Parameters Model Parameters

Annual Turnover (Million USD) 1,400| Number of Variables 44100

Annual Production (Tons) 860,000| Number of Constraints 40472

Sell Price Ratio 7.38 | Number of Coefficients (Non zeros) 168600

Market Demand Sparseness

Ratio 1,841.12| (LP Density — Non zeros) 0.0094%

Buy Price Ratio 147.99| Number of Materials 632

Facility Activity Ratio (T/H) 3,240.83| Number of Facilities 56

Activity Cost Ratio (US USD

/Ton) 178.57| Number of Activities 1286
Number of Planning Periods 3
Number of Scenarios 3

Table 3: Industry Characteristics and Optimization Variability

6.1 Impact of Stochastic Programming in Steel Compgy

To illustrate the impact of SLP in the steel compame discuss the results of the scenarios (20%
demand volatility with equally likely occurrence edich scenario); see Table 4, Figure 9. The results

of SLP for the above mentioned scenario are predantthe column chart below; see Figure 8:

O e—
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Planning Total Costof | CostoflInv| Cost of Net
Total Steel
Periods Revenue| Purchases| Carrying Activities Profit
Million | Million Million Million Million
Unit Tons
UsSb | USD uUsD UsD UsD
Grand Total | 3,295.4 801.3 121.1 742.4 | 1,630.5 | 2,182,111
Unit Basis 1510.2 367.2 55.5 340.2 747.2
Scenario: L 1,080.4 266.5 40.4 244.2 529.3 2,190,010
Scenario: R 1,102.5 266.8 40.2 248.9 546.5 2,177,2p7
Scenario: H 1,1125 268.0 40.5 249.3 554.6 2,179,0B5

Table 4: Equally Likely Scenario, 20% Demand Volatity

Note: The above table should be replicated for a Cartesian product of demand variability of 20%,

30% and 40%, and the three probability distributions like |eft skewed, equally likely, and right

skewed
1,645 1 Selution (Million USD)
1,640 { R T
1,635 -
RRRRLRKRALY w
RIERILRE - n 21 998
1,630 - RS < Loss:mn 2199
R
1,625 - 1,640.92
1,620 1,630.50
1,613 A
RRBEE
1610 asieleleteloleleds!
Mean Value Perfect Information Determinstic EEV
Equivalent

Figure 8: Results of SLP Model for an Equally Likely Occurrence and 20% Demand Volatility

1. One would only solve a MV problem, when the infotima about the future is not available, and
expect to achievey (USD 1,640.9 million), while once the planning tzon is over, one would
end up realizing only £y (USD 1,618.9 million). A loss of (& — Zggy) USD 21.99 million is

incurred due to the non availability of any infortioa about the future.
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2. The Zyv is highest among all the solutions namely, ZZq, Zsip, and Zgy. This indicates that
practically Z,v (USD 1640.9 million) can never be realized. In livdg run, one can only realize
the %, (USD 1633.9 million) even with the availability pérfect information.

3. The impact of stochastic programming is measureteims of VSS (USD 11.6 million), the
improvement in net (contribution to) profit byZ compared to Z,. The VSS as a percentage of
Zeey is 0.71%.

4. There are instances when it is possible to geepeififormation about the future and know with
certainty which scenario would occur. In theseaitins we are expected to achieve a long run
solution as £ (USD 1,633.9 million). When we use the partialsagable information about the
future scenario occurrence, we are able to achigyve (USD 1,630.5 million). The expected
value of perfect information is the difference betn %, and Z »(USD 3.4 million).

5. In most practical situations, buying partial inf@tion (scenario forecasts) about the future with a
significantly low investment is a feasible optiowhile the value derived using the patrtial
information is significant i.e. VSS (USD 11.6 noifi).

6. The opportunity for buying perfect information frothe market is practically close to zero.
Alternatively, one needs to incur an infinite ambahmoney to buy perfect information, whereas
the marginal value derived using such informatiompared to partial information is very small,
that is, EVPI (USD 3.4 million).

6.2 SLP Model Validation

According to the principles of stochastic programgnf(Birge, 1997)", the order of solutions should

follow a decreasing trend as follows\{Z>= Zp >= Zgp >= Zgey) for a SLP with maximization

objective. The optimization results from the apgiion in a steel company in this research confirm
the results in line with the principles of SLP. Theder of solution reverses for a minimization
objective SLP. It can be inferred from the abovalgsis that the PI solution is a long run expected
profit and is a ‘wait and see’ type of solution.dg¢n an immediate solution implementation situation,
one may like to obtain a solution which takes ladl €xpected scenarios into account, and provides a

single solution for the first stage i.e. a ‘heredamow’ solution. The SLP provides a single

Ce—
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implementable solution for the first stage; in diddi, it also ensures the maximization of totalfipro

under the occurrence of any scenario.

e—
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Probability Distribution

Right Skewed (R)

Equally Likely (E)

Left Skewed (L)

Demand Volatility Cases> 20% 30% 40% 20% 30% 40% 20% 30% 40%
Model Instances 1 2 3 1 2 3 1 2 3
Pl Mn $ 1605.3 1579.5 1551.4( 1633.9| 1626.3| 1617.1| 1658.5| 1665.0/ 1669.8
MV Mn $ 1610.3] 1591.2| 1567.8| 1640.9] 1640.9| 1640.9| 1661.2| 1670.5| 1679.4
SLP Mn $ 1603.8) 1577.1| 1548.5| 1630.5| 1621.3| 1610.5| 1654.0| 1658.5| 1661.0
EEV Mn $ 1593.2| 1563.9| 1523.9| 1618.9| 1604.8| 1587.1| 1646.4| 1646.4| 1644.8
VSS Mn $ 10.6 13.2 24.6 11.6 16.5 234 7.6 12.1 16.2
VSS (% of EEV) % 0.67%| 0.84%| 1.61%| 0.71%| 1.03%| 1.47%| 0.46%| 0.73%| 0.98%
EVPI Mn $ 15 24 2.8 3.4 5.0 6.7 4.5 6.5 8.8

Table 5: Results of Experiments from Multi-ScenarioPlanning (Mn means million)

Note:

1. Demand variability 20%, 30%, and 40% is indexed @& and 3

2. R, E, and L stands for Right Skewed, Equally Likelyd Left Skewed respectively

3. PI, MV, SLP, EEV stands for Perfect Information, &nevalue Solution, Stochastic Programming Solution Expectation of Expected Value

W.P. No. 2014-04-04
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Figure 9: Stochastic Optimization Results over Inceasing Volatility of Demand

We attempt to draw inferences from the incremevrdale of net (contribution to) profit when demand

volatility increases from 20% to 40% (Table 5). Timportant inferences from different solutions due

to a change in demand volatility from 20% to 40% Izsted as follows; see Figure 10, and 11.

1.

The 7, decreases from USD 1633.9 million to USD 1617.lliani, while Zg p decreases from
USD 1630.5 million to USD 1610.5 million. The EViPkcreases from USD 3.4 million to USD
6.7 million. The increase in EVPI is primarily dteea steep reduction insg compared to the
Zp.

The Zgy decreases from USD 1618.9 million to USD 1587 .lliani, however the VSS increases
from USD 11.6 million to USD 23.4 million. The irease in VSS is primarily due to the steep
rate of reduction in gy, compared to the p.

The Z, remains unchanged while there is a significanteiese of USD 31.9 million inggy.
One expects to obtainyg (USD1640.9 million), but would end up achievingyoZeey (USD
1587.1 million); see 40% demand volatility casel€eb).

The VSS, % improvement in NP, and EVPI shows amease of USD 11.8 million, (0.76
equivalent points), and USD 3.3 million respectyvel

The increase in VSS (USD 11.8 million) is signifilg higher than the increase in EVPI (USD

3.3 million).
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The experiments demonstrate that an increase iadfadility in demand of finished goods increases
the VSS; see Figure 10. ThegZ decreases, while VSS and EVPI increase with tlceea@se in
demand volatility. It is also interesting to obseithat the rate of increase of VSS is significantly
steeper than EVPI with reference to the increaskeinand volatility. The results are consistenhim t
remaining experiments of probability skewness, thatight skewed, left skewed. As the volatilitfy o
demand of finished steel increases, the total trion from SLP consistently decreases; see Figure

11.

Value of Stochastic Solution (Million $)

Demand Volatility

10% i i : : : : i

Right Skewed Equally Likely Left Skewed

Figure 10: Trend in VSS over Increasing Volatilityof Demand

O ee—
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.
0% Stochastic Solutions (Million $)

40% \ , 1,549 o 1,610
30% \ ) 1577 o 1,621
20% - ’ 1,604 o 1631

10%

1654

Right Skewed

Equally Likely

- Left Skewed

Figure 11: Decrease in Total Contribution from Stobastic Optimization over Increasing

Demand Volatility

6.4 Trend Analysis over Probability Distribution

We observe that the VSS is the lowest when theghitity of occurrence of a high demand situation
is the highest, that is, left skewed probabilitgtdbution. This indicates that as the probabibfy
occurrence of a lower demand situation increadesyVES increases. The impact of optimization on
the VSS using stochastic programming becomes misielaz Companies are expected to be more
concerned about profits when the probability of woence of low demand is a little high. This
indicates that it makes more sense to apply opditiciz when the probability of occurrence of a low
demand situation is high.

We also attempt to identify a pattern in the VS$wai change in the discrete probability distribatio
The VSS is highest in an equally likely scenario tlte 20% and 30% demand volatility, but it is
highest in the right skewed situation for the 40@tndnd volatility. We report that it is difficult to
find any specific trend in the VSS when the prolighbdistribution changes. To study the pattern,
more experiments with different process industef data may be required.

It is interesting to note that the EVPI consistgmticreases with a change in the discrete prolwabili

distribution from a right skewed to a left skeweshtnd situation. The EVPI is the highest with the

O eee—
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left skewed probability situation (followed by edjydikely and right skewed probability situations)
in each of the three demand volatility cases, i§aP0%, 30%, and 40%. The investigation of this
pattern reveals that the EVPI is high when the abdltly of occurrence of high demand volatility
case is high. This reasoning is applicable tohalthree demand volatility cases, that is, 20%, ,30%

and 40%.

50%

40%

30%

20%

10% i i i i
Right Skewed Equally Likely Left Skewed

Figure 12: Changes in EVPI with the change in theidcrete probability distribution

Figure 12 clearly shows that the £ increases with the increasing probability of higémand
situations (Right skewed to Left skewed distribn}ioThe £gy increases at a steeper rate thagp Z
with the increase in the probability of occurrenédigh demand situations (i.e. Right skewed tb lef
skewed distribution). One may notice that when phebability of occurrence of a low demand
situation is high, one plans for anZ but realizes Z.. The difference in 4, and Zg, happens to be
more due to incorrect first stage decisions. The 8brrects the first stage decisions in such a way
that the losses due to,Z expectations are minimized and the VSS is maxichix¥hen the high
demand situation occurs with a high probabilityooturrence (left skewed distribution), thegZ
starts approachingsg and thereby the VSS in this situation is lowentttze VSS in the right skewed

probability distribution.
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7. 0 Conclusion and Limitations

The focus of the study was to model a process tnglu'sa demand uncertain environment. The paper
presented the application of a two stage stochgstigramming with recourse model in a steel
company in North America. While there have beeressvstudies on SLP, we did not see much
reported work on a SLP based DSS and its applicatith real data in industries in general, and
process industries in particular. In this paper, we&e made an attempt to bridge the gap, and
demonstrate the impact of SLP using a user frieDd$.

1. The uncertainty in multiple input parameters can fnedeled using the stochastic
programming based generic DSS. In this researchdegigned a set of experiments by
varying the volatility of the demand of finishedagts by a pre-defined value and likelihood
occurrence of the only demand scenarios.

2. The size of the model increases significantly wifte increase in the number of uncertain
parameters in the model. To deal with the speednoflel generation, we designed and
developed a relational database structure Getatla, (2014, in review); see Figure 2.

3. The implementation of the multi-scenario model e tDSS demonstrated a significant
potential to improve the company’s (contributioh poofit.

4. A typical observation was that the profit from tgplication of the stochastic programming
solution (in terms of VSS and EVPI) increases with increase in the spread of demand
distribution.

5. The optimization results of the application in 8teel company conforms with the theory of
two stage stochastic programming.

6. Another important inference is that the VSS is vaigh in a right skewed probability
distribution as compared to the left skewed distidn (Table 5). This emphasizes the need
for stochastic programming in an uncertain demaitdatson to improve profitability,
especially when the probability of occurrence @ libw demand situation is very high.

7. A consistent pattern in EVPI is observed, thaEMPI is the highest in the situation when the
probability of occurrence of high demand is higeft(skewed) in each of the three demand

cases, that is 20%, 30%, and 40%.
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This research describes the inferences from thécatipn of SLP in a steel company. All of the
inferences cannot be generalized to the applicatfcstochastic optimization in other industries and
contexts. To generalize these inferences, one nemate evidence and results from multiple
application instances. The results cannot be gbredabecause the optimization results are an
outcome of a multiple set of varied inputs likeiliac capacity restrictions at many facilities and
stages, supply, demand, and storage space restsiéti different scenarios etc. The spread of these
model parameters may change in different contexid so will the optimization results and
inferences.

We demonstrate that the application of stochastiggamming in process industries can result in a
significant impact on the profits of a company, eessful use of the technique involves facing
several challenges. The potential variability ind®l parameters is a known fact; however, finding
multiple sets of reliable data corresponding toititevidual economic situation and scenarios is one

of the biggest challenges in modeling uncertaising stochastic programming.

8.0 Extensions
The current research of multi-scenario, multi-peggtanning has a number of potential extensions.

1. The SLP based user friendly DSS has been curréedghed for uncertainty in demand of
finished steel. The DSS being generic, it may kerasting to test the DSS for modeling
uncertainty in multiple input parameters simultamsdy, for example, demand and sell price
of finished steel, cost of purchase of raw materdald so on.

2. This research considers only three empirical pritibatdistribution instances to test the DSS.
A large number of different realistic probabilitistfibutions can be attempted, and a Monte
Carlo simulation in the SLP based DSS may revdatésting trends and inferences from the
results.

3. The application of this SLP based DSS in multiplecpss industries for strategic planning

can lead to the generalization of observationdtiagurom this research.
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4.

Uncertainty in multiple parameters of the modeluding supply of raw materials, costs of
raw material purchase, and price of selling finslgpods can be modeled using stochastic
programming.

One may like to model the non-linear behavior aftsavith an increasing scale of operation.
The non-linearity may further be extended to masteler a demand uncertain environment.
The process industry modeling using fuzzy LP aratyustochastic linear program can be a
worthwhile extension of this research.

The development of a SLP based DSS for an intedjratgply chain planning and its
application with real data from a process industig be another interesting extension to this
research.

The SLP can be explored in asset liability modelmgl capture the uncertainty in model

parameters.
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Appendix

Model Formulation

We define sets, parameters, variables, objectinetion and constraints of the SLP as follows.
Time Data: T={1... T} is the set of time periods in the planning horizasndexed by t

p is the interest rate per period in each of theade |, taken as zero if there is no discounting
Scenario Data:L= {1... L} is the set of scenarios in the planning horizadexed by

pi is the probability of occurrence of the scenario

Materials Data:

M is the set of all materials, indexed by j

buy buy buy
| i U Cji are lower limit, upper limit, and cost per unit wiaterialj purchased, for each

JOOM, 100L, and tCIT respectively

sl sl sl
I it van ,let are lower limit, upper limit, and revenue per uoft materialj sold, for each

JOOM, 10L, and tCIT

inv inv inv
| it Ui - Cjy are lower limit, upper limit, and holding cost perit of materialj inventoried, for

each j(IM, ICIL,and tCOT

inv
Vj0 = initial inventory of materiaj, for eachjIM

M “" O{jOM, 'OM : j#'} is the set of conversions:
NOM ™" means that materiakan be converted to materjal
a?ﬂv = number of units of materigithat result from converting one unit of matejjal

for each, DO M ", | OL, tOT

conv

ijlntv = cost per unit of materigbf conversion from toj', for each |, j’)O \/] , 1O, taT

Facilities Data: F is the set of facilities, indexed by i

Cee—
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|ﬁ?p uﬁ?p are minimum, and maximum unit of capacity of fagili that must be used, for each

i0F, I0L,and tCIT respectively
cap , : : . :
Ci; = cost of outsourcing a unit of capacity at fagilitfor eachidF, 0L, and tCIT

in .
F OF is the set of facility inputsi,(j)U = " that materiaJ is used as an input at facility

in in
I it » andJ ijir are the minimum, and maximum amount of matgrialat must be used as input to

facility i, for eachi( j)J F "o, tOT

it
FOUt OF is the set of facility outputs, ()0 F > that materia) is produced as an output at facility

out out
I ijic and U, are the minimum, and maximum amount of matgriaat must be produced as output

out

at facilityi, foreachi( )0 F  , 4L, tOT

Activities Data: A is the set of activities, indexe by k
act . . . Lo
F O{(i, kK): i0OF} is the set of activities:
i, KO |F ™ means thak is an activity available at facility
| ?J: , uﬁi are the minimum, and maximum number of unitaadivity k that may be run at facility
for each {, WO F **, 1L, tOT
act . . . - . act
C.: - the cost per unit of running activiyat facility i, for each i, k)O F O tOT
r ?ki = the number of units of activity that canameommodated in one unit of
. ey . act
capacity of facilityi, for eachi( k)OI F O, tOT
in in act
A okt 6o GwoF T tomis the set of activity inputs:

i, Kk t)O Ammeans that input materipis used by activitk at facilityi during
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time periodt

a:jnkh = units of input materiglrequired by one unit of activityat facilityi in time
Periodt, in scenarid , for each L, and (, j, k, t)0 Ai”

AMO{G, 0k D: (,DOE™ (, WO F ™, tOT} is the set of activity outputs:

i, j, k t)O A°”t means that output materjak produced by activiti at facility i

during time period

out
a’ijklt = units of output materiglproduced by one unit of activikyat facilityi in time

out

Periodt, scenario |, for eachlIL, and (, j, k, t)[J A

Storage-areas DataS s the set of storage areas, indexed by s.

stor
ot = lower limit on total material in storage asedor eachd ]S, I[IL,and tCIT

st
udfr = upper limit on total material in storage aseéor eachs IS, I[IL,and tCIT

Variables

buy sl inv . . . .
let let andeIt are the units of material bought, sold, and inventoried for each

JOOM, 100L, and tCIT respectively

stor

stlt = units of materiglin storage ares, for each jLIM , SJS,|00L, and tCTT

inv

on = initial inventory of materigj, for eachjCzIM
X?ﬁv = units of materigl converted to materig, for eachj( j)ON " . 14L, tOT
X:jr:t = units of materiglused as input by facility for eachi( j)U = "o, taT

out

Xijlt = units of materigj produced as output by facilityfor each i j)O N Vo I

act

Xt = units of activityk operated at facility, for eachi; k)0 =

act

O tOT
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cap
Xirt = units of capacity vendored at facilifyffor eachillF, ICIL,and tCIT

First Stage Variables

b

legy = units of material bought, for eacf1M, in first period
sl . . : i .

le = units of materia] sold, for eachlOM, in first period

Xf;(;r = units of materiaj in storage ares, for eachhUM, €1S in first period

inv

i = total units or materiglin inventory (storage), ror eagnivi, In Tirst perio

J total units of materiglin i tory (storage), f ¢aM, in first period

conv . . .. o conv . . .

i = unlits or material converied to materidl, 1or eac , IN TIFST perio
X ts of materiaj ted t terigl, f hiti"OM first period

Xl,r} = units of materigj used as input by facility for eachi( j)U = " in first period

out

Xﬁ}’t = units of materigj produced as output by facilityfor each i j)U = ™ , in first period

X]?f = units of activityk operated at facility, for eachi; k)\O = **in first period

chiap = units of capacity outsourced at facilityfor each [F, in first period

Objective
Maximize the sum over all time periods of revenéresn sales less costs of purchasing, holding

inventories, converting, operating activities atilfiies, and cost of operating facilities:

zy = ezl

loLoT Objective function for nominal cash flows Eq. (1)

2 = T[Tz
1oL AT Objective function for discounted caksiwk Eq. (2)
Where,
buy  buy inv_inv conv
Z(l’t) z ]ItX]It ZC,nX,n Zlethlt B z C“n it Z C|k|t
jOom jom (i, ])DM @, k)EIF
cap _ cap
) ZCiIt Xi
i0F Eq (3)
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Constraints
For eachjM, | 0L and tdT, the amount of materigl made available by purchases, production,
conversions and beginning inventory must equalatmeunt used for sales, production, conversions
and ending inventory:
buy out conv_ conv inv
let + Z met + z A i Xjin t X+
(.HIF"° (G Y
- o in L onv inv
- let Z v Xijlt Z ij’lt XJ” Eq. (4)
(.o " G.oM ™ '

For eachi( j)U F ™, 10L andtOT, the amount of input used at facilityy must equal the total

consumption by all the activities at facility

in _ in act
Xijlt - Z ina,ijkltxiklt
(A Eq. (5)

out

For eachi(j))0F ™~ , I OL and €T, the amount of outpytproduced at facility must equal the total

production by all the activities at facility

out out act
Xijlt - 2 aijkItXikIt
Q.jktoA™ Eq. (6)
For eachUF, | 0L andtdT, the capacity used by all activities at facilitynust be within the range

given by the lower limit and the upper limit pliretamount of capacity vendored:

ca act act cap
e < Z N Xia! TiaeSUse *+ i Eq. (7)
(OF

For eachjIM, the amount of material inventoried in the plagitdoe the first time period is defined to

equal the specified initial inventory:

inv inv
Xio = Vjo Eq. (8)
For eachjOM, | 0L andtOT, the total amount of materiglinventoried is defined as the sum of the

inventories over all storage areas:
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2 X = X £q. (9)

For each §S | 0L andtT, the total of all materials inventoried in storageas must be within the
specified limits:

stor

I stor
st

stor
<> Xist =Ug Eq. (10)

oM

Implementability (Non-Anticipativity) Constraints

buy buy

let = X1j for each of th¢(OM, | ZL andt = 1 Eq. (11)
sl sl

let = X]_j for each of th¢(OM, | 2L andt = 1 Eqg. (12)
stor stor

stn = les for each of th¢(OM, s//Sl/Landt= 1 Eq. (13)
inv inv

let = le for each of th¢[IM, | ZLandt = 1 Eq. (14)
conv conv conv

X = Xjj foreachj,j)OM ™", 17L, andt= 1 Eq. (15)
in in Yo in

Xijlt = X1ij foreach(,))OF " ,I/L,andt=1 Eq. (16)
out out Yo in

Xijlt = X]_ij foreachi(j)UF ", I[L, andt=1 Eq. (17)
act act ) act

Xit = X1ik for each(i, ) ™, 1L, andt = 1 Eqg. (18)

cap
X;Tp = X1i foreach ZF, /L, t=1 Eq. (19)

All variables must lie within the relevant limitsqunds) defined by their respective bounds.
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