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Abstract 

The paper introduces the application of a generic, multiple period, two stage stochastic 

programming based Decision Support System (DSS) in an integrated steel company. We 

demonstrate that a generic, user friendly stochastic optimization based DSS can be used for 

planning in a probabilistic demand situation.  We conduct a set of experiments based on the 

stochastic variability of the demand of finished steel. A two stage stochastic programming 

with recourse model is implemented in the DSS, and tested with real data from a steel 

company in North America. This application demonstrates  the need for stochastic 

optimization in the process industry. The value of stochastic solution resulted from the 

implementation of steel company real data in the DSS  is 1.61%, which is equivalent to USD 

24.61 million.  

Keywords: Decision support system, process industries, optimization, stochastic 

programming. 
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A Multi-Period Two Stage Stochastic Programming Based Decision Support 

System for Strategic Planning in Process Industries: 

A Case of an Integrated Iron and Steel Company 

1.0 Introduction and Motivation 

This research is primarily motivated by  earlier publications Fourer (1997), “Dutta & Fourer (2004)”, 

and Dutta, Gupta, & Fourer (2011) where a multi-period optimization based Decision Support System 

(DSS) was developed for process industries. “Fourer (1997)” described the fundamental principles of 

relational database construction to represent a linear program. This work was carried forward to 

develop single period deterministic optimization. The application ranges from a steel company in 

North America “(Dutta & Fourer, 2004)”, to a pharmaceutical company in Western India “(Dutta et 

al., 2007)” and even further to an aluminum company “(Dutta, Gupta, & Fourer, 2011)” in Eastern 

India. The DSS was customized for an integrated steel plant in North-America, and demonstrated a 

potential increase of 16-17% in the bottom line of the company (Dutta, 1996), (Dutta & Fourer, 2004) 

for a single period optimization. Similarly, the DSS was further customized for an integrated 

aluminum company and a pharmaceutical company, and demonstrated a potential of 6.72% and 

12.46% respectively. This high impact demonstrated by differences in the objective function 

motivated us to study the database construction principles and application of stochastic optimization 

based DSS for the process industry. 

The database design principles and optimization based DSS have been introduced and discussed by 

Gupta et al., (2014 in review). In this research, we discuss how complex production systems like 

integrated iron and steel manufacturing can be modeled in a user friendly generic, Stochastic Linear 

Programming (SLP) based DSS. We formulate a process industry mathematical model using two 

stage stochastic programming with recourse. In this paper, the DSS has been tested with real data 

from a steel company in North America. However, since it is generic, it can be used to model any 

other similar process industry. This research primarily focuses on modeling uncertainty in the demand 

for finished goods. However the multi-scenario, multi-period DSS is capable of simultaneously 

modeling uncertainty in a number of parameters of the model including demand for finished goods, 

cost of purchase of raw material, sell price of finished goods, supply of raw materials, etc. This is 
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probably the first attempt when a multiple period stochastic programming based DSS has been created 

and tested with real data from a process industry.  

The application of the stochastic programming  based DSS demonstrated a significant potential 

impact on the bottom line of the steel company. The results of the application are discussed using 

stochastic programming’s key performance parameters like Value of Stochastic Solution (VSS), 

Expected Value of Perfect Information (EVPI), and Expected Value of Expected Solution (EEV). We 

investigate the optimization results, and performance parameters to diagnose the reasons for the 

change in the value of VSS and EVPI, and the way they change with reference to the scenarios. We 

draw inferences from the patterns of the solutions of different stochastic optimization models from the 

aforesaid experiments. The concluding remarks discuss the impact of modeling uncertainty using 

stochastic programming and the challenges in practical application. This research is an attempt to 

demonstrate the significant impact of optimization under probabilistic demand, and the way the 

stochastic optimization can be done in a generic and user friendly manner. 

The stochastic optimization based DSS is capable of addressing the following questions related to 

strategic planning in a steel company: 

1. How does the value of stochastic solution (VSS) change with changes in demand variability? 

2. How does the expected value of perfect information (EVPI) change with the increase in demand 

variability? 

3. How does the VSS change with the change in the discrete probability distribution of demand? 

4. How does the EVPI change with the change in the discrete probability distribution of demand? 

This paper along with the earlier work by Gupta et al., (2014 in review) is meant for two audiences. 

One is the set of researchers who are trying to develop fundamental principles for database 

construction for stochastic optimization. The second is the set of researchers who are trying to apply 

the SLP based DSS in a complex industry like the integrated iron and steel manufacturing industry. 

1.1 Outline of the Paper 

The paper introduces the need for an optimization based DSS, and its historical development process 

by current researchers in the first section, and reviews the literature on the application of modeling 

demand uncertainty using stochastic programming in the second section. We also discuss the basic 
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principles of stochastic optimization. The fundamental elements of process industry modeling and the 

assumptions are discussed in a subsequent section (section 3). The optimization steps for the DSS are 

discussed in section 4. In section 5, we discuss how we model demand variability  in this research. In 

section 6 we discuss the results of the experiments. The application of the two-stage SLP with 

recourse model and DSS in a steel company is presented and generic inferences are drawn. We 

conclude the paper with the future scope of the research. 

2.0 Literature Review 

A survey of stochastic programming by Birge, (1997) argues that using stochastic programming 

models, it is possible to make flexible and robust "near optimal" decisions for allocating resources 

when faced with an uncertain future. A collection of recent SLP test problems for eleven different 

families of contexts are discussed in the literature by Ariyawansa (2004). Another recent survey of 

using stochastic programming in supply chain for modeling demand uncertainty is presented by Sodhi 

& Tang (2009). The survey was motivated by  stochastic programming applications in asset liability 

management problems. The study also presented an instance of a stochastic programming model to 

manage the risk pertaining to unmet demand. The focus of the study is more on discrete production 

and supply chain planning in contrast to the research presented in this paper for stochastic 

programming application in continuous production of finished steel. 

The stochastic models are developed for a variety of fields including air fleet management by 

Ferguson (1955), electrical power generations by Sherali, (1984), reservoir water management, 

telecommunication network planning by Sen (1994), financial planning by Mulvey (1991), and 

Mulvey & Vladimirou (1992). A complete review of the extensive literature on stochastic 

programming and its applications in general and in the context of process industries in particular is 

beyond the scope of this paper. Extensive literature on probabilistic modeling and stochastic 

programming can be referred to; these include Birge (1997), Raghunathan (1992), Frauendorfer 

(1992), Marti & Kall (1997). 

A recent application of a stochastic quadratic programming model and a decomposition algorithm to 

compute an optimal sales policy in dairy farms of Fonterra, New Zealand has been reported by Guan 

& Philpott (2011). The sales policy developed was later tested using simulation against a deterministic 
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policy. The model captures uncertainty in the milk supply, price-demand curves and contracting. The 

focus of the research presented in this paper is an application of a two stage stochastic programming 

in an integrated steel plant; we looked for reported literature in this area. The application Summerfield 

& Dror (2013) is in the context of the biform game, where a single firm or a number of firms choose 

their production capacities as the game’s strategy in the first stage, and form coalitions in the second 

stage to deliver the best value among them. Though the application is of a two stage stochastic 

programming, it is quite different from the  process industry production planning reported in our 

study. 

Fourer (1983) describes the algebraic formulation of a single period deterministic model for process 

industry planning. In a further extension, Dutta & Fourer (2004 and 2008) present a multi period 

deterministic model. Dutta & Fourer (2004) tested the multi-period model and the optimization based 

DSS with a set of real data for a single period. Dutta et al. (2008), and Dutta et al. (2011) 

demonstrated a significant impact using a multi-period planning model in a pharmaceutical and an 

aluminum company respectively with multi-period data.  

As discussed in the review of literature, there are publications on modeling uncertainty using SLP in 

the airline industry, electric power generation, telecommunication network planning, financial 

planning etc. The literature reveals that there is little or no work published on modeling uncertainty in 

process industries using stochastic programming. This research realizes the need to address 

uncertainty in model parameters, and extend the multi period optimization model in Dutta & Fourer 

(2004) to develop and implement a two stage SLP in a DSS.  

We find that not much work has been reported on modeling uncertainty using a two stage stochastic 

programming based DSS in a process industry. The principles of database construction and the design 

of DSS have already been explained in our earlier paper Gupta et al. (2014 in review).  In this 

research, we introduce how the uncertainty in model parameters can be modeled using a user friendly 

generic, multi-period, multi-scenario optimization based DSS. The focus of the paper is to discuss the 

application of the DSS with real data from a process industry. The study primarily focuses on 

modeling market demand (upper bounds on the units of finished goods sold) as an uncertain 

parameter. A set of experiments have been designed to test the multi-scenario optimization based DSS 
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with a set of real data from a steel company from North America. The experiments are designed by 

varying volatility in the market demand and probability of occurrence of the most possible economic 

scenarios. 

2.1 Two-stage Stochastic Program with Recourse 

The two stages of the stochastic program are defined by a set of decisions taken in those stages. The 

decisions taken in the first stage are the decisions which are implemented before the realization of the 

randomness in the system. The second stage decisions are the ones which are implemented after the 

realization of the randomness. The decisions taken in the first stage are non-anticipative in nature, and 

do not depend on the outcome of the randomness. The focus of the stochastic programming is to 

rectify the decision taken for the first stage well in advance such that the solution remains the same 

regardless of the outcome of the random realization. Readers may note that the profit from the SLP 

solution is a long run expected profit, and in the short run, the profit may be a little different from the 

profit resulting from the SLP solution. To simplify the understanding of the two-stage stochastic 

programming with recourse, we discuss an example, which is the first SLP with recourse, formulated 

by Dantzig (1955). The term recourse is defined by Fragniere (2002) as the decision variables 

adapting to the different outcomes of the random parameters at each time period. In a stochastic 

program with recourse, the response of the randomness of the model is corrected as a part of the 

model. We introduce SLP using the deterministic equivalent linear program developed by Dantzig 

(1955). It is a generalized two-stage program.  

c1= The cost vector of the first stage 

c2=The cost vector of the second stage 

X1=  The first stage decision vector 

X2=The second stage decision vector 

X1 and X2 are nonnegative decision vectors for all scenarios 

p1= The likelihood probability of the occurrence of scenario 1 

p2= The likelihood probability of the occurrence of scenario 2 

p3=The likelihood probability of the occurrence of scenario 3 

Aij =The matrix representing technological coefficients (assumed to be deterministic) 
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B1 

b= The random vector that varies in different scenarios is denoted as 

Minimize Expected Contribution Z = (c1X1 + p1c2X2
 (1) + p2c2X2

 (2) + p3c2X2
 (3) ) (2.1) 

Subject to 

A11X1     =  b1    (2.2) 

A21X1 + A22X
(1)

2   = b(1)
2                (2.3) 

A21X1 + A22X
(2)

2   = b(2)
2               (2.4) 

A21X1 + A22X
(3)

2   = b(3)
2               (2.5) 

A stochastic program with three scenarios is presented above. The superscript of the second stage 

decision vector denotes the decisions in each of the scenarios. 

3.0 Process Flow of an Integrated Iron and Steel Company 

The material flow diagram of the integrated steel plant is presented in Figure 1. The integrated plant is 

made of a network of facilities (or plants), running in sequence and in parallel. The raw materials are 

coal, iron ore, limestone, dolomite etc. Normally, raw materials (such as coal, ore, and limestone) can 

only be purchased, while finished products (bars, billets, plates, sheets axles, wheels) can only be sold 

in the market.  Intermediates can often neither be bought nor sold. To keep our model general, we 

define three limits – on amounts bought, sold, inventoried — for each material, and allow the 

appropriate limits to be set to zero where no buying, selling or inventorying is possible. 

The raw material is transformed at a collection of facilities such as steel melting shops, continuous 

caster, electric arc furnace finishing mills etc. A very small number of raw materials is transformed 

into a large range of finished steel through the chemical, heating, and fabrication process. The 

finished steel produced varies in shape, size, and composition which enhances their sell price with a 

very wide variation, and thereby the scope of optimization. 
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Figure 1: Typical Material Flow for Production of a Final Product in Steel Plant  

3.1 Definitions  

The SLP model has six fundamental elements. We describe the model elements in brief as follows: 

Times are the periods of planning horizon, represented by discrete numbers (1, 2, 3 …).  

Scenarios are the possible outline of a hypothesized chain of events. 

Materials are the physical items that figure in any of the production stages. A material can be an 

input, intermediate, or finished product, 

Facilities are the collection of machines that produce one or more materials from the other. For 

example a Hot Mill that produces sheets from slabs is a facility. 

Activities are the productive transformation of the materials. Each facility houses one or more 

activities, which uses one or more input and produces materials in certain proportions. In each activity 
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at each time, we have one or more input materials being transformed into various output materials. 

Production of hot metal at a blast furnace and production of billets at a rolling mill are examples 

of activities. 

Storage-Areas are the places where raw materials, intermediates and finished goods can be stored. 

In line with our earlier research, Dutta (1996), and Dutta & Fourer (2008), we have added Scenarios 

as an additional fundamental element as described in Gupta et al. (2014 in review). 

3.2 Modeling Assumptions 

The following assumptions are applicable to the model: 

1. There are several facilities, which are in series, in parallel, or in a combination of series and 

parallel. 

2. In each facility, there is either one or more than one activity. 

3. There can be purchase, sale and storage of materials at the raw materials stage, intermediate 

processing stages, and finishing stage. 

4. The purchase price of raw materials, the selling price of finished goods, and the inventory 

carrying costs vary over time and may also vary with the stages of production such as raw 

material supply, intermediate, and finishing. 

5. At any time, a facility may use one or more materials as input and output. Generally more than 

one material is used to produce one product. The relative proportion of various inputs and outputs 

(generally called technological coefficients) in an activity remains the same in a period. 

Technological coefficients may vary with time. 
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Figure 2: Database Structure of a SLP based DSS 

6. The capacity of each facility, each storage-area is finite. 

7. As the facilities may have different patterns of preventive maintenance schedules, the 

capacity of the machines may vary over a period of time. 

8. The demand variation of the final finished products is represented by a discrete probability 
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distribution.  

4.0 Optimization 

The end-to-end optimization process requires generation of the stochastic optimization model in the 

form of variables, constraints, and coefficients files using a matrix generator, which is then converted 

to a MPS (CPLEX compatible input) format. The output of the optimizer is updated in the appropriate 

fields of the database using the report writer. The steps of optimization are described below. 

4.1 Optimization Steps 

A typical process of optimization is described in a step by step procedure. The principle steps are as 

follows; see Figure 3. 

1. Data describing manufacturing operation at different time periods and potential scenarios is 

collected and entered at appropriate files in the different files in the DSS.  

2. Constraints of the SLP are generated in the [Constraints] file. The constant terms of the equations, 

inequalities, LoRHS, HiRHS (ranges) are extracted from the database and stored in the 

[Constraints] file.  

3. Variables of the associated SLP are generated in the [Variables] file in the DSS along with their 

coefficients in the constraints. The data values for the lower bound, upper bound and objective 

coefficient associated with the decision variables, and the coefficients, are extracted from the 

company’s data [entered in step 1 above]  and stored in the [Variables], and [Coefficients] files 

respectively. 

4. The [Constraints] and [Variables] files are scanned and all of the essential information about the 

linear program (LP) is written to an ordinary text file in a compact format. This text file is the 

input file to our solver. 

5. The optimizer reads the LP from the input text file generated in the MPS format (a CPLEX 

compatible format). An optimal solution is generated and the output of the optimizer is written in 

another ordinary text file. 

6. The output text file is read and the optimal values are written at appropriate fields in the database 

tables. 
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Figure 3: Steps of Optimization 

4.2   Features of the Multi-Period, Multi-Scenario DSS 

A detailed discussion on database construction principles for SLP based DSS, and the features of the 

DSS are discussed in our earlier publication Gupta et al. (2014 in review). In this research, we state 

the features of the SLP based DSS in brief. 

1. The SLP model and SLP based DSS is so generic that it allows modeling: single scenario, 

single period; single scenario, multiple period; multiple scenario, multiple periods; and in 

different process industries by changing the industry real data. 

2. The key strategic decisions that the DSS can address are impact of prices and costs 

parameters on the final optimal product mix, identification of bottleneck processes, 

diversification decisions, and the economic viability of a product promotion campaign. 

3. The DSS is equipped with a set of diagnostic rules. The diagnostic rules were designed to 

ensure that the optimization data entered in the DSS is completely error free before it is 

processed by the CPLEX optimizer. 

4. Data retrieval and storages procedures are the critical features of this DSS. 

5. The core task of this DSS are generation of the data to the [Constraints], [Variables], and 

[Coefficients] file as mentioned in section 4. 

6. The DSS is operated in three different modes - Data, Update, and Optimal. 

a. The Data mode is used for entering and loading the company specific data, and scenario 

specific data. 
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b. The Update mode is used to update the parameter values directly to the variables, 

constraints, and coefficients files. The feature of the Update mode saves the total time 

required to regenerate the SLP model; see Figure 4. 

 

Figure 4: Materials Time Scenario Update Layout 

c. In the Optimal mode, a user can see the optimal solution and the optimal summary of 

the cash flows. We report cash flows as nominal and discounted cash flows. The issues 

related to data reporting, data loading, and data updates can be referred to in detail in the 

authors’ earlier publication Dutta & Fourer (2008); see Figure 5. 

 

Figure 5: Optimal Solution Reporting Layout of Material Time Scenario Layout 
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5.0 Defining Models and Designing Demand Scenarios 

In this section, we define the instances of the optimization model, and the model’s nomenclature. We 

also design different demand scenarios based on the volatility in demand and change in probability of 

demand scenario occurrence. 

5.1 Instances of Stochastic Optimization Model  

To measure the performance of the solution of the stochastic optimization model, we compare four 

solutions - Mean Value solution (ZMV), Perfect Information solution (ZPI), SLP solution (ZSLP) and 

Expectation of Expected Value solution (ZEEV). They are described below: 

1. Perfect Information Solution (ZPI): This is the expected value of the solution from each scenario 

planning model individually solved as a multiple-period optimization model. The expected value of 

the solution from each scenario planning model is determined as the weighted average of  the solution 

of the individual scenario model with their corresponding probabilities as the weights . In stochastic 

programming literature the solution is also known as a ‘wait and see’ solution. This solution may not 

be implementable.  

2. Mean Value Solution (ZMV ): This is the solution of the multi-period optimization model in which 

uncertain demand parameters are replaced by the expected value of the demand. The mean value 

solution may neither be feasible nor be achievable in practice. In most of the instances it would be far 

from the realized solution.  

3. Stochastic Linear Programming Solution (ZSLP): To capture the uncertainty in demand of 

finished steel, a deterministic equivalent (DE) linear program is generated and solved. The solution of 

this model is called a stochastic solution. The SLP solution in stochastic programming literature is 

known as the ‘here and now’ solution. 

4.  Expectation of Expected Value Solution (ZEEV): This is the solution of the SLP where first stage 

decisions are fixed and replaced with the optimal value of the first stage decision variables of the 

mean value model. 
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5.2 Modeling Uncertainty 

The modeling is done based on the assumption that the future is unknown and uncertain. The model 

sensitive parameters like demand and sell prices of the finished steel may attain a different value 

based on the economy of the local geography. 

We assume three economic situations for the purpose of modeling in this study. First, there is an 

economic crisis, and therefore the demand of the finished steel is poor in the market. We call this a 

poor (Low) economy. Second, there is not much variation in the economy. The demand of the 

finished steel is as regular as expected. We call this situation a regular (Reg) economy. Third, there is 

a boom in the economy therefore the demand for finished steel is strong in the market. We call this 

situation a strong (High) economy. While modeling, all the three economic situations need to be 

considered, because any of these may occur with different probabilities. 

To conduct the experiments on stochastic programming, and optimization based DSS, we design a set 

of scenarios based on two primary assumptions, in line with Leung et al. (2006). The Cartesian 

product of the three cases in Table 1 and Table 2 each result in a total of nine scenarios (Table 1 X 

Table 2). Each scenario captures the three economic situations named as Low, Regular , and High. 

The following are the assumptions behind generating these scenarios: 

1. Assumption 1: The probability of occurrence of economic situations comes from a 

probability distribution. We assume three probability distributions. A pre-determined 

probability value is assigned to each economic situation based on the assumed probability 

distribution; see Table 1, Figure 6. 

2. Assumption 2: The demand magnitude corresponding to the Low and High economic 

situation is evenly defined around the regular economic situation; see Table 2, Figure 7. 

 
Scenario Cases Economic Situation �  LOW REG HIGH 

Case i (Right Skewed)  0.75 0.15 0.10 

 Case ii (Equally Likely)  0.33 0.33 0.33 

Case iii (Left Skewed)  0.10 0.15 0.75 

Table 1: Definition of Scenario Designs Generated 
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Figure 6: Three Different Probability Distributions  of Demand  

 
Demand Cases Economic Situation � LOW REG HIGH 

Case 1: 20 % Demand Volatility  80% of D D 120% of D 

Case 2: 30 % Demand Volatility  70% of D D 130% of D 

Case 3: 40 % Demand Volatility  60% of D D 140% of D 

Table 2: Definition of Random Demand Occurrence Cases Corresponding to Scenarios 

 

Figure 7: Demand Distribution at 20% Demand Volatility  

5.3 Important Parameters of the Stochastic Solution 

The impact of optimization under uncertain demand is measured using the key performance 

parameters of stochastic programming: 
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1. Value of Stochastic Solution (VSS): VSS is equal to the difference between the ZSLP and ZEEV. 

VSS is the impact on net (contribution to) profit when the available information is neglected. 

2. % Improvement in NP: This signifies the percentage improvement in net (contribution to) profit 

from SLP. This is the value of VSS in terms of percentage of ZEEV. 

3. Expected Value of Perfect Information (EVPI): This is equal to the difference between the ZPI 

and ZSLP. 

6.0 Application of the DSS in the Steel Company 

We describe the application of the SLP model in a steel company. The company is an integrated steel 

plant with an annual turnover of USD 1400 million located in North America. The company produced  

104 final products. To demonstrate the scope of optimization, we describe the range of different 

parameters (See Table 3). 

 
Production Parameters Model Parameters 

Annual Turnover (Million USD) 1,400 Number of Variables 44100 

Annual Production (Tons) 860,000 Number of Constraints 40472 

Sell Price Ratio 7.38 Number of Coefficients (Non zeros) 168600 

Market Demand 

 Ratio 1,841.12 

Sparseness  

(LP Density – Non zeros) 0.0094% 

Buy Price Ratio 147.99 Number of Materials 632 

Facility Activity Ratio (T/H) 3,240.83 Number of Facilities 56 

Activity Cost Ratio (US USD 

/Ton) 178.57 Number of Activities 1286 

  Number of Planning Periods 3 

  Number of Scenarios 3 

Table 3: Industry Characteristics and Optimization Variability 

6.1 Impact of Stochastic Programming in Steel Company 

To illustrate the impact of SLP in the steel company, we discuss the results of the scenarios (20% 

demand volatility with equally likely occurrence of each scenario); see Table 4, Figure 9. The results 

of SLP for the above mentioned scenario are presented in the column chart below; see Figure 8: 
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Planning 

Periods 

Total 

Revenue 

Cost of 

Purchases 

Cost of Inv 

Carrying 

Cost of 

Activities 

Net 

Profit 
Total Steel 

Unit 
Million 

USD 

Million 

USD 

Million 

USD 

Million 

USD 

Million 

USD 
Tons 

Grand Total 3,295.4 801.3 121.1 742.4 1,630.5 2,182,111 

Unit Basis  1510.2 367.2 55.5 340.2 747.2  

Scenario: L 1,080.4 266.5 40.4 244.2 529.3 2,190,040 

Scenario: R 1,102.5 266.8 40.2 248.9 546.5 2,177,207 

Scenario: H 1,112.5 268.0 40.5 249.3 554.6 2,179,085 

Table 4: Equally Likely Scenario, 20% Demand Volatility   

Note: The above table should be replicated for a Cartesian product of demand variability of 20%, 

30% and 40%, and the three probability distributions like left skewed, equally likely, and right 

skewed 

 

Figure 8: Results of SLP Model for an Equally Likely Occurrence and 20% Demand Volatility 

1. One would only solve a MV problem, when the information about the future is not available, and 

expect to achieve ZMV (USD 1,640.9 million), while once the planning horizon is over, one would 

end up realizing only ZEEV (USD 1,618.9 million). A loss of (ZMV – ZEEV) USD 21.99 million is 

incurred due to the non availability of any information about the future. 
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2. The ZMV is highest among all the solutions namely ZMV, ZPI, ZSLP, and ZEEV. This indicates that 

practically ZMV (USD 1640.9 million) can never be realized. In the long run, one can only realize 

the ZPI (USD 1633.9 million) even with the availability of perfect information. 

3. The impact of stochastic programming is measured in terms of VSS (USD 11.6 million), the 

improvement in net (contribution to) profit by ZSLP compared to ZEEV. The VSS as a percentage of 

ZEEV is 0.71%. 

4. There are instances when it is possible to get perfect information about the future and know with 

certainty which scenario would occur. In these situations we are expected to achieve a long run 

solution as ZPI (USD 1,633.9 million). When we use the partially available information about the 

future scenario occurrence, we are able to achieve ZSLP (USD 1,630.5 million). The expected 

value of perfect information is the difference between ZPI and ZSLP (USD 3.4 million). 

5. In most practical situations, buying partial information (scenario forecasts) about the future with a 

significantly low investment is a feasible option, while the value derived using the partial 

information is significant i.e. VSS (USD 11.6 million). 

6. The opportunity for buying perfect information from the market is practically close to zero. 

Alternatively, one needs to incur an infinite amount of money to buy perfect information, whereas 

the marginal value derived using such information compared to partial information is very small, 

that is, EVPI (USD 3.4 million). 

6.2 SLP Model Validation 

According to the principles of stochastic programming “(Birge, 1997)”, the order of solutions should 

follow a decreasing trend as follows (ZMV >= ZPI >= ZSLP >= ZEEV) for a SLP with maximization 

objective. The optimization results from the application in a steel company in this research confirm 

the results in line with the principles of SLP. The order of solution reverses for a minimization 

objective SLP. It can be inferred from the above analysis that the PI solution is a long run expected 

profit and is a ‘wait and see’ type of solution. Under an immediate solution implementation situation, 

one may like to obtain a solution which takes all the expected scenarios into account, and provides a 

single solution for the first stage i.e. a ‘here and now’ solution. The SLP provides a single 
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implementable solution for the first stage; in addition, it also ensures the maximization of total profit 

under the occurrence of any scenario. 
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6.3 Trend Analysis with Volatility in Market Demand 

Probability Distribution  Right Skewed (R) Equally Likely (E) Left Skewed (L) 

Demand Volatility Cases � 20% 30% 40% 20% 30% 40% 20% 30% 40% 

Model Instances 1 2 3 1 2 3 1 2 3 

PI Mn $ 1605.3  1579.5  1551.4  1633.9  1626.3  1617.1  1658.5  1665.0  1669.8  

MV Mn $ 1610.3  1591.2  1567.8  1640.9  1640.9 1640.9  1661.2  1670.5  1679.4  

SLP Mn $ 1603.8  1577.1 1548.5 1630.5  1621.3  1610.5  1654.0  1658.5  1661.0  

EEV Mn $ 1593.2  1563.9  1523.9  1618.9  1604.8  1587.1  1646.4  1646.4  1644.8  

VSS Mn $ 10.6 13.2 24.6 11.6 16.5 23.4 7.6 12.1 16.2 

VSS (% of EEV) % 0.67% 0.84% 1.61% 0.71% 1.03% 1.47% 0.46% 0.73% 0.98% 

EVPI Mn $ 1.5 2.4 2.8 3.4 5.0 6.7 4.5 6.5 8.8 

Table 5: Results of Experiments from Multi-Scenario Planning (Mn means million) 

Note: 

1. Demand variability 20%, 30%, and 40% is indexed as 1, 2, and 3 

2. R, E, and L stands for Right Skewed, Equally Likely, and Left Skewed respectively 

3. PI, MV, SLP, EEV stands for Perfect Information, Mean Value Solution, Stochastic Programming Solution, and Expectation of Expected Value   



 

Figure 9: Stochastic Optimization Results over Increasing Volatility of Demand  

We attempt to draw inferences from the incremental value of net (contribution to) profit when demand 

volatility increases from 20% to 40% (Table 5). The important inferences from different solutions due 

to a change in demand volatility from 20% to 40% are listed as follows; see Figure 10, and 11. 

1. The ZPI decreases from USD 1633.9 million to USD 1617.1 million, while ZSLP decreases from 

USD 1630.5 million to USD 1610.5 million. The EVPI increases from USD 3.4 million to USD 

6.7 million. The increase in EVPI is primarily due to a steep reduction in ZSLP compared to the 

ZPI. 

2. The ZEEV decreases from USD 1618.9 million to USD 1587.1 million, however the VSS increases 

from USD 11.6 million to USD 23.4 million. The increase in VSS is primarily due to the steep 

rate of reduction in ZEEV compared to the ZSLP. 

3. The ZMV remains unchanged while there is a significant decrease of USD 31.9 million in ZEEV. 

One expects to obtain ZMV (USD1640.9 million), but would end up achieving only ZEEV (USD 

1587.1 million); see 40% demand volatility case (Table 5). 

4. The VSS, % improvement in NP, and EVPI shows an increase of USD 11.8 million, (0.76 

equivalent points), and USD 3.3 million respectively. 

5. The increase in VSS (USD 11.8 million) is significantly higher than the increase in EVPI (USD 

3.3 million). 
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The experiments demonstrate that an increase in the volatility in demand of finished goods increases 

the VSS; see Figure 10. The ZEEV decreases, while VSS and EVPI increase with the increase in 

demand volatility. It is also interesting to observe that the rate of increase of VSS is significantly 

steeper than EVPI with reference to the increase in demand volatility. The results are consistent in the 

remaining experiments of probability skewness, that is, right skewed, left skewed. As the volatility of 

demand of finished steel increases, the total contribution from SLP consistently decreases; see Figure 

11. 

 

Figure 10: Trend in VSS over Increasing Volatility of Demand  
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Figure 11: Decrease in Total Contribution from Stochastic Optimization over Increasing 

Demand Volatility 

6.4 Trend Analysis over Probability Distribution 

We observe that the VSS is the lowest when the probability of occurrence of a high demand situation 

is the highest, that is, left skewed probability distribution. This indicates that as the probability of 

occurrence of a lower demand situation increases, the VSS increases. The impact of optimization on 

the VSS using stochastic programming becomes more visible. Companies are expected to be more 

concerned about profits when the probability of occurrence of low demand is a little high. This 

indicates that it makes more sense to apply optimization when the probability of occurrence of a low 

demand situation is high. 

We also attempt to identify a pattern in the VSS with a change in the discrete probability distribution. 

The VSS is highest in an equally likely scenario for the 20% and 30% demand volatility, but it is 

highest in the right skewed situation for the 40% demand volatility. We report that it is difficult to 

find any specific trend in the VSS when the probability distribution changes. To study the pattern, 

more experiments with different process industry real data may be required. 

It is interesting to note that the EVPI consistently increases with a change in the discrete probability 

distribution from a right skewed to a left skewed demand situation. The EVPI is the highest with the 
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left skewed probability situation (followed by equally likely and right skewed probability situations) 

in each of the three demand volatility cases, that is, 20%, 30%, and 40%. The investigation of this 

pattern reveals that the EVPI is high when the probability of occurrence of high demand volatility 

case is high. This reasoning is applicable to all the three demand volatility cases, that is, 20%, 30%, 

and 40%. 

 

 

Figure 12: Changes in EVPI with the change in the discrete probability distribution   

Figure 12 clearly shows that the ZSLP increases with the increasing probability of high demand 

situations (Right skewed to Left skewed distribution). The ZEEV increases at a steeper rate than ZSLP 

with the increase in the probability of occurrence of high demand situations (i.e. Right skewed to left 

skewed distribution). One may notice that when the probability of occurrence of a low demand 

situation is high, one plans for a ZMV, but realizes ZEEV. The difference in ZMV and ZEEV happens to be 

more due to incorrect first stage decisions. The SLP corrects the first stage decisions in such a way 

that the losses due to ZMV expectations are minimized and the VSS is maximized. When the high 

demand situation occurs with a high probability of occurrence (left skewed distribution), the ZEEV 

starts approaching ZSLP and thereby the VSS in this situation is lower than the VSS in the right skewed 

probability distribution. 
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7. 0 Conclusion and Limitations 

The focus of the study was to model a process industry in a demand uncertain environment. The paper 

presented the application of a two stage stochastic programming with recourse model in a steel 

company in North America. While there have been several studies on SLP, we did not see much 

reported work on a SLP based DSS and its application with real data in industries in general, and 

process industries in particular. In this paper, we have made an attempt to bridge the gap, and 

demonstrate the impact of SLP using a user friendly DSS.  

1. The uncertainty in multiple input parameters can be modeled using the stochastic 

programming based generic DSS. In this research, we designed a set of experiments by 

varying the volatility of the demand of finished goods by a pre-defined value and likelihood 

occurrence of the only demand scenarios. 

2. The size of the model increases significantly with the increase in the number of uncertain 

parameters in the model. To deal with the speed of model generation, we designed and 

developed a relational database structure Gupta et al., (2014, in review); see Figure 2. 

3. The implementation of the multi-scenario model in the DSS demonstrated a significant 

potential to improve the company’s (contribution to) profit.  

4. A typical observation was that the profit from the application of the stochastic programming 

solution (in terms of VSS and EVPI) increases with the increase in the spread of demand 

distribution.  

5. The optimization results of the application in the steel company conforms with the theory of 

two stage stochastic programming. 

6. Another important inference is that the VSS is very high in a right skewed probability 

distribution as compared to the left skewed distribution (Table 5). This emphasizes the need 

for stochastic programming in an uncertain demand situation to improve profitability, 

especially when the probability of occurrence of the low demand situation is very high. 

7. A consistent pattern in EVPI is observed, that is, EVPI is the highest in the situation when the 

probability of occurrence of high demand is high (left skewed) in each of the three demand 

cases, that is 20%, 30%, and 40%.  
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This research describes the inferences from the application of SLP in a steel company. All of the 

inferences cannot be generalized to the application of stochastic optimization in other industries and 

contexts. To generalize these inferences, one needs more evidence and results from multiple 

application instances. The results cannot be generalized because the optimization results are an 

outcome of a multiple set of varied inputs like facility capacity restrictions at many facilities and 

stages, supply, demand, and storage space restrictions in different scenarios etc. The spread of these 

model parameters may change in different contexts and so will the optimization results and 

inferences. 

We demonstrate that the application of stochastic programming in process industries can result in a 

significant impact on the profits of a company, a successful use of the technique involves facing 

several challenges.  The potential variability in model parameters is a known fact; however, finding 

multiple sets of reliable data corresponding to the individual economic situation and scenarios is one 

of the biggest challenges in modeling uncertainty using stochastic programming. 

 

8.0 Extensions 

The current research of multi-scenario, multi-period planning has a number of potential extensions. 

1. The SLP based user friendly DSS has been currently tested for uncertainty in demand of 

finished steel. The DSS being generic, it may be interesting to test the DSS for modeling 

uncertainty in multiple input parameters simultaneously, for example, demand and sell price 

of finished steel, cost of purchase of raw materials and so on. 

2. This research considers only three empirical probability distribution instances to test the DSS. 

A large number of different realistic probability distributions can be attempted, and a Monte 

Carlo simulation in the SLP based DSS may reveal interesting trends and inferences from the 

results. 

3. The application of this SLP based DSS in multiple process industries for strategic planning 

can lead to the generalization of observations resulting from this research. 



 

 
 

IIMA  �  INDIA 
Research and Publications 

Page 29 of 38 
 

W.P.  No.  2014-04-04 

4. Uncertainty in multiple parameters of the model including supply of raw materials, costs of 

raw material purchase, and price of selling finished goods can be modeled using stochastic 

programming.  

5. One may like to model the non-linear behavior of costs with an increasing scale of operation. 

6. The non-linearity may further be extended to model under a demand uncertain environment. 

7. The process industry modeling using fuzzy LP and fuzzy stochastic linear program can be a 

worthwhile extension of this research. 

8. The development of a SLP based DSS for an integrated supply chain planning and its 

application with real data from  a process industry can be another interesting extension to this 

research. 

9. The SLP can be explored in asset liability modeling and capture the uncertainty in model 

parameters. 
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Appendix 

Model Formulation 

We define sets, parameters, variables, objective function and constraints of the SLP as follows. 

Time Data: T= {1… T} is the set of time periods in the planning horizon, indexed by t 

ρl is the interest rate per period in each of the scenario l, taken as zero if there is no discounting 

Scenario Data: L= {1… L} is the set of scenarios in the planning horizon, indexed by l 

pl is the probability of occurrence of the scenario l 

Materials Data:  

M is the set of all materials, indexed by j 

buy

jltl
,

buy

jltu
,

buy

jltc are lower limit, upper limit, and cost per unit of material j purchased, for each 

TtandLlMj ∈∈∈ ,, respectively  

sell

jltl ,
sell

jltu ,
sell

jltc are lower limit, upper limit, and revenue per unit of material j sold, for each 

TtandLlMj ∈∈∈ ,,  

inv

jltl ,
inv

jltu ,
inv

jltc are lower limit, upper limit, and holding cost per unit of material j inventoried, for 

each TtandLlMj ∈∈∈ ,,  

inv

jv 0 = initial inventory of material j, for each j∈M 

M
conv ⊆ { j∈M, j′∈M : j≠j′} is the set of conversions: 

                (j,j′)∈ M
conv

 means that material j can be converted to material j′ 

conv

jj ltα ′   = number of units of material j′ that result from converting one unit of material j,   

for each (j, j′)∈ M
conv

, l ∈L, t∈T 

conv

jj ltc ′    = cost per unit of material j of conversion from j to j′, for each (j, j′)∈ M
conv

, l ∈L, t∈T 

Facilities Data: F is the set of facilities, indexed by i 
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cap

iltl ,
cap

iltu are minimum, and maximum unit of capacity of facility i that must be used, for each 

TtandLlFi ∈∈∈ ,, respectively 

cap

iltc = cost of outsourcing a unit of capacity at facility i, for each TtandLlFi ∈∈∈ ,,  

F
in

⊆F is the set of facility inputs: (i, j)∈ F
in

that material j is used as an input at facility i 

in

ijltl , and
in

ijltu are the minimum, and maximum amount of material j that must be used as input to 

facility i, for each (i, j)∈ F
in

, l∈L, t∈T 

F
out

⊆F is the set of facility outputs (i, j)∈ F
out

that material j is produced as an output at facility i 

out

ijltl
,
and 

out

ijltu are the minimum, and maximum amount of material j that must be produced as output 

at facility i, for each (i, j)∈ F
out

, l∈L, t∈T 

Activities Data: A is the set of activities, indexed by k 

F
act

⊆ {( i, k): i∈F} is the set of activities: 

               (i, k)∈ F
act

means that k is an activity available at facility i 

act

ikltl ,
act

ikltu    are the minimum, and maximum number of units of activity k that may be run at facility i, 

for each (i, k)∈ F
act

, l∈L, t∈T 

act

ikltc      = the cost per unit of running activity k at facility i, for each (i, k)∈ F
act

, l∈L, t∈T 

act

ikltr      = the number of units of activity that can be accommodated in one unit of  

capacity of facility i, for each (i, k)∈ F
act

, l∈L,  t∈T 

A
in

⊆ {( i, j, k, t): (i, j)∈ F
in

(i, k)∈ F
act

, t∈T} is the set of activity inputs: 

               (i, j, k, t)∈ A
in

means that input material j is used by activity k at facility i during  
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time period t 

in

ijkltα    = units of input material j required by one unit of activity k at facility i in time  

Period t, in scenario l , for each l∈L, and (i, j, k, t)∈ A
in

 

A
out ⊆ {( i, j, k, t): (i, j)∈ F

out
(i, k)∈ F

act
, t∈T} is the set of activity outputs: 

                (i, j, k, t)∈ A
out

means that output material j is produced by activity k at facility i 

during time period t 

out

ijkltα    = units of output material j produced by one unit of activity k at facility i in time  

Period t, scenario l, for each, l∈L, and (i, j, k, t)∈ A
out

 

Storage-areas Data: S is the set of storage areas, indexed by s. 

stor

sltl     = lower limit on total material in storage area s, for each TtandLlSs ∈∈∈ ,,  

stor

sltu    = upper limit on total material in storage area s, for each TtandLlSs ∈∈∈ ,,  

Variables 

buy

jltx ,

sell

jltx ,
and

inv

jltx are the units of material j bought, sold, and inventoried for each 

TtandLlMj ∈∈∈ ,, respectively 

stor

jsltx     = units of material j in storage area s, for each TtandLlSsMj ∈∈∈∈ ,,,  

inv

jx 0  = initial inventory of material j, for each j∈M 

conv

jj ltx ′     = units of material j converted to material j′, for each (j, j′)∈ M
conv

, l∈L, t∈T 

in

ijltx        = units of material j used as input by facility i, for each (i, j)∈ F
in

 , l∈L, t∈T 

out

ijltx  = units of material j produced as output by facility i, for each (i, j)∈ F
out

 , l∈L, t∈T 

act

ikltx       = units of activity k operated at facility i, for each (i, k)∈ F
act

 , l∈L, t∈T 
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cap

iltx      = units of capacity vendored at facility i, for each TtandLlFi ∈∈∈ ,,  

First Stage Variables 

buy
jx1  = units of material j bought, for each j∈M, in first period 

sell
jx1  = units of material j sold, for each j∈M, in first period  

stor
jsx1  = units of material j in storage area s, for each j∈M, s∈S, in first period 

inv
jx1  = total units of material j in inventory (storage), for each j∈M, in first period 

conv
jjx1  = units of material j converted to material j′, for each (j, j′)∈ M

conv
, in first period 

in
ijx1  = units of material j used as input by facility i, for each (i, j)∈ F

in
, in first period 

out
ijx1  = units of material j produced as output by facility i, for each (i, j)∈ F

out
, in first period 

act
ikx1  = units of activity k operated at facility i, for each (i, k)∈ F

act
, in first period 

cap
ix1  = units of capacity outsourced at facility i, for each i∈F, in first period 

Objective 

Maximize the sum over all time periods of revenues from sales less costs of purchasing, holding 

inventories, converting, operating activities at facilities, and cost of operating facilities: 

( )∑ ∑
∈ ∈

=
Ll Tt

lN tlZpZ ,
 Objective function for nominal cash flows Eq. (1) 

( ) ( )∑ ∑
∈ ∈

−











+=

Ll Tt

t
llD tlZpZ ,1 ρ

           Objective function for discounted cash flows Eq. (2) 

Where, 

( )tlZ , = 
sell sell

jlt jlt
j M

c x
∈
∑   -  

buy buy

jlt jlt
j M

c x
∈
∑   -  

inv inv

jlt jlt
j M

c x
∈
∑   -  

( , )
conv

conv conv

jj lt jj lt
j j M

c x′ ′
′ ∈
∑   -  

( , )
act

act act

iklt iklt
i k F

c x
∈
∑              

-  
cap cap

ilt ilt
i F

c x
∈
∑

 Eq. (3)
 

 



 

 
 

IIMA  �  INDIA 
Research and Publications 

Page 34 of 38 
 

W.P.  No.  2014-04-04 

Constraints 

For each j∈M, l ∈L and t∈T, the amount of material j made available by purchases, production, 

conversions and beginning inventory must equal the amount used for sales, production, conversions 

and ending inventory: 

buy

jltx   +  
( , )

out

out

ijlt
i j F

x
∈
∑   +  

( , )
conv

conv conv

j jlt j jlt
j j M

xα ′ ′
′ ∈
∑   +  

1

inv

jltx −
 

=  
sell

jltx   +  
( , )

in

in

ijlt
i j F

x
∈
∑   +   

( , )
conv

conv

jj lt
j j M

x ′
′ ∈
∑   +  

inv

jltx
 Eq. (4)

 

For each (i, j)∈ F
in

 , l ∈L and t∈T, the amount of input j used at facility i must equal the total 

consumption by all the activities at facility i: 

in

ijltx   =  
( , , , )

in

in act

ijklt iklt
i j k t A

xα
∈
∑

 Eq. (5)

 

For each (i, j)∈ F
out

 , l ∈L and t∈T, the amount of output j produced at facility i must equal the total 

production by all the activities at facility i: 

out

ijltx   =  
( , , , )

out

out act

ijklt iklt
i j k t A

xα
∈
∑

 Eq. (6)

 

For each i∈F, l ∈L and t∈T, the capacity used by all activities at facility i must be within the range 

given by the lower limit and the upper limit plus the amount of capacity vendored: 

cap

iltl ≤
( , )

/
act

act act

ikltiklt
i k F

x r
∈
∑ ≤ cap

iltu   +  
cap

iltx  Eq. (7)
 

For each j∈M, the amount of material inventoried in the plant before the first time period is defined to 

equal the specified initial inventory: 

inv

jx 0
  =  

inv

jv 0
 Eq. (8) 

For each j∈M, l ∈L and t∈T, the total amount of material j inventoried is defined as the sum of the 

inventories over all storage areas: 
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stor

jslt
s S

x
∈
∑   =  

inv

jltx
 Eq. (9)

 

For each s∈S, l ∈L and t∈T, the total of all materials inventoried in storage area s must be within the 

specified limits: 

stor

sltl ≤
stor

jslt
j M

x
∈
∑ ≤ stor

sltu  Eq. (10)
 

Implementability (Non-Anticipativity) Constraints  

buy

jltx   = 
buy

jx1  for each of the j∈M, l∈L and t = 1   Eq. (11) 

sell

jltx   = 
sell
jx1  for each of the j∈M, l∈L and t = 1   Eq. (12) 

stor

jsltx   = 
stor
jsx1  for each of the j∈M, s∈S,l∈Land t = 1   Eq. (13) 

inv

jltx   = 
inv
jx1  for each of the j∈M, l∈Land t = 1   Eq. (14) 

conv

jj ltx ′   = 
conv
jjx1  for each (j, j′)∈ M

conv
, l∈L, and t = 1   Eq. (15) 

in

ijltx   = 
in
ijx1  for each (i, j)∈ F

in
 , l∈L, and t = 1   Eq. (16) 

out

ijltx   = 
out
ijx1  for each (i, j)∈ F

in
, l∈L, and t = 1   Eq. (17) 

act

ikltx   = 
act
ikx1  for each (i, k)∈ F

act
, l∈L, and t = 1   Eq. (18) 

cap

iltx   = 
cap
ix1  for each i∈F, l∈L, t =1     Eq. (19) 

All variables must lie within the relevant limits (bounds) defined by their respective bounds. 
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