: INDIAN INSTITUTE OF MANAGEMENT

»arcoasas AHMEDABAD o INDIA
S Research and Publications

A new genetic algorithm for the tool indexing problem

Diptesh Ghosh

W.P. No. 2016-03-17
March 2016

The main objective of the Working Paper series of IIMA is to help faculty members,
research staff, and doctoral students to speedily share their research findings with
professional colleagues and to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD - 380015
INDIA

W.P. No. 2016-03-17 Page No. 1

IIMA ¢ INDIA
Research and Publications

A NEW GENETIC ALGORITHM FOR THE TOOL INDEXING PROBLEM

Diptesh Ghosh

Abstract

The tool indexing problem is one of allocating tools to slots in a tool magazine so as to
minimize the tool change time in automated machining. This problem has been widely studied
in the literature. A genetic algorithm has been suggested in the literature to solve this problem,
but its implementation is non-standard. In this paper we describe a permutation based genetic
algorithm for the tool indexing problem and compare its performance with an existing genetic
algorithm.

Keywords: CNC tool indexing, genetic algorithm, permutation problem

1 Introduction

Consider a tool magazine capable of holding several tools to be used in an operation by a computer
numerically controlled (CNC) machine. This can be visualized as a disk (see Figure 1) with tools in
slots arranged at equal intervals on the disk. There may be more slots than tools and consequently
some slots may be empty. This disk is pivoted at its center and can rotate in either direction to
bring a tool to a position called an index position. The tool changer picks up tools from the index
position before commencing an operation and returns the tool to that position after the operation.

. Index
Tool magazine G position

Tool in

Empty
slot

slot

Figure 1: A conceptual representation of a tool magazine

The total processing time of a job requiring multiple operations on a CNC machine depends on
the efficiency with which the machine changes tools. Some studies, (e.g., Gray et al. 1993) claim
that tool changing accounts for about a quarter of the total cost in automated manufacturing. This
efficiency can be improved by assigning tools to slots in a tool magazine in the most efficient way
possible. This assignment problem is called indexing.

W.P. No. 2016-03-17 Page No. 2

IIMA ¢ INDIA
Research and Publications

Formally stated, the indexing problem is the following. Given a tool magazine with n slots, and
a manufacturing process requiring m < n tools, and the frequency with which each pair of tools
are required in consecutive operations, we are required to find the assignment of tools to slots such
that the total amount of rotation of the tool magazine to bring all tools to the index position when
required is the minimum.

In this paper we are concerned about the variant of the indexing problem in which only one
copy of the tool can be present in the magazine. A more complicated version of the problem in
which multiple copies of a tool are allowed have also been studied (see e.g., Baykasoglu and Dereli
2004, Baykasoglu and Ozsoydan 2015). Since the problem is hard, metaheuristic techniques for the
version of the problem that we study are available in the literature. Dereli et al. (1998) and Dereli
and Filiz (2000) use a genetic algorithm to solve the problem in addition to a simulated anneal-
ing algorithm. Velmurugan and Victor Raj (2013) use a particle swarm optimization algorithm.
Ghosh (2016a) presents a tabu search algorithm using an exchange neighborhood for the problem.
Ghosh (2016b) presents a neighborhood search and a tabu search algorithm using a Lin-Kernighan
neighborhood structure. Interestingly, the papers presenting genetic algorithms and particle swarm
optimization algorithms describe the algorithms and provide an example to illustrate the working of
the algoriths, but do not report results of computational experiments. Our focus in this paper is the
genetic algorithm proposed in both Dereli et al. (1998) and Dereli and Filiz (2000), especially since
the algorithm proposed is related to, but quite different from the usual implementation of genetic
algorithms. We propose to test the performance of this algorithm along with a genetic algorithm
that we develop for reasonably sized problem instances.

The remainder of the paper is organized as follows. In the next section, we describe the ge-
netic algorithm presented in Dereli et al. (1998) and Dereli and Filiz (2000) along with the genetic
algorithm that we propose in this paper. In Section 3 we provide configuration details of our algo-
rithm and the the results of our computational experiments with the two genetic algorithms on the
indexing problem. We summarize our findings in Section 4.

Before we proceed to describe the genetic algorithms, we shall define some notation and explain
some calculations. Consider an indexing problem instance with n slots and m tools. The size of
the instance is the value of n. A solution to the instance is an allocation of tools to slots. We
represent it as a permutation of numbers from 1 through n. If the number at the j-th position of
the permutation is k, then we imply that in the solution, tool k& occupies the j-th slot if £ < m or
that the j-th slot is empty (if £ > m). Another way of looking at this is to assume “dummy” tools
m+ 1, m+ 2, ..., n which are not used in any operation during processing. Our objective in the
indexing problem is to generate a tool assignment that minimizes the rotation of the tool magazine.
While exchanging tools, the magazine has to rotate by an integer multiple of the amount of rotation
required to bring a slot adjacent to the index position to the index position. We call this unit of
rotation an operation, and measure the total amount of rotation required in terms of the number of
operations used. This total number of operations is called the cost of the solution.

Using these terms, we now describe the genetic algorithms compared in this paper.

2 Their Genetic Algorithm, Our Genetic Algorithm

Dereli et al. (1998) and Dereli and Filiz (2000) presented a genetic algorithm to solve the indexing
problem. That genetic algorithm was not the conventional genetic algorithm that is known in the
literature. This algorithm was described in the papers and was illustrated with an example, but its
performance was not tested in detailed computer experiments. In this paper, we present a genetic
algorithm closer to the conventional genetic algorithm and compare it with the algorithm presented
in Dereli et al. (1998) and Dereli and Filiz (2000).

W.P. No. 2016-03-17 Page No. 3

IIMA ¢ INDIA
Research and Publications

In order to compare the comparable, we use the same operations in or genetic algorithm as
used in Dereli et al. (1998) and Dereli and Filiz (2000). These are the partially mapped crossover
operation, the inversion operation, and the rotation mutation. We first describe these operators and
then proceed to describe the genetic algorithms.

Partially mapped crossover Partially mapped crossover (PMX, see e.g., Larranaga et al. 1999)
is one of the most common crossover operation in genetic algorithms in which each solution
is a permutation of problem elements. Consider two solutions P' = (pi,pi,... ,p,lc, coph))
and P? = (p?,p3,...,p%,...,p2)) to be crossed over. We call them the parent solutions. The
result of the crossover would be two other solutions, say C' and C2. These two solutions are
called children.

In order to cross the parent solutions, we choose two crossover points i and j with 1 <i < j < n.
we then copy the portion of P! between positions ¢ and 5, both inclusive, to the same position
in C2, and the portion on P? between positions i and j to the same position in C*.

We also create two partial mappings, map; from the elements in positions between i and j,
both inclusive, in P! to the elements in positions between i and j in P?, and map, from the
elements in positions between i and j in P? to the elements in positions between i and j in
P'. To create map;, for each of the positions k between i and j, both inclusive, we define
map1(py) = pi. Then we check whether for all elements k in the domain of mapy, map; (k)
equals mapi (mapq(k)). If not we replace map; (k) with map; (map1(k)). This continues until
the condition map; (k) = mapi (mapi(k)) holds for all elements k in positions between i and j
in P'. We create maps analogously.

Once the mappings are created, the solutions C' and C? are completed. We demonstrate the
completion of C?; the completion of C! is analogous. The elements of C? in positions between
1 and n excluding the positions between ¢ and j, both inclusive, are the elements in the same
position in P2, with the condition that if any of these elements belong to the domain of map1,
then they are replaced with that element in P? to which the element maps. This ensures that
the solution C? thus obtained is a permutation of elements from 1 through n.

Inversion operation The inversion operation is a common mutation operation in genetic al-
gorithms for problems in which each solution is a permutation of the elements of the prob-
lem. Consider a solution P = (pi,p2,...,pn). The mutation operation chooses two po-
sitions, ¢ and j (¢ < j) and inverts the sequence of elements between p; and p;. So af-
ter an inversion operation in which positions ¢ and j are chosen with ¢ < j, P changes to

(plu sy Pi—2,Pi—1,P55Pj—15 -+ -5 Pit1,Pis Pj+1,DPj425 - - - 7pn)

Rotation mutation operation The rotation mutation operation is a non-standard mutation
operation that has been used by Dereli et al. (1998) and Dereli and Filiz (2000). Consider
a solution P = (p1,p2,...,pn).- The rotation mutation randomly chooses an offset, say k
(1 < k < n) and makes pi the first element of the permutation. After this operation, P

mutates to (Pr, Pkt1,---»Pn,P1, P25+ -+, Ph—1)-

In a genetic algorithm, one starts with a collection of solutions to the problem, called a gener-
ation of solutions and applies genetic algorithm operations to create a new generation of solutions.
This new generation of solutions then replace the original generation of solutions. This iterative
replacement of a generation of solutions with a newly constructed generation continues until a stop-
ping condition is satisfied. At that stage the algorithm terminates and reports the best solution
that it has encountered during the execution of the algorithm. The initial generation of solutions is
usually created by putting together a collection of randomly generated solutions. So a description
of a genetic algorithm consists of a description of the process of creating a generation of solutions
from another generation and a description of the stopping criterion.

In the genetic algorithm proposed in Dereli et al. (1998) and Dereli and Filiz (2000) a generation
is defined as a collection of 200 solutions. It uses the following method to create one generation

L —
W.P. No. 2016-03-17 Page No. 4

IIMA ¢ INDIA
Research and Publications

from another. First it creates an intermediate collection of size 400. The first 200 solutions in this
collection are all the 200 solutions in the starting generation. Then the 200 solutions are paired into
100 pairs and these pairs are crossed over using the partially mapped crossover operator to create
200 children. These 200 children are then added to the intermediate collection. The 400 solutions in
the collection are then sorted in non-increasing order of their costs. The best 160 and the worst 40 of
these solutions are then copied to the next generation. All the 200 solutions in the next generation
thus produced are then subjected to the inversion operation and the rotation mutation operation to
yield the final components of the next generation. This process of creating generations is iterated 100
times, and the genetic algorithm terminates after reporting the best solution that it has encountered
during its execution. A pseudocode for the genetic algorithm in Dereli et al. (1998) and Dereli and
Filiz (2000) is given below. We use the following sets and variables in the pseudocode.

CURRENTGEN The current generation of solutions.
INTERMEDIATE A set of solutions from which to create the next generation.

NEXTGEN The next generation of solutions.
Best-Sol The best (least cost) solution encountered by the algorithm.
GA-Iter Tteration count for the genetic algorithm.

Algorithm DFGA

1. begin
2. set Best-Sol to oo;
3. set CURRENTGEN to a set of 200 randomly generated solutions;
4. for (GA-Iter from 1 to 100) begin
5. set INTERMEDIATE to 0;
6. if (least cost solution in CURRENTGEN is better than Best-Sol)
7. set Best-Sol <+—Ileast cost solution in CURRENTGEN;
8. copy all solutions in CURRENTGEN to INTERMEDIATE;
9. while (CURRENTGEN # () do begin
10. remove two solutions P; and P, from CURRENTGEN;
11. obtain solutions C7 and Cs by applying PMX on P; and Ps;
12. add C; and Cs to INTERMEDIATE;
13. end;
14. create a list by sorting the solutions in INTERMEDIATE in non-decreasing order
of costs;
15. copy 160 solutions from the top of the list to NEXTGEN;
16. copy 40 solutions from the bottom of the list to NEXTGEN;
17. for (each solution P in NEXTGEN) begin
18. apply inversion operation to P;
19. apply rotation mutation to P;
20. end;
21. set CURRENTGEN to 0;
22. copy all solutions from NEXTGEN to CURRENTGEN;
23. end;
24. output Best-Sol;
25. end.

The genetic algorithm presented above is different from the conventional genetic algorithms seen
in the literature. The one that we propose is closer to a conventional genetic algorithm. Our

L —
W.P. No. 2016-03-17 Page No. 5

IIMA ¢ INDIA
Research and Publications

algorithm starts with a generation of randomly generated solutions and proceeds to create the next
generation using reproduction, crossover, and mutation operators. We describe these operators
below.

Reproduction A pre-specified number of “good” solutions in a particular generation are directly
copied to the next generation. This copying process is called reproduction, and is intended
to ensure that good solutions in a generation are not lost but move to the next generation.
We do this using a tournament selection operation. The tournament selection operation that
we use works as follows. We choose four solutions from the generation at random. Let us
assume that the costs of these four solutions are z1, 22, 23, and z4. In a first round, we choose
one among the first two solutions at random, such that the probability of choosing the first
solution is z2/(z1 + z2. Note that in this process, the solution having the lower cost (i.e., the
better solution) has a better chance of being selected. In a similar manner we also choose one
among the third and fourth solutions. In the second round, we choose one among the two
solutions chosen in the first round, using a similar method. The chosen solution is said to be
the solution chosen by the tournament selection operation.

Crossover A pre-specified collection of solutions from a particular generation is chosen into a
mating pool during crossover. This number is the difference between the size of each generation
and the pre-specified number of solutions chosen through reproduction. The solutions in the
mating pool will participate in crossover operations to generate solutions in the next generation.
Each solution in this mating pool is chosen from the current generation using tournament
selection. Once the mating pool is created, the solutions in the mating pool are paired off
randomly, and each pair of solutions is crossed over using the partially mapped crossover
operation to generate two solutions that enter the next generation.

Mutation Each solution in the next generation after the reproduction and crossover operations is
subjected to a mutation operation with a pre-specified probability. If the solution is to undergo
a mutation operation, then the inversion mutation operation is used on that solution. We did
not consider the rotation mutation in our genetic algorithm since we did not see particular
value in that operation.

Once after a pre-specified number of generations are generated, a local optimization process
is applied to some of the best solutions in the current generation. A pre-specified number
of the solutions in a generation are chosen, and each is subjected to local search using an
exchange neighborhood (see Ghosh 2016a, for a description of local search using exchange
neighborhoods). The number of solutions to which local search is applied should not be high,
since these operations are computationally expensive.

Once the stopping condition is reached, each solution in the final generation is subjected to local
search using an exchange neighborhood.

A pseudocode of the algorithm that we propose here is given below. In addition to the sets and
variables used in DFGA we use the following.

Count A general purpose counter.

Division The number of iterations after which some solutions in NEXTGEN will be sub-
jected to local search.

Gen-Size Size of each generation.

Mutate-Prob Probability of mutation
Nr-Reproduce Number of solutions in CURRENTGEN that will be reproduced in NEXTGEN.
Some-Top Number of solutions in NEXTGEN that will undergo local search.

W.P. No. 2016-03-17 Page No. 6

IIMA ¢ INDIA
Research and Publications

Algorithm OURGA

1. begin
2. set Best-Sol to oo;
3. set CURRENTGEN to a set of 200 randomly generated solutions;
4. for (GA-Iter from 1 to 100) begin
5. if (least cost solution in CURRENTGEN is better than Best-Sol)
6. set Best-Sol «—least cost solution in CURRENTGEN;
7. copy the best Nr-Reproduce solutions in CURRENTGEN to NEWGEN;
8. set MATEPOOL to 0;
9. for (Count from 0 to (Gen-Size—Nr-Reproduce)/2) begin
10. obtain solution P; using tournament selection from CURRENTGEN;
11. obtain solution P» using tournament selection from CURRENTGEN;
12. add P, and P, to MATEPOOL;
13. end;
14. while (MATEPOOL # () do begin
15. remove two solutions P; and P, from MATEPOOL;
16. obtain solutions C; and Cy by applying PMX on P; and Ps;
17. add C; and C5 to NEXTGEN;
18. end;
19. for (each solution P in NEXTGEN) apply inversion operation to P with proba
bility Mutate-Prob;
20. if (GA-Tter is a multiple of Division) begin
21. create a list by sorting the solutions in NEXTGEN in non-decreasing order
of costs;
22. perform local search with exchange neighborhoods on Some-Top solutions
from the top of the list;
23. end;
24. set CURRENTGEN to 0;
25. copy all solutions from NEXTGEN to CURRENTGEN;
26. end;
27. perform local search with exchange neighborhoods on all solutions in CURRENTGEN;
28. if (least cost solution in CURRENTGEN is better than Best-Sol)
29. set Best-Sol «—least cost solution in CURRENTGEN;
30. output Best-Sol;
31. end.

3 Computational Experiments

We coded the genetic algorithms described in Section 2 in C. We ran our experiments on a machine
with Intel i-5-2500 64-bit processor at 3.30 GHz with 4GB RAM. The DFGA algorithm did not
require any parameter setting, since we used the parameters specified in Dereli et al. (1998) and
Dereli and Filiz (2000). Both the tournament selection and local search operations in OURGA

W.P. No. 2016-03-17 Page No. 7

IIMA ¢ INDIA
Research and Publications

are computationally expensive, and hence the parameters we chose for OURGA were decided upon
mainly to keep the execution times in check. With that objective, we chose the values of Gen-size
as 50, Nr-Reproduce as 10, Some-Top as 2, and Division as 25. In order to determine the value of
Mutate-Prob, we carried out some initial experiments. We randomly generated five instances each
of sizes 30, 45, 60, 75, and 90, and ran OURGA on these instances with the maximum number
of genetic algorithm iterations varying between 50 and 250, and the mutation probability varying
between 0.0 and 0.25. For each of the 125 runs we found the mutation probability that was best for
that run. The average of the best mutation probabilities was found to be 0.22, and we chose this
value for our experiments. Both DFGA and OURGA were implemented as a multi-start algorithms
with 20 starts each and in our tables and we report the best solution obtained from among all starts.

We used three types of instances for our computational experiments. These were

B-D instances These are 30 instances from Baykasoglu and Ozsoydan (2015) used for experiments
on a version of the indexing problem in which duplication of tools in the tool magazine was
allowed. There are 8 tools to be assigned to 12 slots in the first ten instances (8-20-01 through
8-20-10) for a process consisting of 20 operations. The next ten instances (8-30-01 through
8-30-10) require 8 tools to be assigned to 12 slots for a process consisting of 30 operations.
The last ten instances (12-50-01 through 12-50-10) require 12 tools to be assigned to 16 slots
for a process consisting of 50 operations.

Anjos instances These instances are adapted from instances used in Anjos et al. (2005) for the
single row facility layout problem (SRFLP). Each of the instances in Anjos et al. (2005) had
a frequency matrix denoting the frequency of interaction between a pair of facilities in the
SRFLP instance. We use the frequency data to denote the number of times a pair of tools are
used in consequent operations and a tool magazine with 100 slots for our experiments.

sko instances These instances have been used in Anjos and Yen (2009) for computational exper-
iments for the single row facility layout problem. Each problem in the set had five variants,
but all the variants of a problem had the same frequency matrix. Therefore we had a total of
seven instances for our experiments. We used a tool magazine with 60 slots when the number
of tools were less than 60. Otherwise, we used a tool magazine with 100 slots.

Results for B-D instances

The results from our experiments with the B-D instances are presented in Table 1. The first three
columns of each row of the table provide the instance name, the number of tools and the number of
slots in the tool magazine. The next two columns in each row present the costs, i.e., the number of
operations required by the solutions output by the two genetic algorithms to complete the process
described by the instance. The last two columns in each row present the execution times required
by the two algorithms in CPU seconds to solve the instance.

From the results we see that OURGA outputs the same solutions as DFGA in the first two sets
with 8 tools and 12 slots in the magazine. The times required by OURGA for these instances is on
average 16.6% of the times required by DFGA. For instances with 12 tools and 16 slots we see that
OURGA outputs better solutions than DFGA in 9 out of 10 instances, while requiring only 20.2% of
the execution times required by DFGA. Hence for this set of instances, OURGA clearly outperforms
DFGA. However, as problem sizes increase, the times required by OURGA increases much faster
than those required by DFGA. So for the next two classes of instances, we expect OURGA to take
more time than DFGA.

W.P. No. 2016-03-17 Page No. 8

IIMA ¢ INDIA
Research and Publications

Table 1: Results of experiments on the B-D instances.

Solution cost Solution time (sec)
Instance Tools Slots DFGA OURGA DFGA OURGA
8-20-01 8 12 19 19 0.968 0.156
8-20-02 8 12 31 31 0.968 0.171
8-20-03 8 12 25 25 0.968 0.171
8-20-04 8 12 29 29 0.953 0.171
8-20-05 8 12 38 38 0.968 0.156
8-20-06 8 12 28 28 0.984 0.171
8-20-07 8 12 24 24 0.984 0.171
8-20-08 8 12 31 31 0.968 0.171
8-20-09 8 12 31 31 0.953 0.171
8-20-10 8 12 25 25 0.984 0.171
8-30-01 8 12 48 48 0.984 0.171
8-30-02 8 12 48 48 0.968 0.156
8-30-03 8 12 50 50 0.984 0.156
8-30-04 8 12 50 50 0.984 0.171
8-30-05 8 12 48 48 0.984 0.156
8-30-06 8 12 51 51 0.968 0.171
8-30-07 8 12 54 54 0.968 0.140
8-30-08 8 12 55 55 0.968 0.171
8-30-09 8 12 46 46 0.968 0.171
8-30-10 8 12 54 54 0.984 0.171
12-50-01 12 50 121 117 1.234 0.328
12-50-02 12 50 114 114 1.234 0.328
12-50-03 12 50 121 118 1.250 0.328
12-50-04 12 50 101 95 1.250 0.343
12-50-05 12 50 126 121 1.265 0.328
12-50-06 12 50 119 112 1.250 0.343
12-50-07 12 50 114 107 1.296 0.328
12-50-08 12 50 140 136 1.250 0.328
12-50-09 12 50 138 136 1.234 0.312
12-50-10 12 50 118 117 1.266 0.343

Results for Anjos Instances

Table 2 presents our results for these instances. The structure of the table is the same as that of
Table 1. From Table 2 we see that OURGA outputs significantly better solutions than DFGA for
all 20 Anjos instances. The costs of the solutions output by OURGA were on average 76.7% of the
costs of solutions output by DFGA. However, for these instances, DFGA was significantly faster
than OURGA, taking on average 5.3% of the execution times required by OURGA.

Results for sko Instances

Table 3 presents our results for these instances. The structure of the table is the same as that
of Table 1. The results of our experiments on these instances closely match those for the Anjos
instances. Here too, OURGA outputs significantly better solutions than DFGA, with the average of
the solutions costs output by OURGA being 84.5% that of the average of solution costs output by

W.P. No. 2016-03-17 Page No. 9

IIMA ¢ INDIA
Research and Publications

Table 2: Results of experiments on the Anjos instances.

Solution cost Solution time (sec)
Instance Tools Slots DFGA OURGA DFGA OURGA
Anjos-60-01 60 100 76100 54063 21.062 288.172
Anjos-60-02 60 100 44465 31281 21.390 291.671
Anjos-60-03 60 100 33803 23514 21.155 280.624
Anjos-60-04 60 100 17647 11592 21.016 282.515
Anjos-60-05 60 100 22541 15168 21.125 289.671
Anjos-70-01 70 100 57263 42312 21.093 394.468
Anjos-70-02 70 100 68608 51723 21.046 405.015
Anjos-70-03 70 100 56301 43794 21.140 406.515
Anjos-70-04 70 100 36407 27727 21.312 405.546
Anjos-70-05 70 100 170012 134263 21.171 396.531
Anjos-75-01 75 100 82648 66686 21.141 457.406
Anjos-75-02 75 100 139273 111814 21.125 454.015
Anjos-75-03 75 100 48945 38160 21.249 453.671
Anjos-75-04 75 100 130124 106341 21.359 478.859
Anjos-75-05 75 100 58769 47033 21.234 463.593
Anjos-80-01 80 100 69448 54463 21.156 519.592
Anjos-80-02 80 100 64293 52871 21.156 522.313
Anjos-80-03 80 100 115204 95093 21.109 519.717
Anjos-80-04 80 100 120431 100848 21.140 520.140
Anjos-80-05 80 100 44967 36233 21.328 530.202

Table 3: Results of experiments on the sko instances.

Solution cost Solution time (sec)
Instance Tools Slots DFGA OURGA DFGA OURGA
sko-42 42 60 30839 24410 8.483 52.312
sko-49 49 60 42363 36652 8.484 65.828
sko-56 56 60 58978 52927 8.453 81.265
sko-64 64 100 123559 95544 21.203 387.562
sko-72 72 100 162311 132871 21.171 497.015
sko-81 81 100 213422 184529 21.110 587.312

sko-100 100 100 321218 289448 21.280 835.077

DFGA. However, OURGA was much slower than DFGA, taking on average, 10.5 times the execution
times of DFGA when the number of slots was 60 and on average, 30.2 times the execution times of
DFGA when the number of slots was 100.

We end this section with a general observation about the performance of OURGA. We found
that local search played a very important role in helping OURGA produce good quality solutions.
If the local search component was removed, then the solutions output by OURGA were worse than
those output by DFGA for large instances. However, the local search component was extremely
time consuming. For example, if the local search component was removed from OURGA, then its
execution time would reduce from 835.077 seconds to 2.656 seconds. This means that speeding up
local search would be very useful for OURGA.

L —
W.P. No. 2016-03-17 Page No. 10

IIMA ¢ INDIA
Research and Publications

4 Summary and Contributions

In this paper we present a genetic algorithm called OURGA for the tool indexing problem, and
compare the performance of OURGA with a ganetic algorithm presented for the same problem
in Dereli et al. (1998) and Dereli and Filiz (2000), which we call DFGA. In our opinion, DFGA
is non-conventional in the way they use the genetic algorithm operators while OURGA is more
conventional. Our computational experiments show that for indexing problems of practical sizes
(with up to 100 slots), OURGA outputs solutions that are of much lower cost than those output by
DFGA, although the times required are higher.

In OURGA, we have used the same operators that were used in DFGA to make the comparison
as fair as possible. It will be interesting to see whether the performance of OURGA can be improved
further by using different crossover and mutation operators.

References

M.F. Anjos, A. Kennings, and A. Vannelli. A Semidefinite Optimization Approach for the Single-Row
Layout Problem with Unequal Dimensions. Discrete Optimization 2 (2005) pp. 113-122.

M.F. Anjos and G. Yen. Provably Near-Optimal Solutions for Very Large Single-Row Facility Layout
Problems. Optimization Methods and Software 24 (2009) pp. 805-817

A. Baykasoglu and T. Dereli. Heuristic Optimization System for the Determination of Index Positions
on CNC Magazines with the Consideration of Cutting Tool Duplications. International Journal
of Production Research 42 (2004) pp. 1281-1303.

A. Baykasoglu and F.B. Ozsoydan. An improved approach for determination of index positions on
CNC magazines with cutting tool duplications by integrating shortest path algorithm. Interna-
tional Journal of Production Research. DOI: 10.1080,/00207543.2015.1055351

T. Dereli, A. Baykasoglu, N.N.Z. Gindy, and I.H. Filiz. Determination of Optimal Turret Index Po-
sitions by Genetic Algorithms. Proceedings of 2nd International Symposium on Intelligent Man-
ufacturing Systems. (1998) pp. 743-750. Turkey.

T. Dereli and I.H. Filiz. Allocating Optimal Index Positions on Tool Magazines Using Genetic
Algorithms. Robotics and Autonomous Systems 33 (2000) pp. 155-167.

D. Ghosh. Allocating Tools to Index Positions in Tool Magazines using Tabu Search. Working Paper
2016-02-06. IIM Ahmedabad. (2016a)

D. Ghosh. Exploring Lin Kernighan Neighborhoods for the Indexing Problem. Working Paper 2016-
02-13. IIM Ahmedabad. (2016b)

A.E. Gray, A. Seidmann, and K.E. Stecke. A Synthesis of Decision Models for Tool Management in
Automated Manufacturing. Management Science 39 (1993) pp. 549-567.

P. Larranaga, C.M.H. Kuipers, R.H. Murga, I. Inza, and S. Dizdarevic. Genetic Algorithms for the
Traveling Salesman Problem: A Review of Representations and Operators. Artificial Intelligence
Review 13 (1999) pp. 129-170.

M. Velmurugan and M. Victor Raj. Optimal Allocation of Index Positions on Tool Magazines Us-
ing Particle Swarm Optimization Algorithm. International Journal of Artificial Intelligence and
Mechatronics 1 (2013) pp. 5-8.

L —
W.P. No. 2016-03-17 Page No. 11

	Introduction
	Their Genetic Algorithm, Our Genetic Algorithm
	Computational Experiments
	Summary and Contributions

