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Abstract

We consider a class of location-allocation problems with immobile servers, stochastic demand
and congestion that arises in several planning contexts: location of emergency medical clin-
ics; preventive healthcare centers; refuse collection and disposal centers; stores and service
centers; bank branches and automated teller machines; internet mirror sites; and distribution
centers in supply chains. The problem seeks to simultaneously locate service facilities, equip
them with appropriate capacities, and allocate customer demand to these facilities such that
the total cost, which consists of the fixed cost of opening facilities with sufficient capacities,
the access cost of users’ travel to facilities, and the queuing delay cost, is minimized. Under
Poisson user demand arrivals and general service time distributions, the problem is set up
as a network of independent M/G/1 queues, whose locations, capacities and service zones
need to be determined. The resulting mathematical model is a non-linear integer program.
Using simple transformation and piecewise linear approximation, the model is linearized
and solved to ε-optimality using a constraint generation method. Computational results are
presented for instances up to 400 users, 25 potential service facilities, and 5 capacity levels
with different coefficient of variation of service times and average queueing delay costs per
customer. The results indicate that the proposed solution method is efficient in solving a
wide range of problem instances.

Keywords: Service System Design; Location-Allocation; Queueing; Stochastic Demand;
Congestion; Constraint Generation Method

1. Introduction

Problems arising in several planning contexts require deciding: (i) the location of ser-

vice facilities and their capacities; and (ii) service zones (allocations) of the located service

facilities. Examples include location-allocation of emergency service facilities such as med-

ical clinics and preventive health care facilities (Zhang et al., 2009, 2010, 2012); stores and

service centers; bank branches and automated teller machines (Aboolian et al., 2008; Wang

et al., 2002); internet mirror sites; and distribution centers in supply chains (Huang et al.,

2005; Vidyarthi et al., 2009). All the above examples are characterized by servers (medical

clinics, bank branches, distribution centers, etc.) that are immobile in that the customers
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need to travel to the service facilities to avail of their services, as opposed to the servers

travelling (mobile servers) to the customers’ site in response to calls for their services. Such

problems are generally also characterized by random (stochastic) nature of service calls (de-

mand arrivals) and their service requirements (service times). These problems are commonly

known in the literature as facility location problems with immobile servers, stochastic de-

mand and congestion (Berman and Krass, 2004). They are also termed as service system

design problems with stochastic demand and congestion (Amiri, 1997, 1998, 2001; Elhedhli,

2006). Excellent reviews on this class of problems are provided by Berman and Krass (2004)

and Boffey et al. (2007).

For facility location problems with stochastic demand and congestion, the following two

factors are important: (i) the costs of providing service; and (ii) the quality of service, with

an objective generally requiring a balance between the two. The costs of providing service

are related to the fixed cost of opening/operating the service facilities and the cost of access-

ing these facilities by the users. The service quality, on the other hand, is often measured in

terms of: (i) the average number of users waiting for service; (ii) average waiting time per

user; or (iii) the probability of serving a user within a time limit (Elhedhli, 2006). Balance

between service costs and service quality is commonly achieved in the literature using a

combination of the total cost of opening and accessing facilities and the cost associated with

waiting customers, which is minimized in the objective function (Amiri, 1997, 1998; Wang

et al., 2002; Elhedhli, 2006; Castillo et al., 2009). Others in the literature minimize the cost

of providing service subject to a minimum threshold on the service quality, where the service

quality may be defined in one of the ways described above (Marianov and Serra, 1998, 2002;

Silva and Serra, 2008).

In the current work, we use the former of the two approaches described above, i.e., we

consider as an objective the minimization of a combination of the total cost of opening and

accessing facilities and the cost associated with waiting customers. We note that due to the

complexity of the underlying problem, most papers in this category make assumptions such

as: (i) either the number or capacity of the facilities (or both) are fixed; (ii) the assignment

of users to the facilities are known in advance (closest assignment property); (iii) the de-

mand arrival process is Poisson; and (iv) the service times follow an exponential distribution

(see Amiri, 1997; Marianov and Serra, 2002; Wang et al., 2002; Elhedhli, 2006; Aboolian

et al., 2008, and references therein). Despite these simplifying assumptions, the techniques

proposed to date to solve the problem, with the exception of Elhedhli (2006), are either

approximate or heuristic based.

The contribution of this paper is two fold. First, we present a more generalized model

of the problem than the extant literature by assuming a general distribution for the service

times at facilities, as opposed to exponential distribution used in the literature. More specif-
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ically, our proposed model seeks to determine the minimum cost configuration (location of

service facilities with adequate capacity and allocation of service zones to these facilities) of

a service system under Poisson arrivals and general service time distribution, where the total

cost consists of the costs of opening and accessing service facilities and the cost associated

with waiting customers. The proposed model, therefore, is more challenging to solve than

the ones available in the literature that assume exponential service time distribution, which

themselves are too difficult to solve using exact methods. So, our second contribution lies

in the exact (ε-optimal) solution method that we propose to solve our model. Our proposed

solution method is based on a simple transformation and piecewise linearization of our non-

linear integer programming (IP) model, which is solved to optimality (or ε-optimality) using

a constraint generation algorithm.

The remainder of the paper is organized as follows. In Section 2, we describe the problem

setting, followed by its non-linear IP model. Section 3 describes the transformation and the

piecewise linearization approach for the non-linear IP model. To solve the linearized model,

we present a constraint generation based solution approach in Section 4. Computational

results are reported in Section 5. Section 6 concludes with some directions for future research.

2. Problem Formulation

Consider a set of user nodes, each indexed by i ∈ I whose demand for service occurs con-

tinuously over time according to an independent Poisson process with rate λi. We consider

a directed choice environment, where users are assigned to facilities, each indexed by j ∈ J ,

by a central decision maker. We assume that users from any node are entirely assigned to a

single service facility, where each facility operates as a single server with an infinite buffer to

accommodate users waiting for service. If xij is a binary variable that equals 1 if the demand

for service from user node i is satisfied by facility j, and 0 otherwise, then the aggregate

demand arrival rate at facility j, as a result of the superposition of Poisson processes, also

follows a Poisson process with mean Λj =
∑

i∈I λixij (Gross and Harris, 1998).

Let yjk be a binary variable that equals 1 if facility at site j is open and equipped with

a capacity level k ∈ K, 0 otherwise. Further, assume that the service times at any facility

j are independent and identically distributed with a mean 1/µjk and variance σ2
jk if it is

equipped with a capacity level k. Any facility j is thus modeled as an M/G/1 queue with

a service rate µj =
∑

k∈K µjkyjk and variance in service times given by σ2
j =

∑
k∈K σ

2
jkyjk.

Thus, the service system design problem is modeled as a network of independent M/G/1

queues.

Under steady state conditions (Λj/µj < 1), first-come-first-serve (FCFS) queuing disci-

pline, and infinite buffers to accommodate users waiting for service, the expected waiting
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time (including the time spent in service) of users at facility j is given, by the Pollaczek-

Khintchine formula, (Gross and Harris, 1998) as:

E[wj] =

(
1 + Cv2

j

2

)
τjρj

1− ρj
+ τj =

(
1 + Cv2

j

2

)
Λj

µj(µj − Λj)
+

1

µj
(1)

where τj = 1/µj is the average service time at facility j, ρj = Λj/µj is the average utilization

of facility j, and Cvj = σjµj is the coefficient of variation of service times at facility j. E[wj]

can be written in terms of location and allocation variables (yjk and xij) as:

E[wj(x,y)] =

(
1 +

∑
k∈K Cv

2
jkyjk

)∑
i∈I λixij

2
∑

k∈K µjkyjk
(∑

k∈K µjkyjk −
∑

i∈I λixij
) +

1∑
k∈K µjkyjk

(2)

The expected number of users in service or waiting for service at facility j is given, using

Little’s law, as ΛjE[wj]. If d denotes the average waiting time cost per customer (henceforth

called unit queuing delay cost), then the total delay/congestion cost in the network can be

expressed as d
∑

j∈J ΛjE[wj(x,y)] =
∑

j∈J
∑

i∈I λixijE[wj(x,y)]. We assume there is a fixed

set up cost fjk (amortized over the planning period) of locating a facility with capacity level

k at site j, and a variable access cost cij of providing service to users at node i from facility

at site j. The problem is to simultaneously determine: (i) the locations of the service

facilities and their corresponding capacity levels; (ii) the assignment of users to located

service facilities, such that the total system-wide cost, consisting of cost of opening service

facilities with appropriate capacities, cost of accessing service facilities by users and cost

associated with customers’ waiting, is minimized. The resulting non-linear integer program

(IP) model of the problem is as follows:

[P ] : Z(x,y) = min
x,y

∑
j∈J

∑
k∈K

fjkyjk +
∑
i∈I

∑
j∈J

cijxij + d
∑
j∈J

∑
i∈I

λixijE[wj(x,y)] (3)

s.t.
∑
i∈I

λixij ≤
∑
k∈K

µjkyjk ∀j (4)∑
j∈J

xij = 1 ∀i (5)∑
k∈K

yjk ≤ 1 ∀j (6)

xij, yjk ∈ {0, 1} ∀i, j, k (7)

The three terms in the objective function (3) are: (i) cost of opening facilities with ap-

propriate capacities; (ii) cost of accessing service facilities; and (iii) cost of users’ waiting at

facilities. The expression for E[wj(x,y)] in the objective function is given by (2). Constraint

set (4) ensures that at every facility, the total demand allocated is less than its capacity.

Note that constraint set (4) will be non-binding at optimality, else the term E[wj(x,y)] in

the objective function goes to infinity. This ensures the stability of the queueing system

(ρj = Λj/µj < 1) at each facility j. Constraint set (5) ensures that each user node is
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assigned to only one of the open facilities for its service. Constraint set (6) states that at

most one among multiple capacity levels is selected at a facility. Constraint set (7) imposes

binary restrictions on the location and allocation variables.

The presence of the non-linear term
∑

i∈I
∑

j∈J λixijE[wj(x,y)] in the objective function

makes [P ] challenging to solve. In the next section, we present an approach to linearize the

expression for the total waiting time spent by the users at a facility, followed by an exact

solution procedure, based on a constraint generation algorithm, to solve the linearized model.

3. Model Linearization

The non-linear term in the objective function of [P ] can be written, using (1), as:

ΛjE[wj] =

(
1 + Cv2

j

2

)
Λ2
j

µj(µj − Λj)
+

Λj

µj
=

(
1 + Cv2

j

2

)
ρ2
j

(1− ρj)
+ ρj (8)

To linearize (8), it can be rewritten, upon rearranging its terms, as:

ΛjE[wj] =
1

2

{(
1 + Cv2

j

) ρj
1− ρj

+
(
1− Cv2

j

)
ρj

}
(9)

Let us define a set of nonnegative auxiliary variables, Uj, such that:

Uj =
ρj

1− ρj
=

Λj

µj − Λj

=

∑
i∈I λixij∑

k∈K µjkyjk −
∑

i∈I λixij
(10)

which implies:

ρj =
Uj

1 + Uj
(11)

Using ρj = Λj/µj, the total demand Λj at facility j can be expressed as:

Λj =
∑
i∈I

λixij = ρjµj =ρj
∑
k∈K

µjkyjk =
∑
k∈K

µjkzjk, where zjk =

{
ρj, if yjk = 1

0, otherwise

Hence, the total demand at any facility j can be expresses as:∑
i∈I

λixij =
∑
k∈K

µjkzjk ∀j

We know that any facility can have at most one capacity level, i.e., there exists at most

one k = k′ such that yjk′ = 1, while yjk = 0 ∀ k 6= k′. Further, ρj < 1. Using this knowledge,
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zjk can alternatively be expressed using the following set of constraints:

zjk ≤ yjk ∀j, k∑
k∈K

zjk = ρj ∀j

zjk ≥ 0 ∀j, k

With the above substitutions in (9), the expression for ΛjE[wj] reduces to:

ΛjE[wj] =
1

2

{(
1 +

∑
k∈K

Cv2
jkyjk

)
Uj +

(
1−

∑
k∈K

Cv2
jkyjk

)
ρj

}

=
1

2

(
Uj +

∑
k∈K

Cv2
jkwjk + ρj −

∑
k∈K

Cv2
jkzjk

)
, where wjk =

{
Uj, if yjk = 1

0, otherwise

Again, using the fact that there exists at most one k = k′ such that yjk′ = 1, while

yjk = 0 ∀ k 6= k′, wjk can alternatively be expressed using the following set of constraints:

wjk ≤Myjk ∀j, k∑
k∈K

wjk = Uj ∀j

wjk ≥ 0 ∀j, k

where M is a large number (Big-M). We now state a Lemma that helps us linearize the

above non-linear model [P ].

Lemma 1: The function ρj(Uj) =
Uj

1+Uj
is concave in Uj ∈ [0,∞).

Proof:

Differentiating ρj w.r.t. Uj, we get the first derivative,
δρj
δUj

= 1
(1+Uj)2

> 0, and the second

derivative,
δ2ρj
δU2

j
= −2

(1+Uj)3
< 0, which proves that the function ρj(Uj) is concave in Uj. �

Lemma 1 implies that for a given set of points indexed by h, h ∈ H, the function ρj(Uj)

can be approximated arbitrarily close by a set of piecewise linear functions that are tangent

to ρj at points {Uh
j }h∈H , such that:

ρj = min
h∈H

{
1

(1 + Uh
j )2

Uj +
(Uh

j )2

(1 + Uh
j )2

}
(12)

This is equivalent to the following set of constraints:

ρj ≤
1

(1 + Uh
j )2

Uj +
(Uh

j )2

(1 + Uh
j )2

, ∀j, h ∈ H (13)
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provided ∃ h ∈ H such that (13) holds with equality.

Using the above substitutions result in the following linear mixed integer program (MIP)

reformulation of [P]:

[P (H)] : min
∑
j∈J

∑
k∈K

fjkyjk +
∑
i∈I

∑
j∈J

cijxij+
d

2

∑
j∈J

{
Uj + ρj +

∑
k∈K

Cv2
jk(wjk − zjk)

}
(14)

s.t. (5)− (7), (13)∑
i∈I

λixij −
∑
k∈K

µjkzjk = 0 ∀j (15)

zjk ≤ yjk ∀j, k (16)∑
k∈K

zjk = ρj ∀j (17)

wjk ≤Myjk ∀j, k (18)∑
k∈K

wjk = Uj ∀j (19)

0 ≤ zjk, ρj ≤ 1; wjk, Uj ≥ 0 ∀j, k (20)

Equivalence between [P ] and [P (H)] requires that ∃ h ∈ H such that (13) holds with

equality. Proposition 1 states that this condition will always be satisfied at optimality.

Proposition 1: In the linearized model [P (H)], at least one of the constraints in (13) will

be binding at optimality.

Proof:

Upon rearranging the terms, (13) can be rewritten as:

Uj ≥ (1 + Uh
j )2ρj − (Uh

j )2, ∀j, h ∈ H (21)

Since Uj appears in the objective function of [P (H)] with a positive coefficient, [P (H)]

attains its minimum value only when Uj is minimized. This implies that ∀j ∈ J , ∃ h ∈ H
such that (21) holds with equality if (1+Uh

j )2ρj−(Uh
j )2 ≥ 0, else Uj = 0 if (1+Uh

j )2ρj−(Uh
j )2

< 0.

Further,

0 ≤ (1 + Uh
j )2ρj − (Uh

j )2

= (ρj − 1)(Uh
j )2 + 2ρjU

h
j + ρj

⇔ Uh
j ∈

[
0,
ρj +

√
ρj

1− ρj

]
∀ j ∈ J, h ∈ H (since ρj ≤ 1, Uj ≥ 0)

Thus, to prove that ∀j ∈ J , ∃ h ∈ H such that (21) holds with equality, it is sufficient to
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show that Uh
j ∈

[
0,

ρj+
√
ρj

1−ρj

]
. Since Uh

j is an approximation to Uj, we obtain:

0 ≤ Uh
j ≈ Uj =

ρj
1− ρj

≤
ρj +

√
ρj

1− ρj

This proves that ∀j ∈ J , ∃ h ∈ H such that (21) holds with equality. �

The linear MIP model [P (H)] has 2(|J |+ |J | ∗ |K|) additional continuous variables com-

pared to the non-linear IP model [P ]. Further, [P (H)] has (|I|+4∗|J |+2∗|J |∗|K|+|J |∗|H|)
constraints, as opposed to only (|I|+ 2 ∗ |J |) constraints in [P ]. Hence, the non-linearity of

[P ] is eliminated at the expense of having to deal with a large number of additional variables

and constraints in [P (H)].

3.1. Special Cases

In many cases, the service at facilities involve repeated steps without much variation,

i.e., Cvjk = 0 (such that each service facility is modeled as an M/D/1 queuing system). For

such deterministic service times, the users’ expected waiting time at facility j is given by:

ΛjE[wj] = 1
2

(
Λj

µj−Λj
+

Λj

µj

)
= 1

2
(Uj + ρj) and the resulting linear MIP model is as follows:

[P (H)Cv=0] : min
∑
j∈J

∑
k∈K

fjkyjk +
∑
i∈I

∑
j∈J

cijxij +
d

2

∑
j∈J

(Uj + ρj)

s.t. (4)− (7), (13)

0 ≤ ρj ≤ 1; Uj ≥ 0 ∀i, j, k

For exponentially distributed service times at the facilities, i.e., Cvjk = 1 (M/M/1 case),

the expression is given by: ΛjE[wj] =
ρj

1−ρj = Uj, and the linear model reduces to:

[P (H)Cv=1] : min
∑
j∈J

∑
k∈K

fjkyjk +
∑
i∈I

∑
j∈J

cijxij + d
∑
j∈J

Uj

s.t. (4)− (7), (13)

0 ≤ ρj ≤ 1; Uj ≥ 0 ∀i, j, k

4. Solution Approach

We state the following two propositions, which are used in the development of the solu-

tion algorithm for [P (H)].

Proposition 2: For any given subset of points {Uh
j }Hq⊂H , (22) provides a lower bound on

the optimal objective function value of [P ], where v(•) is the objective function value of the
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problem (•) and (xp,yq, ρq,wq, zq,Uq) is the optimal solution to [P (Hq)].

LB = v(P (Hq)) =∑
j∈J

∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈N

cijx
q
ij +

d

2

∑
j∈J

{
U q
j + ρqj +

∑
k∈K

Cv2
jk(w

q
jk − z

q
jk)

}
(22)

Proof:

Since [P (Hq)] is a relaxation of the full problem [P (H)], the objective function value of

[P (Hq)], given by (22), provides a lower bound on the optimal objective function value of

[P (H)], and hence on the optimal objective function value of [P ]. �

Proposition 3: For any given subset of points {Uh
j }Hq⊂H , (23) provides an upper bound on

the optimal objective function value of [P ], where (xp,yq) is the optimal solution to P [(Hq)].

UB = Z(xq,yq) =
∑
j∈J

∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈J

cijλix
q
ij+

d

{ (
1 +

∑
k∈K Cv

2
jkyjk

) (∑
i∈I λixij

)2

2
∑

k∈K µjkyjk
(∑

k∈K µjkyjk −
∑

i∈I λixij
) +

∑
i∈I λixij∑

k∈K µjkyjk

}
(23)

Proof:

For any subset of points {Uh
j }Hq⊂H , the optimal solution (xp,yq) to [P (Hq)] is also a fea-

sible solution to [P ] as all the constraints of [P ] are also contained in [P (Hq)]. Hence, the

objective function of [P ] evaluated at (xp,yq), which is given by (23), provides an upper

bound on the optimal objective of [P ]. �

4.1. Solution Algorithm

Although there are a large number of constraints/cuts (13) in the linear MIP model

[P (H)], it is not necessary to generate all of them. Instead, it suffices to start with a

subset H1 ⊂ H of these cuts, where H1 may be empty or chosen a priori, and generate

the rest as needed. Our preliminary computational experiments, presented in Table 1,

suggest a much faster convergence of the algorithm when H1 is non-empty. We, therefore,

use a carefully chosen subset H1 of initial cuts in all our subsequent experiments. The

subset of points {Uh
j }H1⊂H , required to obtain the initial subset of cuts, is generated to

approximate the function ρj(Uj) =
Uj

1+Uj
using its tangents ρ̂j(Uj) at these points such that

the approximation error, measured as ρ̂j(Uj) − ρj(Uj), is at most 0.001 (Elhedhli, 2005).

The resulting [P (H1)] is solved, giving a solution (x1,y1, ρ1,w1, z1,U1). The lower bound

(LB1q) and upper bound (UB1) are computed using (22) and (23) respectively. If UB1

equals LB1 within some accepted tolerance (ε), then (x1,y1) is an optimal solution to [P ],

and the algorithm stops. Otherwise, a new set of points {Uh
j } is generated using the current

solution as Uhnew
j =

∑
i∈I λix

1
ij∑

k∈K µjky
1
jk−

∑
i∈I λix

1
ij
∀j. A new set of constraints/cuts of the form
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(13) is generated at these new points, which are appended to [P (H1)] to give [P (H2)]. Now,

[P (H2)] is solved to yield a solution (x2,y2, ρ2,w2, z2,U2) and a lower bound LB2. Since

the upper bound, as given by (23), changes non-monotically, the new upper bound UB2

is retained as min{UB1, Z(x2,y2)}. If UB2 equals LB2 within the accepted tolerance (ε),

then the algorithm terminates with (x2,y2) as an optimal solution. Otherwise, the above

process is repeated until UBq equals LBq within (ε) for some iterations q. The details of

the algorithm are outlined below:

Algorithm 1 Constraint Generation Algorithm for [P(H)]

1: q ← 1; UBq−1 ← +∞; LBq−1 ← −∞.
2: Choose an initial set of points {Uh}h∈Hq to approximate the function ρj(Uj) = Uj/1+Uj.
3: while (UBq−1 − LBq−1)/UBq−1 > ε do
4: Solve P (Hq), and obtain its optimal solution (xq,yq, ρq,wq, zq,Uq).
5: Update the lower bound: LBq ← v(P (Hq)) using (22).
6: Update the upper bound: UBq ← min{UBq−1, Z(xq,yq)} using (23).

7: Generate a new set of points Uhnew
j =

∑
i∈I λix

q
ij∑

k∈K µjky
q
jk−

∑
i∈I λix

q
ij
∀j using (10).

8: Hq+1 ← Hq ∪ {hnew}.
9: q ← q + 1

10: end while

Proposition 4: The constraint generation algorithm to solve [P(H)] is finite.

Proof:

Since xij, yjk ∈ {0, 1} ∀i, j, k and Uj =
∑

i∈I λixij∑
k∈K µjkyjk−

∑
i∈I λixij

, Uj can take only a finite set of

values. Therefore, in order to prove the finiteness of Algorithm 1, it is sufficient to prove

that the generated values of Uh
j are not repeated.

Consider an iteration q, wherein the Algorithm 1 has not yet converged, that is UBq >

LBq. Further, suppose (x2,y2, ρ2,w2, z2,U2) is a solution to [P (Hq)]. The new points Uhnew
j

generated at iteration q are given by:

Uhnew
j =

∑
i∈I λix

q
ij∑

k∈K µjky
q
jk −

∑
i∈I λix

q
ij

∀i, j, k

Suppose the values of Uhnew
j are already generated at iteration q0 < q ∀j ∈ J . Then,

We have Uhnew
j generated in iteration q is given by : Uhnew

j =
∑

i∈I λix
q
ij∑

k∈K µjky
q
jk−

∑
i∈I λix

q
ij

(13)⇒
Uhnew
j

1 + Uhnew
j

≤ 1

1 + Uhnew
j

U q
j +

(
Uhnew
j

1 + Uhnew
j

)2

∀ j

⇒Uhnew
j ≤ U q

j ∀ j
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We now have:

LBq =
∑
j∈J

∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈J

cijx
q
ij +

d

2

∑
j∈J

{
U qj + ρqj +

∑
k∈K

Cv2
jk(w

q
jk − z

q
jk)

}

≥
∑
j∈J

∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈J

cijx
q
ij +

d

2

∑
j∈J

{
Uhnew
j + ρqj +

∑
k∈K

Cv2
jk(w

q
jk − z

q
jk)

}

=
∑
j∈J

∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈J

cijx
q
ij +

d

2

∑
j∈J

{ ∑
i∈I λix

q
ij∑

k∈K µjky
q
jk −

∑
i∈I λix

q
ij

+ ρqj +
∑
k∈K

Cv2
jk(w

q
jk − z

q
jk)

}

=
∑
k∈K

fjky
q
jk +

∑
i∈I

∑
j∈J

cijx
q
ij + d


(

1 +
∑

k∈K Cv
2
jkyjk

) (∑
i∈I λixij

)2
2
∑

k∈K µjkyjk
(∑

k∈K µjkyjk −
∑

i∈I λixij
) +

∑
i∈I λixij∑

k∈K µjkyjk


= Z(xq,yq)

≥ min{UBq−1, Z(xq,yq)}

= UBq

This contradicts are initial assumption UBq > LBq. Therefore, at any given iteration,

Uhnew
j will be different from the previously generated points at least for any one j. Fur-

thermore, the number of values that Uh
j can take is finite. Hence, the algorithm should

terminate in a finite number of iterations.

�

5. Computational Results

We present our computational experiments with the solution approach proposed in Sec-

tion 4. The solution procedures are coded in C++ (Visual Studio 2010), while [P (Hq)] at

every iteration q is solved using IBM ILOG CPLEX 12.4 on a personal laptop with Intel

Core i5-3230M, 2.60 GHz CPU; 4 GB RAM; and Windows 64-bit operating system. The

test instances are generated using a combination of the schemes used by Amiri (1998) and

Holmberg et al. (1999), described in detail in Section 5.1. We generate four sets of test prob-

lems by varying the combination of the number of user nodes and the number of potential

facility locations (|I|, |J |) as (100, 10), (200, 15), (300, 20), and (400, 25). The number of

capacity levels (|K|) is set at 5, and the tolerance level for optimality ε is set at 10−5 in all

the experiments.

5.1. Data Generation

The co-ordinates of the nodes representing user nodes are randomly generated using a

uniform distribution U ∼ (10, 300). The mean demand rate at any user node i is randomly

generated as λi ∼ U(10, 50), following Holmberg et al. (1999). The locations of the potential

facilities are obtained from the solution to a p-median facility location problem (Holmberg

et al., 1999). The other parameters are generated as follows:
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• Capacity Levels (µjk) are set as: µj1 = 0.50 ∗ µj3; µj2 = 0.75 ∗ µj3; µj4 = 1.25 ∗ µj3;

µj5 = 1.50 ∗ µj3, where µj3 = (1.25
∑

i∈I λi)/(|J | ∗ LR). The Load Ratio (LR), which

is defined as the average facility utilization if all the potential facilities are assigned

capacity level 3 (k = 3) to satisfy 125% of the total demand in the network, is set at

0.60 (Amiri, 1998).

• Fixed Costs (fjk) are generated as: fj3 = FCR ∗ Ejj0 , where Ejj0 is the Euclidean

distance between the facility site j and a fixed point j0 = (155, 155), which is the

center of the box within which the coordinates of user nodes are generated. FCR,

called the Fixed Cost Ratio, is a constant set at 40. fj1 = 0.60 ∗ fj3, fj2 = 0.85 ∗ fj3,

fj4 = 1.15 ∗ fj3, fj5 = 1.35 ∗ fj3 (Amiri, 1998). The chosen values of fixed cost for

different capacity levels exhibit both an underlying economy as well as diseconomy of

scale. For example, for a 25% increase in capacity (corresponding to µj4 over µj3),

the capacity cost increases only 15%. However, for the a 50% increase in capacity

(corresponding to µj5 over µj3), the capacity cost increases 35%.

• Service Costs (cij) are generated as: cij = 5 ∗Eij, where Eij is the Euclidean distance

between user node i and the facility site j (Holmberg et al., 1999).

• Unit Queueing Delay Cost (d) is assumed to be one of the values from the set {1, 10,

25, 50, 100, 250, 500, 1000, 5000}.

5.2. Analysis of Computational Results

Table 1 compares the performance of the proposed solution approach with a priori cuts

versus without a priori cuts for test instances with 100 user nodes and 10 facilities. The

table reports the number of iterations required (#Iter) and the computation time in seconds

(CPU) for different values of coefficient of variation of service times (Cv) and the unit queu-

ing delay cost (d). The table also reports the percentage reduction in computation time as a

result of adding a priori cuts, which is computed as: (CPU time without a priori cuts - CPU

time with a priori cuts)×100/(CPU time without a priori cuts). As described in Section 4.1,

a priori cuts for the function ρ(U) = U/(1 +U) are generated based on the piecewise linear

approximation ρ̂(U) of the function ρ(U) such that the approximation error (measured by

ρ̂(U)− ρ(U)) is at most 0.001 (Elhedhli, 2005). Figure 1 shows for (|I| = 100, |J | = 10) the

percentage reduction in the number of iterations and the CPU times as a result of addition

of a priori cuts for different values of d and Cv.

Following observations can be made from Table 1 and Figure 1. The results in Table

1 show that without a priori cuts, the problem takes, on an average, 949 seconds and 9

iterations to solve. The addition of a priori cuts reduces these numbers to less than 4

seconds of CPU time and less than 3 iterations. The percentage reduction in CPU time due

to the addition of a priori cuts varies between 24.21% to 99.97%, with an average reduction
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of 75.25%. Plots in Figure 1 further show that the benefits of a priori cuts, in terms of

% reduction in CPU time and number of iterations, increase significantly with an increase

in the unit queuing delay cost (d). This is because, as Table 1 suggests, without a priori

cuts, the computation time and the number of iterations required by the proposed solution

approach increases significantly with an increase in d. However, with the addition of a priori

cuts, the computation time and the number of iterations required are almost insensitive to

d.

Tables 2-5 summarize the computational results for four sets of instances (|I| = 100,

|J | = 10; |I| = 200, |J | = 15; |I| = 300, |J | = 20; |I| = 400, |J | = 25), for different

values of the unit queueing delay cost (d = 1, 10, 25, 50, 100, 250, 500, 1000, 5000) and

coefficient of variation of service times (Cv = 0, 1, 0.5, 1.5, 2, 2.5). In solving each of

the problem instances, we use a priori set of 32 cuts, which corresponds to a maximum

approximation error of 0.001 in the linear approximation of ρ(U). The tables report for

each problem instance the total cost (TC); fixed cost (FC), access cost (AC), and delay

cost (DC), expressed as a percentage of the total cost; computation time in seconds (CPU);

number of iterations for convergence (#Iter); number of facilities opened (#Facility); and

the minimum, maximum, and average facility utilizations among the open facilities. Figure

2 shows the effect of varying d on FC, AC, DC, and TC for different values of Cv. Figure

3 shows the effect of varying d on the maximum and average facility utilizations. Following

observations can be made from the figures:

• An increase in d or Cv increases TC, as expected. An increase in d also results in a

higher DC, which is expected, provided the expected total number of users waiting

at different service facilities in the network (
∑

j ΛjE[wj]) remains unchanged with

an increase in d. However, an increase in d implies a larger penalty for congestion

(waiting customers), which forces the system to either attain more uniform utilization

(ρj = Λj/µj) among the open facilities or to install a larger total service capacity in the

network (either by opening more facilities or by installing larger capacities at fewer,

more or the same number of opened facilities). In either case, the maximum facility

utilization decreases and the average facility utilization either decreases or remains

constant, as evident from Figure 3. This results in a decrease in the expected total

number of users waiting in the network (
∑

j ΛjE[wj]). We observe from our results

that the percentage decrease in the expected total number of waiting users in the

network is smaller compared to the percentage increase in d, such that the net effect

is always an increase the total delay cost (DC).

• For a fixed network configuration (location and allocation of service facilities), an

increase in Cv is expected to increase the expected total number of waiting users

in the network, and hence increase DC. However, when the location and allocation

of service facilities are also decision variables, as they are in the current problem,

Figure 2 suggests that an increase in Cv may sometimes result in a decrease in DC,
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which initially appears to be counter intuitive. However, this can be justified as follows.

To counter the increase in congestion at a higher value of Cv, the system chooses to

either attain more uniform utilization among the open facilities or to install a larger

total service capacity in the system, thereby resulting in a decrease in the expected

total number of waiting users in the network, and hence a decrease in DC.

• The fixed cost (FC) changes non-monotonically with an increase in d or Cv, which also

seems counter intuitive since to counter the effect of increase in d or Cv, the system

is expected to either attain more uniform utilization among the open facilities or to

install a larger total service capacity in the system, neither of which should decrease

FC. However, this seemingly counter intuitive observation can be justified as follows.

In an attempt to equalize utilizations among open facilities, the system may choose

to redistribute the total service capacity more uniformly among the open facilities,

in which case some facilities may exhibit economies of scale while others may exhibit

diseconomies of scale in fixed costs (as described in Section 5.1). This may result in

either an increase or decrease in FC depending on the net effect of economies and

diseconomies of scale. In addition, since the fixed cost of opening a service facility

with a given capacity level (fjk) depends on its distance from a fixed point (j0), as

described in Section 5.1, an increase in d or Cv may result in a decrease in FC if the

system chooses to open most or all service facilities closer to j0 (even though at the

same or higher capacity levels) at the higher value of d or Cv. In such a case, AC

is likely to increase with an increase in d or Cv. On the other hand, if the service

facilities get more widely dispersed closer to user nodes in response to an increase in

d or Cv, then AC is likely to decrease.

• Comparison of CPU times across Tables 2-5 shows, as expected, that the computation

time increases as the number of user nodes and potential facilities (|I|, |J |) increase.

• The proposed solution approach succeeds in finding exact (within an optimality gap

of 10−5) solutions to the four sets of problem instances (|I| = 100, |J | = 10; |I| = 200,

|J | = 15; |I| = 300, |J | = 20; |I| = 400, |J | = 25) within an average CPU time of

4, 29, 100 and 323 seconds, respectively, while the maximum CPU times for these

sets are 17, 64, 668, and 1585 seconds, respectively. The average number of iterations

are 2, 3, 3, and 3 whereas the maximum number of iterations are 3, 3, 3, and 6,

respectively for the four sets of problem instances. This demonstrates the efficiency of

the solution approach where the number of iterations/cuts imply that only a fraction

of the exponential number constraints is required.
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Figure 1: Effect of Adding a-priori Cuts on the Number of Iterations and the CPU Times of the Algorithm
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Table 1: Effect of Adding a-priori Cuts on the Performance of the Solution Method: Instances with 100
User Nodes and 10 Potential Facilities

Without a-priori cuts With a-priori cuts % Reduction
Cv d # Iter CPU # Iter CPU in CPU times
0 1 3 2.2 2 1.6 29

10 6 8.0 2 1.8 77
25 6 5.4 3 3.0 45
50 7 12.1 2 3.7 69
100 7 13.5 2 3.4 75
250 8 11.0 2 2.0 81
500 8 12.1 2 1.6 87
1000 12 21.7 3 2.5 88
5000 20 24.8 2 2.5 90

0.5 1 3 2.1 2 1.6 24
10 6 5.9 3 3.6 38
25 6 6.1 2 2.4 61
50 7 10.5 2 3.5 67
100 7 12.3 2 4.0 67
250 11 13.8 2 2.3 83
500 12 19.1 3 2.9 85
1000 14 22.1 3 2.3 90
5000 18 28.0 2 1.8 94

1 1 4 3.2 2 1.3 59
10 6 7.1 2 2.2 68
25 6 8.7 2 3.8 56
50 8 16.0 2 4.1 74
100 7 12.1 2 3.3 72
250 9 16.7 2 1.3 92
500 16 22.2 3 2.4 89
1000 13 24.4 2 2.3 91
5000 15 38.7 3 8.3 79

1.5 1 4 2.6 2 1.6 39
10 6 6.4 2 2.3 64
25 8 14.7 2 3.2 78
50 7 14.8 2 4.2 72
100 8 17.1 2 2.0 88
250 13 34.2 2 1.8 95
500 13 25.7 2 2.2 92
1000 11 29.3 2 3.2 89
5000 12 60.6 3 16.8 72

2 1 4 2.8 2 1.4 49
10 6 9.1 2 3.4 63
25 6 11.7 2 4.4 62
50 8 15.7 3 3.9 75
100 9 19.8 2 1.4 93
250 12 25.3 3 2.3 91
500 12 22.4 2 2.9 87
1000 12 38.5 3 4.3 89
5000 12 162.5 3 15.6 90

2.5 1 6 5.2 2 1.7 67
10 7 12.2 3 4.7 62
25 7 12.2 2 3.9 68
50 10 23.5 2 2.5 89
100 12 31.3 2 2.0 93
250 10 25.4 2 2.3 91
500 11 26.8 3 4.9 82
1000 11 50.0 3 4.8 90
5000 14 50154.7 3 13.1 100

Min. 3 2.1 2 1.3 24
Avg. 9 948.8 2 3.6 75
Max. 20 50154.7 3 16.8 100
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Table 2: Computational Performance: Instances with 100 User Nodes and 10 Potential Facilities
Cv d TC FC (%) AC (%) DC (%) # Facility % Utilization # Iter CPU

Min. Max. Avg.
0 1 42,405 47 53 0 7 89 98 67 2 2

10 43,248 46 52 2 7 95 97 67 2 2
25 43,962 46 51 2 7 89 94 64 3 3
50 44,955 47 50 3 7 83 93 61 2 4

100 46,308 47 48 5 7 81 89 59 2 3
250 48,741 40 53 7 6 74 85 47 2 2
500 51,438 34 56 10 5 72 81 38 2 2

1,000 55,569 36 51 13 5 65 72 34 3 3
5,000 79,578 36 32 32 6 48 56 32 2 2

0.5 1 42,429 47 53 0 7 89 98 67 2 2
10 43,392 47 52 1 7 89 97 64 3 4
25 44,186 46 51 3 7 89 94 64 2 2
50 45,251 46 50 4 7 83 93 61 2 3

100 46,720 46 48 6 7 81 89 59 2 4
250 49,255 35 58 7 5 75 82 40 2 2
500 52,233 37 54 9 5 69 73 35 3 3

1,000 56,507 35 50 14 5 65 72 34 3 2
5,000 81,897 35 31 34 6 48 56 32 2 2

1 1 42,501 47 53 0 7 89 98 67 2 1
10 43,684 47 51 2 7 89 94 64 2 2
25 44,802 47 50 3 7 83 93 61 2 4
50 46,013 47 49 4 7 81 89 59 2 4

100 47,555 41 54 5 6 74 85 47 2 3
250 50,479 35 57 8 5 72 81 38 2 1
500 53,859 37 53 10 5 65 70 34 3 2

1,000 59,040 35 48 17 5 61 70 33 2 2
5,000 88,546 41 25 34 7 42 52 32 3 8

1.5 1 42,615 47 52 1 7 95 98 67 2 2
10 44,135 46 51 3 7 89 94 64 2 2
25 45,525 46 50 4 7 83 92 61 2 3
50 46,920 47 48 5 7 74 85 56 2 4

100 48,671 41 53 6 6 72 81 46 2 2
250 52,162 37 54 8 5 69 73 35 2 2
500 56,163 37 50 12 5 61 70 33 2 2

1,000 62,778 35 45 20 5 62 66 32 2 3
5,000 97,044 38 23 39 7 42 48 32 3 17

2 1 42,763 47 52 1 7 95 97 67 2 1
10 44,711 47 50 3 7 83 93 61 2 3
25 46,278 47 48 5 7 81 89 59 2 4
50 47,791 41 54 5 6 74 85 47 3 4

100 49,903 35 57 7 5 72 81 38 2 1
250 53,941 37 53 10 5 65 70 34 3 2
500 59,023 35 48 17 5 61 70 33 2 3

1,000 66,506 42 38 20 6 49 59 33 3 4
5,000 107,202 41 19 40 8 36 44 32 3 16

2.5 1 42,954 47 52 1 7 95 97 67 2 2
10 45,238 46 50 4 7 83 93 61 3 5
25 46,993 47 48 5 7 74 85 56 2 4
50 48,735 41 53 6 6 72 81 46 2 3

100 51,249 38 55 7 5 69 73 35 2 2
250 55,950 37 51 12 5 61 70 33 2 2
500 61,983 43 41 16 6 48 60 34 3 5

1,000 70,952 40 36 23 6 48 56 32 3 5
5,000 118,106 44 15 41 9 34 39 32 3 13
Min. 42405 34 15 0 5 34 39 32 2 1
Avg. 54645 42 48 10 6 72 80 48 2 4
Max. 118106 47 58 41 9 95 98 67 3 17
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Table 3: Computational Performance: Instances with 200 User Nodes and 15 Potential Facilities
Cv d TC FC (%) AC (%) DC (%) # Facility % Utilization # Iter CPU

Min. Max. Avg.
0 1 64,897 55 44 0 14 91 99 90 2 18

10 66,409 55 43 2 14 76 98 87 2 18
25 67,976 54 43 3 14 78 95 84 2 23
50 69,594 55 41 4 14 71 93 80 2 20

100 72,116 49 46 5 12 67 90 66 3 60
250 76,189 42 51 7 9 62 82 47 2 26
500 80,387 42 49 9 9 56 76 42 2 17

1,000 86,593 43 45 12 9 45 72 37 2 14
5,000 120,794 36 33 32 9 48 60 32 3 28

0.5 1 64,961 55 44 1 14 91 99 90 2 16
10 66,685 55 43 2 14 88 96 87 2 22
25 68,372 55 42 3 14 76 94 82 2 23
50 70,108 55 41 5 14 71 93 80 2 19

100 72,765 49 45 6 12 70 87 66 2 31
250 76,982 43 51 7 9 62 82 45 3 40
500 81,364 43 48 9 9 50 76 40 2 15

1,000 87,860 42 44 13 9 50 72 37 3 10
5,000 124,123 40 29 31 10 41 55 32 5 57

1 1 65,136 55 44 1 14 91 99 90 2 19
10 67,401 55 42 3 14 88 96 87 4 54
25 69,295 55 41 3 14 71 93 80 2 19
50 71,555 54 41 5 14 75 89 77 3 48

100 74,309 45 50 5 10 67 83 52 2 32
250 78,810 43 50 7 9 56 76 42 2 23
500 83,774 44 46 10 9 46 72 38 2 17

1,000 91,294 41 43 15 9 46 68 36 3 17
5,000 132,533 38 27 35 10 43 51 32 4 35

1.5 1 65,396 55 44 1 14 92 98 90 2 22
10 68,258 55 42 3 14 76 94 82 2 23
25 70,557 54 41 5 14 75 93 79 2 24
50 73,197 49 46 5 12 67 87 64 3 59

100 76,017 45 48 6 10 64 82 51 3 35
250 81,115 43 48 9 9 51 76 40 2 20
500 86,919 43 45 12 9 50 70 37 3 17

1,000 95,844 42 41 17 9 45 65 34 3 23
5,000 144,737 39 24 38 11 38 48 32 4 53

2 1 65,675 56 43 1 14 76 98 87 2 16
10 69,116 56 41 3 14 71 93 80 2 21
25 72,011 54 41 6 14 75 89 77 2 36
50 74,649 45 50 5 10 67 83 52 3 42

100 77,852 43 50 7 9 56 79 43 2 23
250 83,654 44 46 9 9 50 72 37 3 15
500 90,632 43 44 13 9 45 67 35 3 22

1,000 101,278 46 36 18 10 41 56 34 5 52
5,000 159,170 39 20 40 12 37 44 32 4 43

2.5 1 65,957 56 43 1 14 76 98 87 2 20
10 70,031 55 41 4 14 73 93 80 2 20
25 73,347 49 45 5 12 70 86 64 3 53
50 76,108 45 48 6 10 64 80 51 3 40

100 79,628 44 49 7 9 50 76 40 2 24
250 86,404 44 45 11 9 50 68 37 2 16
500 94,597 42 42 16 9 49 65 34 4 32

1,000 106,997 45 34 22 10 44 55 33 3 34
5,000 175,392 40 17 43 13 33 41 32 6 64
Min. 64,897 36 17 0 9 33 41 32 2 10
Avg. 84,015 48 42 10 11 62 80 57 3 29
Max. 175,392 56 51 43 14 92 99 90 6 64
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Table 4: Computational Performance: Instances with 300 User Nodes and 20 Potential Facilities
Cv d TC FC (%) AC (%) DC (%) # Facility % Utilization # Iter CPU

Min. Max. Avg.
0 1 87,130 57 43 1 18 84 99 87 2 668

10 89,241 56 42 2 18 91 97 84 3 52
25 91,380 55 41 3 18 83 96 83 3 56
50 93,915 54 41 5 18 85 92 81 3 71

100 97,458 55 39 6 18 76 90 77 3 220
250 103,111 47 45 8 14 61 84 54 2 75
500 109,103 45 45 10 13 47 76 46 4 119

1,000 117,835 42 46 12 11 41 72 36 3 72
5,000 163,701 36 33 31 12 42 61 32 3 93

0.5 1 87,242 57 43 1 18 86 99 87 2 262
10 89,583 56 42 2 18 91 97 84 2 38
25 91,976 55 41 4 18 83 95 82 2 35
50 94,704 55 41 5 18 76 92 79 2 48

100 98,312 49 45 5 15 76 88 62 2 91
250 104,193 46 47 7 13 56 79 48 3 91
500 110,477 45 45 10 13 47 75 44 2 50

1,000 119,613 41 46 13 11 46 71 36 4 93
5,000 167,997 39 29 32 13 40 57 32 3 66

1 1 87,523 56 43 1 18 91 99 87 3 114
10 90,593 55 42 3 18 91 96 84 2 59
25 93,513 55 41 4 18 85 92 81 3 70
50 96,690 55 39 6 18 76 90 77 3 119

100 100,348 48 46 6 14 61 85 56 4 128
250 106,782 45 46 8 13 51 78 47 4 98
500 113,941 43 46 11 12 46 74 40 3 76

1,000 124,301 40 45 14 11 41 67 34 2 47
5,000 179,921 37 28 35 13 44 52 32 5 110

1.5 1 87,845 56 43 1 18 92 98 87 2 56
10 91,847 55 41 4 18 83 95 82 2 38
25 95,403 55 40 5 18 76 90 77 2 71
50 98,800 50 45 5 15 61 84 60 3 115

100 102,896 48 46 6 14 56 81 52 3 108
250 110,165 45 45 9 13 51 74 44 3 71
500 118,582 42 46 12 11 46 69 35 3 78

1,000 130,498 42 41 17 12 42 64 34 4 120
5,000 197,199 41 22 36 15 38 49 32 4 112

2 1 88,279 56 43 1 18 92 98 86 2 123
10 93,271 55 41 4 18 85 92 81 3 74
25 97,338 56 39 5 18 68 87 74 4 202
50 100,919 49 44 6 15 68 83 59 3 107

100 105,374 46 47 7 13 51 78 47 3 79
250 113,993 44 46 10 12 43 70 38 2 45
500 123,494 44 43 13 12 44 64 35 3 74

1,000 137,761 46 36 18 13 40 59 33 3 77
5,000 216,365 44 19 37 17 34 42 32 4 88

2.5 1 88,695 56 42 1 18 86 97 84 2 38
10 94,674 55 41 5 18 76 92 79 3 83
25 98,978 50 45 5 15 61 84 60 2 73
50 102,958 48 46 6 14 56 80 51 2 71

100 107,960 46 46 8 13 47 74 44 3 76
250 117,909 46 43 12 13 44 68 39 2 51
500 128,813 44 41 15 12 42 64 33 3 87

1,000 145,395 45 34 21 13 42 57 32 5 116
5,000 238,223 44 16 40 18 33 38 32 6 150
Min. 87,130 36 16 1 11 33 38 32 2 35
Avg. 113,782 49 41 10 15 62 79 58 3 100
Max. 238,223 57 47 40 18 92 99 87 6 668
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Table 5: Computational Performance: Instances with 400 User Nodes and 25 Potential Facilities
Cv d TC FC (%) AC (%) DC (%) # Facility % Utilization # Iter CPU

Min. Max. Avg.
0 1 108,302 53 46 0 19 97 99 74 3 807

10 110,755 53 45 2 19 90 97 72 2 70
25 113,050 52 45 3 19 87 97 70 2 110
50 115,745 52 44 4 19 78 94 67 3 241

100 119,588 53 42 6 19 73 92 65 2 396
250 126,660 50 43 7 17 66 85 52 2 332
500 134,432 45 45 10 15 53 80 43 3 206

1,000 145,174 43 44 13 14 48 76 37 3 106
5,000 203,766 38 30 32 15 45 64 32 4 242

0.5 1 108,430 53 46 1 19 97 99 74 3 988
10 111,135 53 45 2 19 92 97 71 3 98
25 113,694 53 44 3 19 82 96 69 3 150
50 116,659 53 43 4 19 78 92 66 4 1,033

100 120,705 52 43 6 18 78 90 60 2 511
250 128,061 50 42 7 17 62 83 51 3 237
500 136,165 45 45 10 15 54 79 42 4 192

1,000 147,499 42 44 14 14 48 76 36 2 65
5,000 209,065 41 27 31 16 40 56 32 4 149

1 1 108,768 53 46 1 19 86 98 73 2 558
10 112,176 52 45 2 19 81 97 70 2 75
25 115,324 52 44 4 19 78 94 67 3 229
50 118,776 53 42 5 19 73 92 65 2 396

100 123,345 50 44 6 17 68 87 54 4 945
250 131,521 50 41 9 17 58 81 49 3 183
500 140,513 46 43 11 15 48 75 39 3 112

1,000 153,517 43 42 15 14 46 71 34 3 131
5,000 224,302 41 25 34 17 39 53 32 5 335

1.5 1 109,115 53 46 1 19 86 98 73 2 93
10 113,548 53 44 3 19 84 94 69 3 151
25 117,369 54 42 4 19 73 92 65 4 707
50 121,414 51 43 6 18 73 88 59 3 734

100 126,409 50 43 7 17 62 83 51 4 335
250 135,945 46 45 9 15 54 78 41 3 181
500 146,324 44 44 12 14 48 74 35 5 208

1,000 161,516 42 40 17 14 45 68 33 3 113
5,000 245,741 43 21 36 19 37 51 32 4 175

2 1 109,592 53 46 1 19 88 98 73 2 100
10 115,071 52 45 3 19 78 94 68 3 218
25 119,552 53 42 5 19 78 88 64 3 771
50 124,030 51 44 6 17 69 85 53 2 350

100 129,675 50 42 8 17 58 80 49 3 162
250 140,567 46 43 10 15 48 74 39 3 114
500 152,752 44 42 13 14 46 69 33 5 240

1,000 170,954 48 33 19 16 43 58 33 4 177
5,000 269,628 42 18 40 20 35 45 32 4 122

2.5 1 110,130 53 45 1 19 82 98 72 2 181
10 116,603 54 43 4 19 78 93 66 2 373
25 121,739 51 43 5 18 73 88 58 5 1,585
50 126,527 51 43 6 17 62 83 51 2 97

100 133,103 50 41 9 17 57 78 47 2 82
250 145,560 46 42 12 15 47 71 37 3 133
500 159,695 46 39 15 15 45 66 34 6 369

1,000 181,019 46 32 22 16 43 56 33 3 146
5,000 298,560 43 16 41 22 32 40 32 5 621
Min. 108,302 38 16 0 14 32 40 32 2 65
Avg. 140,727 49 41 10 17 64 81 52 3 323
Max. 298,560 54 46 41 22 97 99 74 6 1,585

6. Conclusions

In this paper, we presented a class of location-allocation problems with immobile servers,

stochastic demand and congestion. The model captures the trade-off among the fixed cost
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of opening service facilities and equipping them with sufficient capacities, the access cost

associated with users’ travel to service facilities, and the queueing delay cost associated with

customers waiting for service. Under the assumption that the customer demands follow a

Poisson process and service times follow a general distribution, the facilities were modeled

as a network of independent M/G/1 queues, whose locations, capacity levels and workload

allocations are decision variables. We presented a non-linear IP formulation and a constraint

generation based exact method to solve its linear MIP reformulation. The computational

results indicate that the proposed approach provides optimal solution for problem instances

of the size up to 400 nodes and 25 potential facility locations within reasonable computation

times. Future research directions may include extending the proposed solution procedures

to deal with systems with multiple servers and general demand processes.
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