
Heuristics for the multi-product satiating newsboy problem

Avijit Khanra

Chetan Soman

W.P. No. 2014-01-02

January 2014

'

&

$

%

The main objective of the working paper series of the IIMA is to help faculty members,

research stuff, and doctoral students to speedily share their research findings with

professional colleagues and test their research findings at the pre-publication stage. IIMA

is committed to maintain academic freedom. The opinion(s), view(s), and conclusion(s)

expressed in the working paper are those of the authors and not that of IIMA.

Heuristics for the multi-product satiating newsboy problem

Avijit Khanra∗and Chetan Soman

Indian Institute of Management, Ahmedabad-380015, India

Abstract

Due to the preference of satiation (of the profit target) over maximization (of expected

profit) in uncertain situations, the newsboy problem with the satiation objective is an

important practical problem. In the multi-product setting, practically usable solution

methods are available only for two-product and some restricted three-product problems. We

develop heuristics to solve larger problems (more number of products). Two search-based

heuristics are developed and tested with a large number of versatile test problems. These

heuristics solve upto five-product problems in reasonable time with good accuracy.

1 Introduction

The newsboy problem is about balancing the penalties associated with under-stocking and

over-stocking by deciding the stocking quantity in the face of uncertain demand. Traditionally,

minimization of expected demand-supply mismatch cost (or maximization of expected profit)

is considered as the objective (Silver et al., 1998, chap. 10). However, this objective does not

fit into many real-life situations. A number of different objectives have been considered in the

newsboy literature. For example, Ismail & Louderback (1979) considered the satiation objective

(i.e., maximization of the probability of achieving a given profit target), Anvari (1987) maximized

the firm value using the capital asset pricing model, Lin & Kroll (1997) considered the satiation

constraint (i.e., the probability of profit exceeding a given target does not fall below a given

level), Chen & Chuang (2000) considered the service-level constraint, Gotoh & Takano (2007)

minimized the conditional value-at-risk (CVaR), Wu et al. (2009) maximized a mean-variance

based objective function, and Oberlaender (2011) maximized exponential utility of profit. A

comprehensive review of these different objectives (considered in the newsboy problem) can be

found in Khouja (1999); Qin et al. (2011).

In this paper, our focus is on the newsboy problem with the satiation objective. When the

decision maker is target oriented (and if the target is in terms of profit), maximization of the

probability of achieving the profit target is a reasonable approximation for the decision maker’s

objective (Irwin & Allen, 1978). Target orientation is quite common in organizational set-ups

(Abbas et al., 2009); a manager faced with a target is likely to focus on fulfilling the target.

∗Corresponding author. Tel: +91 7405696960 Email address: avijitk@iimahd.ernet.in

W.P. No. 2014-01-02 Page No. 2

At an individual level, too, target orientation is not uncommon; there it can be viewed as risk

aversion (Anvari & Kusy, 1990).

Irwin & Allen (1978) were the first to considered the satiation objective in the newsboy

problem. Ismail & Louderback (1979); H.-S. Lau (1980) studied the single-product satiating

newsboy problem with normally distributed demand; H.-S. Lau (1980) found a closed-form

solution for the optimum order quantity. Later, Sankarasubramanian & Kumaraswamy (1983)

solved the single-product problem with uniform and exponential demand distributions. The

case of zero stock-out cost turned out to be easier; the optimum order quantity was found to be

independent of the demand distribution function (Norland, 1980; H.-S. Lau, 1980).

Researchers combined satiation objective with the other extensions of the classical newsboy

model1. For example, A. H.-L. Lau & Lau (1988b) considered the price dependency of demand,

Khouja (1995) considered the end-season price mark-down, Khouja & Robbins (2003) considered

the advertisement sensitive demand, and Victor et al. (2011) considered competition among

newsboys. This list in merely indicative; there are more such studies. Among these different

extensions, our interest is on the multi-product problems.

Research into the multi-product satiating newsboy problem (MPSNP) started with the work

of A. H.-L. Lau & Lau (1988a). They studied the two-product problem with zero stock-out costs

and uniform demand; optimum solution was obtained for the case of identical products. Li et al.

(1990) solved the same problem for the case of non-identical products; an efficient algorithm was

developed for finding the optimum order quantities. Later, they considered the same problem

with independent exponential product demands (Li et al., 1991).

After the works of A. H.-L. Lau & Lau (1988a); Li et al. (1990, 1991), there has been no

progress in the field of MPSNP until recently. Khanra (2014) studied the general MPSNP

(i.e., non-zero stock-out costs and no restrictions on demand) by considering it as a discrete

optimization problem (unlike the previous studies, which used the continuous modelling). He

identified a key property of the MPSNP, that led to the development of a computational method

for finding the satiation probability (i.e., probability of meeting the profit target); satiation

probability was maximized by complete enumeration of the search space. He also pointed out

the difficulties associated with the continuous formulation of the MPSNP.

Time requirement for the enumeration-based optimization method of Khanra (2014) grows

rapidly as the number of products increases. The method is not suitable for the MPSNP with

three or more products. In this paper, we develop heuristics, that search in restricted space, to

solve larger MPSNP (i.e., more number of products). Accuracy of the heuristics are tested by

comparing with the optimum solution (obtained using the method of Khanra, 2014).

Remainder of this paper is organized as follows. For the ease of readers, key results of

Khanra (2014) are revisited in Section 2. Our heuristics (named as demand rescaling heuristic

and diagonal search heuristic) are presented in Section 3 and 4. Heuristic performances are

discussed in Section 5. We conclude in Section 6.

1See Khouja (1999) for a list of different extensions of the classical newsboy model.

W.P. No. 2014-01-02 Page No. 3

2 The discrete formulation

Following notations are used in this paper.

T Profit target.

n Number of products (positive integer).

mi Unit profit for the ith product (positive).

ci Unit purchase cost less salvage value for the ith product (positive).

si Unit stock-out goodwill loss for the ith product (positive).

Xi Stochastic demand for the ith product (integer-valued).

ai Lower limit of Xi (non-negative integer).

bi Upper limit of Xi (positive integer).

pi() Marginal probability mass function of Xi.

Pi() Marginal cumulative distribution function of Xi.

X Demand vector. X = (Xi) = (X1, X2, . . . , Xn).

Ω Sample space of X. Ω = Ω1 × Ω2 × · · · × Ωn, where Ωi is the sample space of Xi,

i.e., Ωi = {ai, ai + 1, . . . , bi} for i = 1, 2, . . . , n.

p() Probability mass function of X. For independent demand, p(x) =
∏n

i=1 pi(xi).

Qi Order quantity of the ith product (non-negative integer).

Q Order quantity vector. Q = (Qi) = (Q1, Q2, . . . , Qn).

PT (Q) Satiation probability for ordering decision, Q.

Profit, Π in the MPSNP is stochastic as it depends on stochastic X; it also depends on Q.

Π(Q,X) is the sum of individual product profits, Πi(Qi, Xi) for i = 1, 2, . . . , n.

Πi(Qi, Xi) = sales revenue − over-stocking cost (if any) − under-stocking cost (if any)

= mi min{Qi, Xi} − ci max{0, Qi −Xi} − si max{0, Xi −Qi}. (1)

Let us define the indicator function for Π(Q,X) ≥ T , IΠ(Q,X)≥T as

IΠ(Q,X)≥T =

1 if Π(Q,X) =
∑n

i=1 Πi(Qi, Xi) ≥ T,

0 otherwise.

(2)

Then our objective in the MPSNP is to

maximize
Q∈Nn

0

PT (Q) =
∑
x∈Ω

IΠ(Q,x)≥T p(x)

=

b1∑
x1=a1

b2∑
x2=a2

· · ·
bn∑

xn=an

IΠ(Q,x)≥T p(x), (3)

where N0 = N ∪ {0} and Nn
0 is the corresponding n-dimensional space.

W.P. No. 2014-01-02 Page No. 4

Following three properties of the MPSNP were established by Khanra (2014). With the help

of these properties, he calculated the satiation probability and maximized it.

Property 1. For any T , PT (Q) maximizing ordering decision, Q∗ ∈ Ω.

Property 2. Any T ≤ T =
∑n

i=1 max{Πi(bQ0ic, bi), Πi(dQ0ie, ai)} is achievable with certainty

and any T > T =
∑n

i=1mibi is unachievable, where Q0i = {(mi + ci)ai + sibi}/(mi + ci + si) for

i = 1, 2, . . . , n.

Property 3. IΠ(Q,x)≥T = 1 if and only if x ∈ coD ∩ Ω, where coD is the convex hull of D. If∑n
i=1miQi ≥ T , D =

⋃n
i=1{x(i), x(i)}, else D = ∅, where

x(i)(Q,T) =

(
Q1, . . . , Qi−1, Qi −

∑n
i=1miQi − T
mi + ci

, Qi+1, . . . , Qn

)
x(i)(Q,T) =

(
Q1, . . . , Qi−1, Qi +

∑n
i=1miQi − T

si
, Qi+1, . . . , Qn

)
for i = 1, 2, . . . , n.

Property 1 ensures computation in finite time. Property 2 identifies the target profit range

for which the MPSNP has trivial solution2. From now on, we assume that T ∈ (T , T) so that

we work only with the non-trivial MPSNP. Property 3 identifies the subset of Ω for which the

target achievement indicator is positive. By Property 3, PT (Q) can be expressed as

PT (Q) =
∑

x∈coD∩Ω

p(x), where D is defined in Property 33. (4)

Using (4), Khanra (2014) devised a computational method that finds PT (Q) for given T , Q,

parameters (ai, bi,mi, ci, si for i = 1, 2, . . . , n), and p (n-dimensional pmf array). An improved

method was developed for the case of independent demand; then pi for i = 1, 2, . . . , n − 1

(1-dimensional pmf arrays) and Pn (1-dimensional cdf array) were used instead of p.

The MPSNP was optimally solved by calculating PT (Q) ∀Q ∈ Ω (as Ω contains the optimum

solution by Property 1) and selecting the best. Since Ω = Ω1 ×Ω2 × · · · ×Ωn is a product space,

|Ω| grows exponentially with n. Naturally, this enumeration-based optimization fails (to provide

the optimum solution in reasonable time4) for large n (actually, it failed at n = 3). We develop

heuristics that search is restricted space so that larger problems can be solved.

2If T ≤ T or T ≥ T , the MPSNP has trivial solution. If T ≤ T , the ith element of an ordering decision
that guarantees the target achievement is bQ0ic if Πi(bQ0ic, bi) ≥ Πi(dQ0ie, ai) and dQ0ie if Πi(bQ0ic, bi) ≤
Πi(dQ0ie, ai). Any T > T is unachievable and T = T is achieved only by Q = (bi). T and T are referred to as the
maximum assured target and the maximum achievable target (Khanra, 2014).

3D is referred to as the set of terminal demand points. x(i) and x(i) are the terminal demand points for the ith

product (for i = 1, 2, . . . , n). The name terminal demand is due to the fact that IΠ(Q,x)≥T = 0 if xi /∈ [x
(i)
i , x

(i)
i]

for any i = 1, 2, . . . , n (Khanra, 2014).
4There can be different connotations of reasonable time. We set the limit at one hour, i.e., if a method, on an

average, takes one hour or less for completion, we say that the method takes reasonable time.

W.P. No. 2014-01-02 Page No. 5

3 Demand rescaling heuristic

Let us consider a two-product problem. Let a1 = 0, b1 = 100,m1 = 5, c1 = 20, s1 = 10

and a2 = 500, b2 = 1000,m2 = 1, c2 = 5, s2 = 1. In the enumeration-based optimization,

PT (Q) is calculated |Ω| = (b1 − a1 + 1) × (b2 − a2 + 1) = 50601 times. By changing the

quantity measurement units (denoted by u1 and u2), the same problem can be modelled as

a′1 = 0, b′1 = 10,m′1 = 50, c′1 = 200, s′1 = 100 and a′2 = 10, b′2 = 20,m′2 = 50, c′2 = 250, s′2 = 50

(i.e., u′1 = 10×u1 and u′2 = 50×u2). Probability mass function needs to be modified accordingly.

No change happens to the profit target. With these new parameter values, we need to calculate

PT (Q) only 121 times to find the optimum (the original count is about 418 times this new count).

However, we loose details in this process (i.e., Q can take fewer values and gap between two

values is larger) and optimum solution of the rescaled problem is unlikely to be the optimum for

the original problem. Demand rescaling heuristic (DRH) provides a way to keep the details and

yet benefit from the rescaling technique.

Let (Q′∗1, Q
′∗
2) = (4, 16) be the optimum solution of the rescaled problem. Then the optimum

solution of the original problem, (Q∗1, Q
∗
2) is unlikely to be far from (10×Q′∗1, 50×Q′∗2) = (40, 800),

where 10 and 50 are the scale factors (let us denote them by k1 and k2). Let us construct a

rectangle around (k1Q
′∗
1, k2Q

′∗
2) of the form R(r) = {(Q1, Q2) : k1(Q′∗1 − r) ≤ Q1 ≤ k1(Q′1 +

r), k2(Q′∗2 − r) ≤ Q2 ≤ k2(Q′2 + r), r > 0}. If we maximize PT (Q) for Q ∈ Ω ∩ R(r), we can

expect the resultant solution to be better than (k1Q
′∗
1, k2Q

′∗
2). This is how DRH keeps the

details. If r = 1, Ω ∩R(1) = {(Q1, Q2) : (Q1, Q2) ∈ N2
0, 30 ≤ Q1 ≤ 50, 750 ≤ Q2 ≤ 850}. Then

for the second-stage optimization, PT (Q) is calculated 2121 times. In the two stages, PT (Q) is

calculated 2242 times (the original count is about 23 times this count).

The chances of (Q∗1, Q
∗
2) ∈ Ω ∩ R(r) increases in r. However, computation time for the

second-stage optimization increases in r too. We need to balance these factors by choosing

r properly. Let R′∗ = {(Q′1, Q′2) : Q′1 ∈ {bQ∗1/k1c, dQ∗1/k1e}, Q′2 ∈ {bQ∗2/k2c, dQ∗2/k2e}}. It is

likely that (Q′∗1, Q
′∗
2) ∈ R′∗. Now, we do not know (Q∗1, Q

∗
2) and after the first-stage optimization,

we know (Q′∗1, Q
′∗
2). With this information, if we assume that (Q′∗1, Q

′∗
2) ∈ R′∗, R′ = {(Q′1, Q′2) :

Q′1 ∈ {Q′
∗
1− 1, Q′∗1, Q

′∗
1 + 1}, Q′2 ∈ {Q′

∗
2− 1, Q′∗2, Q

′∗
2 + 1}} is the smallest set that envelopes R′∗.

Projection of R′ into Ω is a good choice for the second-stage optimization search space. Note

that Ω ∩R(1) is this search space. Thus, we take r = 1.

We need to choose the scale factors (k) before we can implement DRH. Since accuracy of

the DRH solution is unlikely to be affected by this choice, we choose k that minimizes the total

computation time. There is one more question. Can we not apply this rescaling technique to the

second-stage optimization problem? If we do so, computation time can be reduced further and

the solution accuracy is unlikely to be affected seriously. Hence, we need to decide the number of

rescaled problems to solve (denoted by z) before the final search (the second-stage optimization

in our example) and the scale factors for each product in each rescaled problem (denoted by k
(j)
i

W.P. No. 2014-01-02 Page No. 6

for i = 1, 2, . . . , n and j = 1, 2, . . . , z). We take

z =

⌊
n∑

i=1

ln

(
bi − ai

2

)⌉
− 1, where bye denotes the nearest integer to y. (5)

k
(j)
i =

(
bi − ai

2

)1−j/(z+1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , z. (6)

The above choice approximately minimizes the total computation time in DRH (see Appendix A

for the details).

In DRH, we solve z number of rescaled problems. After each rescaled problem is solved, we

get a trust region (denoted by Ω ∩ R(1) in our example); we believe that the optimum is in

the trust region. Search space for the next rescaled problem is a scaled-down version of the

current trust region. In the very beginning, the trust region is Ω. Thus, search space for the

first rescaled problem is {Q : Q ∈ Nn
0 , bai/k

(1)
i e ≤ Qi ≤ bbi/k(1)

i e for i = 1, 2, . . . , n}.
Let Q(j)∗ for j = 1, 2, . . . , z − 1 be the optimum solution of the jth rescaled problem. The

corresponding trust region is {Q : Q ∈ Nn
0 , L

(j)
i ≤ Qi ≤ R

(j)
i for i = 1, 2, . . . , n}, where

L
(j)
i = max{ai, k(j)

i (Q
(j)∗

i − 1)} and R
(j)
i = min{bi, k(j)

i (Q
(j)∗

i + 1)} for i = 1, 2, . . . , n and

j = 1, 2, . . . , z − 1. Search space of the next rescaled problem is {Q : Q ∈ Nn
0 , bL

(j)
i /k

(j+1)
i e ≤

Qi ≤ bR(j)
i /k

(j+1)
i e for i = 1, 2, . . . , n}. Since k

(j+1)
i < k

(j)
i for every i = 1, 2, . . . , n and

j = 1, 2, . . . , z − 1, the trust region gets finer after each rescaled problem is solved.

The rescaled problems have their own cost parameters (m
(j)
i , c

(j)
i , s

(j)
i) and probability

mass functions (p(j)). Cost parameters are defined as: m
(j)
i = k

(j)
i mi, c

(j)
i = k

(j)
i ci, and

s
(j)
i = k

(j)
i si for i = 1, 2, . . . , n and j = 1, 2, . . . , z. Demand space of the jth rescaled problem,

Ω(j) = {x(j) : x(j) ∈ Nn
0 , bai/k

(j)
i e ≤ x

(j)
i ≤ bbi/k

(j)
i e for i = 1, 2, . . . , n} for j = 1, 2, . . . , z. Note

that the search space of a rescaled problem is smaller than its demand space (except for the first

rescaled problem, where they are the same). Probability mass functions, p(j)(x(j)) ∀x(j) ∈ Ω(j)

for j = 1, 2, . . . , z are calculated as

p(j)(x(j)) =
∑

x∈R(x(j))

p(x) =

r1∑
x1=l1

r2∑
x2=l2

· · ·
rn∑

xn=ln

p(x1, x2, . . . , xn), (7)

where R(x(j)) =
{
x : x ∈ Ω, k

(j)
i (x

(j)
i − 1/2) ≤ xi < k

(j)
i (x

(j)
i + 1/2) for i = 1, 2, . . . , n

}
,

li = min
{
xi : xi ∈ Ωi, xi ≥ k(j)

i (x
(j)
i − 1/2)

}
for i = 1, 2, . . . , n, and

ri = max
{
xi : xi ∈ Ωi, xi < k

(j)
i (x

(j)
i + 1/2)

}
for i = 1, 2, . . . , n.

The above definition yields a valid probability mass function (see Appendix B for a proof).

Let Q(z)∗ be the optimum solution of the last (i.e., zth) rescaled problem. Since there is no

more rescaling, the final search space is {Q : Q ∈ Nn
0 , bL

(z)
i e ≤ Qi ≤ bR(z)

i e for i = 1, 2, . . . , n},
where L

(z)
i = max{ai, k(z)

i (Q
(z)∗

i − 1)} and R
(z)
i = min{bi, k(z)

i (Q
(z)∗

i + 1)} for i = 1, 2, . . . , n.

Cost parameters and probability mass function of the final search is same as that of the original

W.P. No. 2014-01-02 Page No. 7

problem. The profit target is always the same.

Based on the above description, Procedure 1 is proposed for the implementation of DRH.

We assume that z ≥ 1 so that the application of DRH is relevant. Comments in Procedure 1

(and the rest) are enclosed inside 〈〉 and the font colour is gray.

Procedure 1 Demand rescaling heuristic

Input: n, T , parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, and p() 〈n-dimensional pmf array〉
Output: Qdrh 〈DRH solution〉

1. z ← b
∑n

i=1 ln((bi − ai)/2)e − 1 〈number of rescaled problems〉
2. j ← 0 〈rescaled problems solved〉
3. for i = 1 to n do

4. Li ← ai, Ri ← bi 〈the initial trust region〉
5. end for

6. while j < z do

7. j ← j + 1

8. for i = 1 to n do

9. ki ← ((bi − ai)/2)1−j/(z+1) 〈scale factors for the jth rescaled problem〉
10. end for

11. Q′ ← Q′∗ 〈Optimum solution of the jth rescaled problem, obtained using Procedure 2〉
12. for i = 1 to n do

13. Li ← max{ai, ki(Q′i − 1)}, Ri ← min{bi, ki(Q′i + 1)} 〈refined trust region〉
14. end for

15. end while

16. for i = 1 to n do

17. Li ← bLie, Ri ← bRie 〈the final search space〉
18. end for

19. Qdrh ← Q∗ such that PT (Q∗) = max{PT (Q) : Q ∈ Nn
0 , Li ≤ Qi ≤ Ri for i = 1, 2, . . . , n}

〈Optimum solution in the final search space, obtained by complete enumeration. PT (Q) is

computed using satiation probability calculation (SPC) algorithm in Khanra (2014).〉
20. return Qdrh

〈Note: For independent demand, p() is replaced by pi() for i = 1, 2, . . . , n (1-dimensional

pmf arrays). In line number 11, Procedure 4 is called instead of Procedure 2.〉

Procedure 1 utilizes Procedure 2 for optimization in the rescaled problems. Procedure 2

rescales the original parameters and probability mass function and then optimizes by complete

enumeration of the refined search space. Optimization in the final search space (in Procedure 1)

is also enumeration-based.

Procedure 4 in Appendix C is the “independent demand” version of Procedure 2. Resource

requirements (both time and space) of Procedure 2 is significantly higher than that of its

independent demand counterpart. Procedure 2 rescales and stores n-dimensional pmf array,

whereas Procedure 4 rescales and stores n number of 1-dimensional pmf arrays; this process

takes place every time a rescaled problem is solved.

W.P. No. 2014-01-02 Page No. 8

Procedure 2 Optimization in rescaled problem

Input: n, T , parameters, p(), trust region 〈Li, Ri for i = 1, 2, . . . , n〉, and scale factors 〈ki for

i = 1, 2, . . . , n〉
Output: Q′∗ 〈rescaled problem solution〉

1. for i = 1 to n do

2. a′i ← bai/kie, b′i ← bbi/kie 〈rescaled demand space〉
3. m′i ← kimi, c

′
i ← kici, s

′
i ← kisi 〈rescaled cost parameters〉

4. L′i ← bLi/kie, R′i ← bRi/kie 〈refined search space〉
5. end for

6. p′()← 0 〈initializing rescaled pmf array of size (b′1 − a′1 + 1)× · · · × (b′n − a′n + 1)〉
7. for x1 = a′1 to b′1 do

8. l1 ← min{y : y ∈ {a1, a1 + 1, . . . , b1}, y ≥ k1(x1 − 1/2)} 〈by binary search〉
9. r1 ← max{y : y ∈ {a1, a1 + 1, . . . , b1}, y < k1(x1 + 1/2)} 〈by binary search〉

10. .

11. .

12. for xn = a′n to b′n do

13. ln ← min{y : y ∈ {an, an + 1, . . . , bn}, y ≥ kn(xn − 1/2)} 〈by binary search〉
14. rn ← max{y : y ∈ {an, an + 1, . . . , bn}, y < kn(xn + 1/2)} 〈by binary search〉
15. p′(x1, x2, . . . , xn)←

∑r1
y1=l1

∑r2
y2=l2

· · ·
∑rn

yn=ln
p(y1, y2, . . . , yn)

16. end for

17. .

18. .

19. end for

20. Q′∗ ← Q∗ such that PT (Q∗) = max{PT (Q) : Q ∈ Nn
0 , L

′
i ≤ Qi ≤ R′i for i = 1, 2, . . . , n}

〈Optimum solution in the refined search space, obtained by complete enumeration. PT (Q) is

computed using SPC Algorithm with rescaled parameters and rescaled pmf array.〉
21. return Q′∗

DRH saves time by reducing the search space. In enumerative optimization, PT (Q) is

calculated |Ω| =
∏n

i=1(bi − ai + 1) times. An under-estimation of this count for DRH is

2ne ln(
∏n

i=1(bi − ai)/2) (see Appendix B). The ratio is about y/(e ln(y)), where y =
∏n

i=1(bi −
ai)/2. This gives an idea of the time saving that DRH achieves.

4 Diagonal search heuristic

DRH saves time by reducing the search space. However, DRH search space continues to grow

exponentially with the number of products (like the search space in enumerative optimization).

Thus, we can expect it to fail at some point (i.e., some value of n). Based on the numerical results

in the next section, it fails at n = 5 for independent demand and at n = 3 for dependent demand.

To overcome this issue, diagonal search heuristic (DSH) restricts its search to 1-dimension and

the search space does not grow with n.

W.P. No. 2014-01-02 Page No. 9

Let us identify which factors influence the value of PT (Q). By (4), PT (Q) = Pr{X ∈ coD∩Ω},
where coD is the convex hull of D (defined in Property 3). The value of PT (Q) increases with

the size of coD ∩ Ω and the values of p(x) for x ∈ coD ∩ Ω. Since Ω is fixed, size of coD ∩ Ω

depends on the size of coD and its location w.r.t. Ω.

Size of coD increases with the distances between points in D, which increases with profit

cushion5, PCT (Q) =
∑n

i=1miQi − T . D consists of n pair of points lying on n axes of Rn when

Q is considered as the origin. Furthermore, one point of each pair lies on the positive-side of

an axis, while the other point lies on the negative-side. Thus, in some sense, Q is at the centre

of coD. Then the location of Q in Ω is a good indicator for the location of coD w.r.t. Ω. For

the same reason, the value of p(Q) is a good indicator for the values of p(x) for x ∈ coD ∩ Ω.

Thus, we can say that PT (Q) is high if i) p(Q) is high, ii) Q is “centrally located” in Ω, and iii)

PCT (Q) is large. See the definition of D to verify the above arguments.

Let us consider the first factor. Let p(QM) = max{p(x) : x ∈ Ω}; QM is referred to as the

mode. Then p(Q) highest if Q = QM . Now, let us consider the second factor. Location of

Q has to be such that coD ∩ Ω is large. Following the discussion in the previous paragraph,

Qi lies between the ith pair of points in D (denoted by x(i) and x(i) in Property 3) for every

i = 1, 2, . . . , n. x(i) lies towards ai and x(i) lies towards bi. Distances of x
(i)
i and x

(i)
i from

Qi are PCT (Q)/(mi + ci) and PCT (Q)/si respectively. If these distances are in the ratio,

(Qi − ai) : (bi −Qi), i.e., (Qi − ai)(mi + ci) = (bi −Qi)si, the overlap between [x
(i)
i , x

(i)
i] and

[ai, bi] is highest. Due to the structure of D, coD ∩ Ω is largest if such overlaps are highest for

every i = 1, 2, . . . , n. If Q satisfies these conditions, i.e., Qi = {(mi + ci)ai + sibi}/(mi + ci + si)

for i = 1, 2, . . . , n, we write QC = bQe. QC is “centrally located” in Ω.

Q = QM is the best choice for maximizing PT (Q) if the first factor is considered alone,

while Q = QC is the best choice if the second factor is considered alone. It is unlikely that

QM = QC ; hence, we need to combine QM and QC . Let us refer to the resultant Q as the

base, QB. Ideally, we should search along the line connecting QM and QC and choose Q with

the highest PT (Q) value as QB. However, this can be time consuming, particularly for large

n. We use a simpler way (less time-taking), we take QB = bλQM + (1 − λ)PT (QC)e, where

λ = PT (QM)/{PT (QM) + PT (QC)}. If PT (QM) = PT (QC) = 0, λ = 0.5.

Now, we need to combine QB with the third factor to get a Q with better PT (Q) value. To

accomplish this, we search along a direction, in which PCT (Q) increases. The direction with

the highest growth rate of PCT (Q) is the line connecting QB and b. Search along this line

can be implemented in multiple ways. We start at QB and move towards b with a step size

of sz = (b −QB)/al, where al = b(1/n)
∑n

i=1(bi −QBi)e. We find PT (Q) at Q = QB + bjsze
for j = 1, 2, . . . , al as long as the search is giving higher PT (Q) value. Sometimes, due to odd

location of QB, we may not see any improvement in the direction of b. In such cases, it is worth

5By Property 3, D =
⋃n

i=1{x
(i), x(i)}. The Euclidean distances between i) x(i) and x(i) is PCT (Q){(mi+ci)

−1+

s−1
i } for i = 1, 2, . . . , n, ii) x(i) and x(j) is PCT (Q){(mi+ci)

−2 +(mj +cj)−2}1/2 for i, j = 1, 2, . . . , n, i 6= j, iii) x(i)

and x(j) is PCT (Q){s−2
i +s−2

j }
1/2 for i, j = 1, 2, . . . , n, i 6= j, and iv) x(i) and x(j) is PCT (Q){(mi+ci)

−2+s−2
j }

1/2

for i, j = 1, 2, . . . , n, i 6= j. In every case, the distance is directly proportional to PCT (Q).

W.P. No. 2014-01-02 Page No. 10

searching along the opposite direction (i.e., towards a). The search towards a, if required, is

implemented in the same manner as the search towards b.

Based on the above description, Procedure 3 is proposed for the implementation of DSH.

Procedure 3 Diagonal search heuristic

Input: n, T , parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, and p() 〈n-dimensional pmf array〉
Output: Qdsh 〈DSH solution〉

1. QM ← Q such that p(Q) = max{p(x) : x ∈ Ω} 〈by array search〉
2. QC ← (b{(m1 + c1)a1 + s1b1}/(m1 + c1 + s1)e, . . . , b{(mn + cn)an + snbn}/(mn + cn + sn)e)
3. pM ← PT (QM), pC ← PT (QC) 〈using SPC Algorithm〉
4. if pM + pC = 0 then

5. QB ← (b(QM1 +QC1)/2e, . . . , b(QMn +QCn)/2e)
6. else

7. QB ← (b(pMQM1 + pCQC1)/(pM + pC)e, . . . , b(pMQMn + pCQCn)/(pM + pC)e)
8. end if

9. Qdsh ← QB, bm← PT (QB) 〈using SPC Algorithm〉
10. al← b(1/n)

∑n
i=1(bi −QBi)e, sz ← ((b1 −QB1)/al, . . . , (bn −QBn)/al)

11. gn← 0 〈gain indicator〉, j ← 0 〈jumps taken〉
12. while gn >= 0 and j < al do

13. Q← QB + (b(j + 1)sz1e, . . . , b(j + 1)szne)
14. chk ← PT (Q) 〈using SPC Algorithm〉, gn← chk − bm
15. if gn >= 0 then

16. Qdsh ← Q, bm← chk, j ← j + 1

17. end if

18. end while

19. if j = 0 then

20. Search towards a 〈like the search towards b〉
21. end if

22. return Qdsh

〈Note: For independent demand, p() is replaced by pi() for i = 1, 2, . . . , n (1-dimensional pmf

arrays). The first line of the algorithm, where we find QM , is different. For i = 1, 2, . . . , n,

we set QMi = Qi such that pi(Qi) = max{pi(xi) : xi ∈ Ωi} by linear search.〉

In the beginning of Procedure 3, the mode is identified. For the general case, time requirement

for this process is O(
∏n

i=1(bi− ai + 1)), while it is O(
∑n

i=1(bi− ai)) for the independent demand

case. If the mode is known, which is the case when demand is modelled using standard

distributions, we can skip this step.

DSH saves time by keeping the search space 1-dimensional. PT (Q) is calculated 3 +Ndsh

times, where Ndsh denotes the number of search space points (first three points are QM , QC ,

and QB). In the worst case, DSH searches along the diagonal connecting a and b (for this, the

name is diagonal search heuristic); thus, Ndsh < b(1/n)
∑n

i=1(bi−ai)e. Clearly, Ndsh is not large

and does not increase with the number of products.

W.P. No. 2014-01-02 Page No. 11

5 Heuristic performances

We test accuracy of heuristics by comparing the heuristic solutions with the optimum solution

(OS) for different problem classes. Both independent demand (ID) and dependent demand6 (DD)

problems are solved. A problem class is defined by the number of products (nP, n = 2, 3, . . .)

and demand type (ID and DD).

Khanra (2014) solved 100 2P-ID, 50 3P-ID, and 50 2P-DD problems optimally. Solutions of

these problems can be used for heuristic testing. We do not test heuristics with 2P-ID problems

as these problems can be solved optimally in quick time; the average computation time was less

than 30 seconds. The average computation time for 2P-DD problems was not large (about 80

minutes), but some problems took fairly large amount of time. Heuristics are tested using 15

most time-taking 2P-DD problems. Average computation time for 3P-ID problems was about 9

hours. All 3P-ID problems are used for testing heuristics.

Khanra (2014) did not solve nP-ID, n ≥ 4 and nP-DD, n ≥ 3 problems optimally for their

large time requirements. To enable heuristic testing in these problem classes, we scale-down

demand limits of the test problems (i.e., a′i = ai/k and b′i = bi/k for i = 1, 2, . . . , n are the new

demand limits, where k > 1 is the scale factor). See Appendix D for the details. This reduces

cardinality of the demand space, which decreases the time requirement for optimization. Test

problem generation scheme of Khanra (2014) is retained. It generates test problems with varied

profit target, cost parameters, demand ranges, and demand distributions.

Test problems in Khanra (2014) have three levels for the demand range (bi − ai); these

are low, medium, and high. High and medium demand ranges are five and two times the low

demand range. Demand scale-down does not change these ratios. Since optimization in the DD

problems is more time consuming than their ID counterparts (as PT (Q) computation algorithm

in Khanra, 2014, is slower for DD), to save time, (in addition to demand scale-down,) we restrict

demand ranges of the nP-DD, n ≥ 3 test problems to low and medium only.

In the scaled-down version of a test problem, the demand space is reduced, but other details

of the test problem (i.e., profit target level, cost parameters, ratios of demand ranges, and

demand distributions) remain unchanged. We do not see any reason to suspect that quality of

the heuristic solutions is influenced by the demand scale-down in a systematic manner. Thus,

we can expect the average accuracy of heuristics to remain unaffected by the scaled-down. Then

we can extrapolate the accuracy test results to the full-scale problems.

In addition to the scaled-down problems, we solve the full-scale test problems using heuristics

to understand their time requirements. We can estimate computation time for optimization in

the full-scale problems by multiplying the computation time for optimization in the scaled-down

problem with (|Ω|/|Ω′|)× (t/t′), where Ω′ is demand space of the scaled-down problem and t, t′

are the average PT (Q) computation times for Q ∈ Ω, and Q ∈ Ω′. However, t is unknown, but

6Here, dependent demand does not mean endogenous demand. It refers to correlated product demands. The
opposite is independent demand (i.e., uncorrelated product demands).

W.P. No. 2014-01-02 Page No. 12

t/t′ > 1 (as PT (Q) computation time in Khanra, 2014, increases with the demand ranges). We

take t/t′ = 1 and get an under-estimate.

We implemented the DRH and DSH procedures in GNU Octave 3.6.4 (GCC 4.6.2). Test

problems were solved in Intel Core i5 (3.30 GHz) processors. Probability mass function was not

provided in the input; it was calculated as part of the procedures. This implementation scheme

is similar to that of Khanra (2014).

Numerical results

Table 1 exhibits the accuracy of heuristics for various problem classes (scaled-down test problems

are indicated by * mark). It also provides the average computation time (ACT) for optimization

in the scaled-down problems. Large ACT values justify our decision to scale-down the demand

limits. Heuristic accuracy is measure by deviation from the optimum, δ = PT (Q∗)− PT (Qh),

where Q∗ is the OS and Qh is the heuristic solution (note that δ ≥ 0); smaller δ is better. In

total, 225 test problems were solved and DRH found the OS in 220 instances. Deviation from the

OS was very small when DRH failed to find it. Accuracy of DSH is expected to be lower than

that of DRH. The average deviation for DSH was found to be less than 0.05 in every problem

class (note that 0 < PT (Q) < 1). The maximum deviation was quite high, particularly for the

ID problems. However, deviation was high only for a few problems (it can be seen from the

large difference between δmax and δavg).

Table 1: Accuracy of heuristics

OS DRH DSH

Problem Num ACT Optimal? δmax δmin δmax δavg

3P-ID 50 32076.4 48 7.3× 10−6 0.00004 0.116 0.0249

4P-ID* 50 98299.4 50 0 0.00001 0.138 0.0265

5P-ID* 25 657124.2 25 0 0.00016 0.188 0.0375

6P-ID* 25 1133284.2 25 0 0.00000 0.174 0.0495

2P-DD 15 13525.8 14 7.9× 10−9 0.00000 0.030 0.0074

3P-DD* 20 354553.2 19 2.7×10−10 0.00000 0.090 0.0168

4P-DD* 20 1413522.3 19 4.7× 10−6 0.00000 0.092 0.0211

5P-DD* 10 1823066.5 10 0 0.00008 0.091 0.0254

6P-DD* 10 1097913.2 10 0 0.00000 0.081 0.0157

Table 2 shows the computation time for heuristics. The average projected computation time

for optimization in the full-scale problem is also shown. It is evident that DRH solves 3P-ID

problems quickly; no problem took more than 4 seconds. 2P-DD and 4P-ID problems do not

take much time either; the average computation times were about 10 and 13 minutes respectively

(note that only time-taking 2P-DD problems were considered). 3P-DD problems take fairly large

amount of time; the average was about 5 hours (note that nP-DD, n ≥ 3 test problems did not

have products with high demand range). DRH takes large amount of time for solving 5P-ID

W.P. No. 2014-01-02 Page No. 13

problems; the average computation time was about 92 hours.

Computation time for DSH is expected to be lower than that of DRH. DSH solves 3P-ID

and 2P-DD problems quickly; no 3P-ID and 2P-DD problems took more than 1 and 14 seconds

respectively. 4P-ID and 3P-DD problems are solved quickly too; the maximum computation time

in these problem classes were about 6 and 4 minutes respectively. 5P-ID and 4P-DD problems

do not take large amount of time; the averages were about 32 and 36 minutes respectively. DSH

takes large amount of time for solving 6P-ID and 5P-DD problems; the average computation

times were about 90 and 39 hours respectively.

Table 2: Computation time for heuristics

OS DRH DSH

Prob Num Avg (proj) Min Max Avg Min Max Avg

3P-ID 50 3.2× 104 0.6 4.0 1.6 0.0 0.3 0.1

4P-ID 50 5.8× 107 48.9 6075.2 792.4 1.0 375.2 17.7

5P-ID 25 5.4× 1010 7914.4 1227065.8 330147.9 42.8 8367.3 1909.4

6P-ID 25 4.4× 1013 − − − 2993.1 1843202.3 322158.4

2P-DD 15 1.4× 104 169.9 1301.6 590.1 0.5 13.5 3.3

3P-DD 20 2.8× 106 5973.5 30078.3 18378.6 1.5 234.3 50.0

4P-DD 20 7.8× 108 − − − 0.0 7846.3 2174.7

5P-DD 9 6.9× 1011 − − − 64.4 373412.8 139917.4

From the performance test, it is clear that DRH can be used for 3P-ID, 4P-ID, and 2P-DD

problems. It is not suitable for nP-ID, n ≥ 5 and nP-DD, n ≥ 3 problems due to its time

requirement. Accuracy is never a concern for DRH. On the other hand, DSH can be used for

solving 3P-ID, 4P-ID, 5P-ID, 2P-DD, 3P-DD, and 4P-DD problems. However, if computation

time of DRH is reasonable, it is a better choice than DSH for its accuracy. DSH is not suitable

for nP-ID, n ≥ 6 and nP-DD, n ≥ 5 problems. If high demand range is included in nP-DD,

n ≥ 3 problems, DSH is likely to fail at 4P-DD problems.

6 Conclusion

Literature on the MPSNP is limited. Practically usable solution methods are available only

for two-product and some three-product (with smaller demand ranges) problems. We have

developed heuristics to solve larger MPSNP in reasonable time. Heuristics were tested using a

large pool of versatile test problems.

Two heuristics are developed. The first heuristic, DRH reduces the n-dimensional search

space and finds the best solution. It is very accurate; out of 225 test problems, it found the

optimum in 220 instances. However, it is time consuming; beyond 4P-ID and 2P-DD problems,

it is not suitable. The second heuristic, DSH restricts its search space to 1-dimension. DSH

consumes much less time than DRH. Its efficiency comes at the cost of accuracy. It never found

W.P. No. 2014-01-02 Page No. 14

the optimum; however, its deviation from the optimum was found to be reasonably small. The

average deviation was less than 0.05. Even though it is less time consuming than DRH, beyond

5P-ID and 4P-DD problems, DSH is not suitable.

With our heuristics, the MPSNP can be solved upto five-product cases (four-product if

the product demands are not independent). Clearly, there is a need for faster heuristics for

solving the larger problems. One possibility is to utilize the approximation of Özler et al. (2009).

They approximated distribution function of the total profit, GQ() (it depends on Q) by normal

distribution for the independent demand case. Then Q with the lowest GQ(T) is the optimum

solution as PT (Q) = 1−GQ(T). The approximation error gets smaller as the number of products

increases. Note that exact evaluation of GQ() is difficult.

Acknowledgements

The authors are grateful to the Computer Centre of IIM Ahmedabad for its assistance in the

computation.

Appendix A

We need to find z ∈ N and k
(j)
i ∈ (1,∞) for i = 1, 2, . . . , n and j = 1, 2, . . . , z such that the total

computation time (sum of computation times for solving the rescaled problems and the final

search) is minimized. A good indicator for the total computation time is the number of times

PT (Q) is calculated. Let this number be N . Let N (j) for j = 1, 2, . . . , z be the cardinality of the

search space of the jth rescaled problem and N (f) be the cardinality of the final search space.

Then N =
∑z

j=1N
(j) +N (f). We want to minimize N .

After each rescaled problem is solved, we get a trust region (denoted by Ω ∩ R(1) in the

description of DRH); we believe that the optimum is in the trust region. Search space for the

next rescaled problem is a scaled-down version of this trust region. In the very beginning, the

trust region is Ω. Thus, the search space of the first rescaled problem is {Q : Q ∈ Nn
0 , bai/k

(1)
i e ≤

Qi ≤ bbi/k(1)
i e for i = 1, 2, . . . , n}. We approximate N (1) as

N (1) =
n∏

i=1

(
bbi/k(1)

i e − bai/k
(1)
i e+ 1

)
≈

n∏
i=1

{
(bi − ai)/k(1)

i

}
.

Let Q(1)∗ be the optimum solution of the first rescaled problem. The corresponding trust

region is {Q : Q ∈ Nn
0 , L

(1)
i ≤ Qi ≤ R(1)

i for i = 1, 2, . . . , n}, where L
(1)
i = max{ai, k(1)

i (Q
(1)∗

i −1)}
and R

(1)
i = min{bi, k(1)

i (Q
(1)∗

i + 1)} for i = 1, 2, . . . , n. Note that R
(1)
i − L

(1)
i ≈ 2k

(1)
i for

i = 1, 2, . . . , n. Search space of the second rescaled problem is {Q : Q ∈ Nn
0 , bL

(1)
i /k

(2)
i e ≤ Qi ≤

W.P. No. 2014-01-02 Page No. 15

bR(1)
i /k

(2)
i e for i = 1, 2, . . . , n}. We approximate N (2) as

N (2) =
n∏

i=1

{
bR(1)

i /k
(2)
i e − bL

(1)
i /k

(2)
i e+ 1

}
≈

n∏
i=1

{
(R

(1)
i − L

(1)
i)/k

(2)
i

}
≈

n∏
i=1

(
2k

(1)
i /k

(2)
i

)
.

Structure of the search spaces of the remaining rescaled problems are same as that of the second

rescaled problem. Hence,

N (j) ≈
n∏

i=1

(
2k

(j−1)
i /k

(j)
i

)
= 2n

n∏
i=1

(
k

(j−1)
i /k

(j)
i

)
for j = 1, 2, . . . , z.

Let Q(z)∗ be the optimum solution of the last rescaled problem. Since there is no more

rescaling, the final search space is {Q : Q ∈ Nn
0 , bL

(z)
i e ≤ Qi ≤ bR(z)

i e for i = 1, 2, . . . , n}, where

L
(z)
i = max{ai, k(z)

i (Q
(z)∗

i − 1)} and R
(z)
i = min{bi, k(z)

i (Q
(z)∗

i + 1)} for i = 1, 2, . . . , n. Then

N (f) =
n∏

i=1

{
bR(z)

i e − bL
(z)
i e+ 1

}
≈

n∏
i=1

(
R

(z)
i − L

(z)
i

)
≈ 2n

n∏
i=1

k
(z)
i .

Let us write K(j) =
∏n

i=1 k
(j)
i for j = 1, 2, . . . , z. Note that K(j) ∈ (1,∞) for every

j = 1, 2, . . . , z. Let us write K0 =
∏n

i=1(bi − ai)/2, i.e.,
∏n

i=1(bi − ai) = 2nK0. Then

N ≈ 2n

(
K0

K(1)
+
K(1)

K(2)
+
K(2)

K(3)
+ · · ·+ K(z−1)

K(z)
+K(z)

)
= 2nNA (say).

Minimum NA approximately minimizes N . Let us minimize NA in K(1),K(2), . . . ,K(z) for

fixed z. NA is a smooth function. The first order necessary conditions give

∂NA

∂K(1)
= − K0

{K(1)}2
+

1

K(2)
= 0 ⇒ {K(1)∗}2 = K0K

(2)∗ .

∂NA

∂K(j)
= − K(j−1)

{K(j)}2
+

1

K(j+1)
= 0 ⇒ {K(j)∗}2 = K(j−1)∗K(j+1)∗ for j = 2, 3, . . . , z − 1.

∂NA

∂K(z)
= − Kz−1

{K(z)}2
+ 1 = 0 ⇒ {K(z)∗}2 = K(z−1)∗ .

Putting K(z)∗ into the expression of K(z−1)∗ , then putting K(z−1)∗ into the expression of

K(z−2)∗ , . . . , and finally putting K(2)∗ into the expression of K(1)∗ , we get

K(z−j+1)∗ =
(
K(z−j)∗

)j/(j+1)
for j = 1, 2, . . . , z − 1.

K(1)∗ = K
z/(z+1)
0 .

Note that K0 is a constant. Now, putting back K(1)∗ into K(2)∗ , then K(2)∗ into K(3)∗ , . . . ,

W.P. No. 2014-01-02 Page No. 16

and finally K(z−1)∗ into K(z)∗ , we get the only stationary point as

K(j)∗ = K
1−j/(z+1)
0 for j = 1, 2, . . . , z.

Now, we need to test the nature of K∗ = (K(1)∗ ,K(2)∗ , . . . ,K(z)∗).

∂2NA(K∗)

∂K(1)2 =
2K0

{K(1)∗}3
=

2

K2
0

K
3/(z+1)
0 .

∂2NA(K∗)

∂K(j)2 =
2K(j−1)∗

{K(j)∗}3
=

2

K2
0

K
(2j+1)/(z+1)
0 for j = 2, 3, . . . , z.

∂2NA(K∗)

∂K(j)∂K(j+1)
= − 1

{K(j+1)∗}2
= − 1

K2
0

K
(2j+2)/(z+1)
0 for j = 1, 2, . . . , z − 1.

Second order partial derivatives of NA of other forms (except the symmetric versions of the

above) are zero. For simplicity, let us write 1/(z + 1) = u. Then

∂2NA(K∗)

∂K(i)∂K(j)
=


2Ku−2

0 K
u(i+j)
0 if i = j for i, j ∈ {1, 2, . . . , z}

−Ku−2
0 K

u(i+j)
0 if |i− j| = 1 for i, j ∈ {1, 2, . . . , z}

0 if |i− j| > 1 for i, j ∈ {1, 2, . . . , z}.

Quadratic form of the Hessian matrix can be written as

xTH(K∗)x =

z∑
i=1

z∑
j=1

∂2NA(K∗)

∂K(i)∂K(j)
xixj =

z∑
j=1

∂2NA(K∗)

∂{K(j)}2
x2
j + 2

z−1∑
j=1

∂2NA(K∗)

∂K(j)∂K(j+1)
xjxj+1

= Ku−2
0

K2u
0 x2

1 +
z−1∑
j=1

{
K2ju

0 x2
j − 2K

(2j+1)u
0 xjxj+1 +K

2(j+1)u
0 x2

j+1

}
+K2zu

0 x2
z


= Ku−2

0

K2u
0 x2

1 +

z−1∑
j=1

{
Kju

0 xj −K(j+1)u
0 xj+1

}2
+K2zu

0 x2
z

 ≥ 0.

Hence, K∗ is a local minima of NA for fixed z. Actually, it is the only critical point. Thus,

K∗ is the global minima. Let us write NA at K∗ as a function of z. At K∗, each term in the

expression of NA becomes K
1/(z+1)
0 . Thus,

N∗A(z) = (z + 1)K
1/(z+1)
0 .

Note that z ∈ N. Let us relax this and assume that z ∈ [1,∞). Then

dN∗A(z)

dz
= K

1/(z+1)
0 − ln(K0)

z + 1
K

1/(z+1)
0

W.P. No. 2014-01-02 Page No. 17

d2N∗A(z)

dz2
= − ln(K0)

(z + 1)2
K

1/(z+1)
0 −

[
− ln(K0)

(z + 1)2
K

1/(z+1)
0 − {ln(K0)}2

(z + 1)3
K

1/(z+1)
0

]
=
{ln(K0)}2

(z + 1)3
K

1/(z+1)
0 > 0 ∀z ∈ [1,∞) and any K0.

Hence, N∗A(z) is strictly convex in z ∈ [1,∞). The first order necessary condition gives

K
1/(z∗+1)
0

{
1− ln(K0)

z∗ + 1

}
= 0 ⇒ z∗ = ln(K0)− 1 as K

1/(z∗+1)
0 6= 0.

If z∗ ∈ [1,∞), i.e., K0 ≥ e2, N∗A(z∗) is the minimum value of NA. Typically, K0 =∏n
i=1(bi − ai)/2 is a large quantity; hence, K0 ≥ e2 normally holds. If K0 < e2 (theoretical

possibility), the demand ranges are extremely small; then the problem can be easily solved

optimally by complete enumeration. Since z is integer-valued, either bz∗c or dz∗e is the actual

minima. We take bz∗e as the number of rescaled problems to be solved in DRH.

z =

⌊
ln

(
n∏

i=1

(
bi − ai

2

))
− 1

⌉
=

⌊
n∑

i=1

ln

(
bi − ai

2

)⌉
− 1.

Once z is selected, optimum K∗ (for given z) is

K(j)∗ =
n∏

i=1

k
(j)∗

i = K
1−j/(z+1)
0 for j = 1, 2, . . . , z.

For each j = 1, 2, . . . , z, there can be multiple choices for k
(j)∗

i for i = 1, 2, . . . , n. Since

K0 =
∏n

i=1(bi − ai)/2, k
(j)∗

i = {(bi − ai)/2}1−j/(z+1) for i = 1, 2, . . . , n and j = 1, 2, . . . , z is one

such choice. We take them as the scale factors in DRH.

k
(j)
i =

(
bi − ai

2

)1−j/(z+1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , z.

If we take z∗ = ln(K0)− 1, N∗A(z∗) = ln(K0)K
1/ ln(K0)
0 = e ln(K0). Then

N∗ ≈ 2nN∗A(z∗) = 2ne ln

(
n∏

i=1

bi − ai
2

)
= 2ne

n∑
i=1

ln

(
bi − ai

2

)
.

N∗ is an approximation for the number of times PT (Q) is calculated in DRH. Of course, this is

an under-estimation as NA is an under-estimate of N .

Appendix B

In (7), p(j)(x(j)), x(j) ∈ Ω(j) are calculated by selecting subsets of {p(x) : x ∈ Ω} and adding

their elements. Since p : Ω→ [0, 1] is a valid probability mass function, it is sufficient to show

that each x ∈ Ω belongs to exactly one of these subsets.

W.P. No. 2014-01-02 Page No. 18

Let x ∈ Ω is in the subsets corresponding to y(j), z(j) ∈ Ω(j) and y(j) 6= z(j). Then y
(j)
i 6= z

(j)
i

for one or more i = 1, 2, . . . , n. Without loss of generality, let us assume that y
(j)
1 < z

(j)
1 .

Since these are integers, y
(j)
1 + 1/2 ≤ z

(j)
1 − 1/2. Since x is in both subsets, by the definition,

k
(j)
1 (y

(j)
1 − 1/2) ≤ x1 < k

(j)
1 (y

(j)
1 + 1/2) and k

(j)
1 (z

(j)
1 − 1/2) ≤ x1 < k

(j)
1 (z

(j)
1 + 1/2). These

conditions give x1 < x1, an impossibility. Hence, no x ∈ Ω belongs to two or more subsets.

Now, let us assume that x ∈ Ω does not belong to any subset. Then xi /∈ [k
(j)
i (y

(j)
i −

1/2), k
(j)
i (y

(j)
i + 1/2)) ∀y(j) ∈ Ω(j) for at least one i = 1, 2, . . . , n. Without loss of generality, let

this i = 1. Then x1 /∈ [k
(j)
1 (y

(j)
1 − 1/2), k

(j)
1 (y

(j)
1 + 1/2)) ∀y(j) ∈ Ω(j) ⇔ x1 /∈ [k

(j)
1 (ba1/k

(j)
1 e −

1/2), k
(j)
1 (bb1/k(j)

1 e+ 1/2)) as {y(j)
1 : y(j) ∈ Ω} = {ba1/k

(j)
1 e, ba1/k

(j)
1 e+ 1, . . . , bb1/k(j)

1 e}. There

are two possibilities: i) x1 < k
(j)
1 (ba1/k

(j)
1 e − 1/2) and ii) x1 ≥ k

(j)
1 (bb1/k(j)

1 e + 1/2). Since

z − 1/2 < bze ≤ z + 1/2 for any z ∈ R, the first possibility leads to x1 < a1 and the second

possibility leads to x1 > b1. In both cases, x1 /∈ [a1, b1]⇒ x /∈ Ω, a contradiction. Thus, each

x ∈ Ω belongs to exactly one of the subsets.

Appendix C

Procedure 4 Procedure 2 for independent demand

Input: n, T , parameters, pi() for i = 1, 2, . . . , n, trust region 〈Li, Ri for i = 1, 2, . . . , n〉, and

scale factors 〈ki for i = 1, 2, . . . , n〉
Output: Q′∗ 〈rescaled problem solution〉

1. for i = 1 to n do

2. a′i ← bai/kie, b′i ← bbi/kie 〈rescaled demand space〉
3. m′i ← kimi, c

′
i ← kici, s

′
i ← kisi 〈rescaled cost parameters〉

4. L′i ← bLi/kie, R′i ← bRi/kie 〈refined search space〉
5. end for

6. for i = 1 to n do

7. p′i()← 0 〈initializing rescaled pmf array of size (b′i − a′i + 1)〉
8. for x = a′i to b

′
i do

9. l← min{y : y ∈ {ai, ai + 1, . . . , bi}, y ≥ ki(x− 1/2)} 〈by binary search〉
10. r ← max{y : y ∈ {ai, ai + 1, . . . , bi}, y < ki(x+ 1/2)} 〈by binary search〉
11. p′i(x)←

∑r
y=l pi(y)

12. end for

13. end for

14. Q′∗ ← Q∗ such that PT (Q∗) = max{PT (Q) : Q ∈ Nn
0 , L

′
i ≤ Qi ≤ R′i for i = 1, 2, . . . , n}

〈Optimum solution in the refined search space, obtained by complete enumeration. PT (Q) is

computed using SPC Algorithm with rescaled parameters and rescaled pmf arrays.〉
15. return Q′∗

W.P. No. 2014-01-02 Page No. 19

Appendix D

The readers are requested to go through the test problem generation scheme of Khanra (2014)

for understanding this appendix properly.

We scale-down demand limits of nP-ID, n ≥ 4 and nP-DD, n ≥ 3 test problems. Factors that

depend on the demand limits, i.e., the mode and the standard deviation, whenever applicable, are

scaled-down by the same factor. However, location of the demand mode (w.r.t. the demand limits)

and ratios of different demand ranges do not change. Cost parameters, demand distribution, and

correlation matrix for the DD problems remain unchanged. Since demand limits change, profit

target changes, but the profit target level (low, medium, or high) remains unchanged. Table 3

shows the scale for different problem classes.

Table 3: Scale for demand scale-down
Number of products

Demand type 2P 3P 4P 5P 6P

Independent − 1 : 1 1 : 5 1 : 10 1 : 20

Dependent 1 : 1 1 : 2 1 : 5 1 : 10 1 : 20

References

Abbas, A. E., Matheson, J. E., & Bordley, R. F. (2009). Effective utility functions induced by

organizational target-based incentives. Managerial and Decision Economics, 30 (4), 235–251.

Anvari, M. (1987). Optimality criteria and risk in inventory models: The case of the newsboy

problem. Journal of the Operational Research Society , 38 (7), 625–632.

Anvari, M., & Kusy, M. (1990). Risk in inventory models: Review and implementation.

Engineering Costs and Production Economics, 19 , 267–272.

Chen, M., & Chuang, C. (2000). An extended newsboy problem with shortage-level constraints.

International Journal of Production Economics, 67 (3), 269–277.

Gotoh, J.-Y., & Takano, Y. (2007). Newsvendor solutions via conditional value-at-risk mini-

mization. European Journal of Operational Research, 179 (1), 80–96.

Irwin, W. K., & Allen, I. S. (1978). Inventory models and management objectives. Sloan

Management Review , 19 (2), 53–59.

Ismail, B. E., & Louderback, J. G. (1979). Optimizing and satisficing in stochastic cost-volume-

profit analysis. Decision Sciences, 10 (2), 205–217.

Khanra, A. (2014). Multi-product newsboy problem with satiation objective (No. 2014-01-01).

Indian Institute of Management Ahmedabad, India.

W.P. No. 2014-01-02 Page No. 20

Khouja, M. (1995). The newsboy problem under progressive multiple discounts. European

Journal of Operational Research, 84 (2), 458–466.

Khouja, M. (1999). The single-period (news-vendor) problem: Literature review and suggestions

for future research. Omega, 27 (5), 537–553.

Khouja, M., & Robbins, S. S. (2003). Linking advertising and quantity decisions in the single-

period inventory model. International Journal of Production Economics, 86 (2), 93–105.

Lau, A. H.-L., & Lau, H.-S. (1988a). Maximizing the probability of achieving a target profit in

a two-product newsboy problem. Decision Sciences, 19 (2), 392–408.

Lau, A. H.-L., & Lau, H.-S. (1988b). The newsboy problem with price-dependent demand

distribution. IIE Transactions, 20 (2), 168–175.

Lau, H.-S. (1980). The newsboy problem under alternative optimization objectives. Journal of

the Operational Research Society , 31 (6), 525–535.

Li, J., Lau, H.-S., & Lau, A. H.-L. (1990). Some analytical results for a two-product newsboy

problem. Decision Sciences, 21 (4), 710–726.

Li, J., Lau, H.-S., & Lau, A. H.-L. (1991). A two-product newsboy problem with satisficing

objective and independent exponential demands. IIE Transactions, 23 (1), 29–39.

Lin, C.-S., & Kroll, D. E. (1997). The single-item newsboy problem with dual performance

measures and quantity discounts. European Journal of Operational Research, 100 (3), 562–565.

Norland, R. E. (1980). Refinements in the Ismail-Louderback’s stochastic CVP model. Decision

Sciences, 11 (3), 562–572.

Oberlaender, M. (2011). Dual sourcing of a newsvendor with exponential utility of profit.

International Journal of Production Economics, 133 (1), 370–376.

Özler, A., Tan, B., & Karaesmen, F. (2009). Multi-product newsvendor problem with value-at-risk

considerations. International Journal of Production Economics, 117 (2), 244–255.

Qin, Y., Wang, R., Vakharia, A. J., Chen, Y., & Seref, M. M. H. (2011). The newsvendor

problem: Review and directions for future research. European Journal of Operational Research,

213 (2), 361–374.

Sankarasubramanian, E., & Kumaraswamy, S. (1983). Note on ”Optimal ordering quantity to

realize a pre-determined level of profit”. Management Science, 29 (4), 512–514.

Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory Management and Production

Planning and Scheduling (3rd ed.). New York: John Wiley & Sons.

Victor, C., Yang, S., Xia, Y., & Zhao, X. (2011). Inventory competition for newsvendors under

the objective of profit satisficing. European Journal of Operational Research, 215 (2), 367–373.

W.P. No. 2014-01-02 Page No. 21

Wu, J., Li, J., Wang, S., & Cheng, T. (2009). Mean-variance analysis of the newsvendor model

with stockout cost. Omega, 37 (3), 724–730.

W.P. No. 2014-01-02 Page No. 22

