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Abstract

This paper supersedes the work presented in WP.No.2014-02-06. We study the problem of allocating

doctors to primary health centers (PHC). We model the problem as a multi-period uncapacitated facility

location problem under uncertainty. The problem is unconventional in that the uncertainty is in the

number and period of availability of doctors. This work aims to determine the sequence of opening facil-

ities (assigning doctors to the PHC) over multiple periods so as to cover the maximum demand. We use

a minmax regret approach to solve the problem under uncertainty. We present solution techniques using

tabu search and compare our solutions with optimal solutions obtained using commercial solvers. We see

that one of our tabu search algorithms is faster and yields optimal solutions in the problems we tested on.

Keywords: Facility location, Heuristics, Tabu search

1 Introduction

This study has been motivated by the primary healthcare sector in developing countries. Providing basic

health care to its citizens is an important function of any government. Almost all the developing countries

have rural populations that are larger than urban populations. Despite this, healthcare facilities are mostly

concentrated in the urban regions. Policy makers try to minimize this disparity and make basic health

amenities available to everyone in the rural areas as well.

It was suggested in the Alma-Ata declaration of 1978 by the members of World Health Organization

(WHO) that there should be one Primary Health Center (PHC), which is essentially a single doctor clinic,

for a population of 30,000 in plains and 20,000 for hilly regions. Many developing countries have tried to

achieve this goal. However, due to various reasons these targets have not been fulfilled (Walley et al., 2008;

Rohde et al., 2008). Moreover, rapid growth in populations in most of these countries require that the targets

be revisited. With the economic development in many of these countries and the resulting rise in income, the

urban-rural disparity will be huge if basic amenities are not made available at the local level in rural areas.

Locating the PHCs in rural areas so as to meet all the local demand is a major challenge for the government.

The government tries to establish a network of PHCs so that basic health care facilities are available to the

largest possible rural population. In most of the developing countries, availability of doctors in rural areas is

a constraint, even if the physical infrastructure exists (Lawn et al., 2008). When doctors become available,

it needs to be decided to which among those PHCs without a doctor should the doctor be assigned.
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PHCs that are once made operational are rarely closed down due to various political and social reasons.

The populations of the villages that PHCs cater to, change over time. Moreover, there is uncertainty in the

number and period of availability of doctors. Ad hoc assignment of available doctors to PHCs mostly results

in a sub-optimal population coverage. Determining the sequence of opening facilities (assigning doctors to

the PHC) at the beginning of the planning horizon, helps to plan for the maximum population coverage

over the planning horizon. Moreover, it results in transparency in policy making and implementation. We

define the uncapacitated PHC location problem (UPHCLP) of determining the sequence in which the PHCs

should be assigned with a doctor. In our work we consider a discrete planning horizon consisting of several

periods. The number of doctors who become available in each period of the planning horizon is uncertain.

Our solution aims to minimize the maximum regret from an ex post optimal population coverage, i.e., the

population coverage that could have been achieved had the numbers of doctors who will join in each period

of the planning horizon been known a proiri.

This paper models the UPHCLP and develop a solution methodology to determine the sequence of

opening facilities, i.e., assigning doctors to the PHCs. The remainder of this paper is organized as follows.

We provide an overview of the existing literature in Section 2. In Section 3, we provide a formulation of

the problem. In Section 4, we give some dominance rules to speed up the heuristics and briefly discuss the

local search and the tabu search based heuristics. In Section 5, we report our computational experience

with commercial solvers and tabu search based heuristics. In the final section we provide a summary of the

current work and present some future research directions.

2 Related work

The general facility location problem involves two decisions, a location decision to determine where a facility

should be set up, and an allocation decision to determine which customers will be served by a particular

facility. Opening of new facilities involves time and capital investment, and it is one of the most important

decisions for any institution. Facility location models have been extensively used by the World Bank and

various government projects (Antunes & Peeters, 2000, 2001; Brotcorne et al., 2003; Ghaderi & Jabalameli,

2012).

Depending on number of periods in the planning horizon in which location and allocation decisions are

to be made, facility location problems can be categorized as single-period or multi-period. Most of the early

work was done for the single period case (Drezner & Hamacher, 2001). Subsequently work has focused on

the multi-period location problems.

Multi-period facility location problems are important because of two reasons. First, customer demands,

transportation/assignment costs and other parameters change over time. Secondly, relocation of facilities

involve capital expenditure. In absence of the first characteristic, a single period model can be used to solve

the problem and, in the absence of second characteristic a series of disconnected static formulations can be

used (Erlenkotter, 1981). Furthermore, in the presence of budget constraints all facilities cannot be opened

at once and thus the multi-period problem becomes important.

Multi-period facility location problems have been widely studied after the initial works by Warszawski

(1973); Erlenkotter (1981); Van Roy & Erlenkotter (1982). Problems under various constraints have been
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looked at. Some example of these variants are constraints on location and relocation of facilities (Wesolowsky

& Truscott, 1975; Melo et al., 2006), reopening cost different than first time opening cost (Dias et al., 2006,

2007, 2008), and non-zero closing cost (Wesolowsky & Truscott, 1975; Saldanha da Gama & Captivo, 1998;

Canel et al., 2001). Arabani & Farahani (2011) provide a survey of the literature in multi-period facility

location problem.

The literature on facility location also considers uncertainty in decision making environment. Most of

the references in this literature consider uncertainty or incomplete information on the demand at the nodes

(Killmer et al., 2001; Averbakh, 2003; Albareda-Sambola et al., 2011; Berman & Wang, 2011). Current et

al. (1998) used the minimax regret criteria to decide where to set up the initial set of facilities when the

total number of facilities to be set up in the future is uncertain. The problem was presented in the context

of p-median problem.

UPHCLP aims to provide maximal population coverage by the network of PHCs and is closely related

to the maximal covering location problem (MCLP) with complete and partial/gradual coverage. We present

a brief review of literature on these problems.

2.1 Uncapacitated maximal covering location problem with complete coverage

MCLP was introduced by Church & ReVelle (1974). In the MCLP we are given a set I of demand nodes,

a set J of candidate locations for facilities, a matrix [δij ] of distance between each i ∈ I and each j ∈ J ,

a vector (di) of demand at each demand node, and a covering distance δ0. This covering distance is fixed

a priori, and the facilities can serve only those demand nodes that fall within the covering distance. Let

Ni = {j ∈ J : δij ≤ δ0} be the set of candidate facilities which lie within the covering distance from the

demand node i. Each facility has an infinite capacity. We are required to locate p facilities so that the

maximum demand at the demand nodes can be met by the facilities. The variables are: yj = 1 if a facility

is opened at location j, and 0 otherwise; xi = 1 if the demand node i is within the covering distance of some

opened facility, and 0 otherwise. The problem can be formulated as follows:

MCLP: Maximize
∑
i∈I

dixi (1)

s.t. xi ≤
∑
j∈Ni

yj ∀i ∈ I (2)

∑
j∈J

yj = p (3)

yj ∈ {0, 1} ∀j ∈ J (4)

0 ≤ xi ≤ 1 ∀i ∈ I (5)

The objective in the above formulation maximizes the total demand covered. Constraint set (2) ensures that

any demand node will be covered only if a facility within the covering distance from that demand node is

opened. Constraint (3) limits the number of facilities to be opened. In the above formulation xi need not be

declared an integer. As yj are integers and xi are constrained only by the first constraint in the formulation,

xi will be integers too.
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Chung (1986); Schilling et al. (1993) have discussed various applications of the MCLP. Daskin (2000) used

MCLP to solve the p-center problem to optimality. An MCLP is solved with different covering distances.

When all the demand is met at some least possible covering distance, the p-center problem is solved to

optimality. Schilling et al. (1993) reviewed papers on covering problems. Most of the studies on MCLP

focus on improving reliability of the system by providing multiple coverage with applications in emergency

services like ambulance, fire stations and blood banks (Schilling et al., 1993).

MCLP are NP-Hard but they are known to yield integer friendly solutions. Church & Meadows (1979)

used combination of linear programming and branch-and-bound to solve the MCLP. Details on the work

and solution methods for MCLP can be seen from the review papers by Schilling et al. (1993); Farahani et

al. (2012).

Gunawardane (1982) first introduced the maximal coverage location problem in a dynamic scenario. In

the problem setup, location of the facilities and the possible relocation within the planning horizon was

considered. The problem is an extension of MCLP, and we use the earlier notation with superscript t to

indicate the value of parameters at time period t. The variables in this formulation are: ytj = 1 if a facility

is open at location j at time period t, and 0 otherwise; xti = 1 if the demand node i is within the covering

distance of some opened facility at time period t, and 0 otherwise. The problem can be formulated as follows:

MMCLP: Maximize ζ =
∑
t∈T

∑
i∈I

dtix
t
i (6)

s.t. xti ≤
∑
j∈Ni

ytj ∀i ∈ I, t ∈ T (7)

ytj ≥ yt−1
j ∀j ∈ J, t > 1 (8)∑

j∈J
ytj =

∑
t′≤t

pt
′

∀t ∈ T (9)

ytj ∈ {0, 1} ∀j ∈ J, t ∈ T (10)

0 ≤ xti ≤ 1 ∀i ∈ I, t ∈ T (11)

The objective in the above formulation maximizes the total demand covered in the planning horizon. Con-

straint set (7) ensures that any demand node will be covered only if a facility within the covering distance

from that demand node is open. Constraint set (8) guarantees that facility once opened will not be closed

in the planning horizon. Constraint set (9) limits the number of facilities to be opened in any period. In the

above formulation the variable xti need not be declared as integer. As xti are constrained only by the first

constraint in the formulation and ytj are integers, hence xti will be integers too.

Gunawardane (1982) solved small problems of the size 10 to 30 demand nodes and 5 periods using the

standard solvers. In most of the instances, the LP relaxation yielded integer solutions. Zarandi et al. (2013) is

the only other study dealing with the multi-period MCLP. They used simulated annealing to solve problems

of size 2500 demand nodes and 200 potential candidate locations.
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2.2 Uncapacitated maximal covering location problem with gradual coverage

In many real life situations it is not possible to determine what is the exact coverage distance, or to suggest

that demand nodes falling just within the covering distance from a facility are covered, while those just

outside the covering distance are not covered. In those situations partial/gradual coverage function has

been used by Church & Roberts (1983); Berman et al. (2003); Karasakal & Karasakal (2004); Berman et

al. (2010). Let δij be the distance between the demand node i and the candidate facility location j. The

demand node i is fully covered by the facility j when δij falls within a specified minimum covering distance

δmin, whereas the demand node is not covered when it lies beyond a specified maximum covering distance

δmax. If δmin < δij < δmax, it is considered partially covered, and the coverage can be a linear, step or any

other function of the distance between node i and node j. Let aij ∈ [0, 1] be the level of coverage provided

by the facility at j to the demand node i.

aij =

{ 1 if δij ≤ δmin,

f(δij) if δmin < δij < δmax, where 0 < f(δij) < 1,

0 otherwise

Let xij = 1 if the demand node i is either partially or fully covered by the facility at j, and 0 otherwise.

Let Ni be the set of facility sites which cover the demand node i either fully or partially. yj = 1 if a facility

is opened at the site j, and 0 otherwise. Karasakal & Karasakal (2004) give the formulation of MCLP with

partial coverage as follows:

MCLP-P: maximize ζ =
∑
i

∑
j∈Ni

aijdixij (12)

s.t.
∑
j

yj = p (13)

xij ≤ yj ∀i, j ∈ Ni (14)∑
j∈Ni

xij ≤ 1 ∀i (15)

yj ∈ {0, 1} ∀j (16)

xij ∈ {0, 1} ∀i, j ∈ Ni (17)

The objective in the above formulation maximizes the total demand covered. Constraint (13) limits the

number of facilities to be opened. Constraint set (14) ensures that a demand node is assigned to a facility

only if the facility is open. Constraint set (15) guarantees that each demand node is assigned to a single

facility.

Berman et al. (2010) provide an excellent review of all the work with gradual coverage. MCLP is a special

case of MCLP-P when δmin = δmax = δ0; aij = 1 if δij ≤ δ0 and 0 otherwise. When the decay of coverage

is linear between the distance of δmin and δmax, aij = (δmax − δij)/(δmax − δmin). Berman et al. (2010)

also show that MCLP-P with a linear decay function generalizes the classical p-median problem. Berman

& Wang (2011) studied the problem when demand at the nodes are random variables whose probability

distributions are unknown. They used the information on the range of these variables to find the minimax

regret location that minimizes the worst-case coverage loss.
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A lot of work has been done on problems with minisum objectives and there are many efficient algorithms

to solve even the large instances of such problems. However, the problems with minimax structure are

relatively difficult to solve. For an example the p-center problem are generally solved by repeatedly solving

set covering problems, which are themselves NP hard.

To the best of our knowledge no work has been done that takes into account the uncertainty in number

of servers, i.e. in which the number of facilities that will be opened in any period is not known beforehand.

In many practical problems this uncertainty exists. For example in the UPHCLP, physical infrastructure for

the PHC exist at many locations but due to unavailability of doctors, complete service cannot be provided by

these PHCs. Those PHCs where doctors (servers) are not present can only provide very limited healthcare

facilities. The number and period of doctors joining rural healthcare in any district is not known a priori.

When a doctor joins, they are allocated to an unmanned PHCs. The sequence of opening new facilities,

i.e. allocating a doctor to a site where physical infrastructure already exists, is pre-decided for a planning

horizon. The above mentioned uncertainty in period and number of doctors joining, may lead to such a

facility opening sequence being considered, which may be highly suboptimal considering the optimal ex post

decision, i.e. the optimal decision.

In this work, we are given a set of demand nodes and a set of candidate facility locations. Each facility

has infinite capacity however, it can provide complete or partial coverage only to the demand nodes that

fall within a specified maximum covering distance. The number of facilities to be opened in various periods

of planning horizon is uncertain and gives rise to different scenarios. The objective of the problem is to

determine the sequence of opening facilities (staffing PHCs with doctors) that creates the least worst case

deviation from the optimal over all scenarios. This minimizes the maximum regret across scenarios.

3 Problem formulation

When the number of facilities that will be opened in all periods of the planning horizon is known, the facility

location problem reduces to MMCLP (complete or gradual coverage). However, when there is uncertainty in

the numbers of facilities that can be opened in each period of the planning horizon, the objective changes to

minimizing the worst case regret from a solution. A solution to this problem is the facility opening sequence,

which needs to be pre-decided for the planning horizon. All possible scenarios through which servers will

become available over the planning horizon need to be considered. The regret associated with any solution,

for a given scenario is the difference between the ex post optimal coverage for that scenario and the coverage

obtained with the solution.

For an example consider only three scenarios exist and there are two possible sequences. The demand

coverage matrix for both the facility opening sequences under all the scenarios is given in Table 1.

Table 1: A sample coverage matrix

Sequence 1 Sequence 2 Maximum

Scenario 1 100 180 180
Scenario 2 200 150 200
Scenario 3 50 70 70
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A regret matrix as given in Table 2 can be obtained with the coverage matrix of Table 1. In this example,

the sequence 2 gives the least worst case regret. Hence, if the objective is to minimize the worst case regret,

sequence 2 will be selected.

Table 2: A sample regret matrix

Sequence 1 Sequence 2

Scenario 1 80 0
Scenario 2 0 50
Scenario 3 20 0

Maximum regret 80 50

We model the problem as follows. There is a set of demand nodes I = {1, 2, ..,m} and a set of location

J = {1, 2, .., n} where facilities are to be opened during the planning horizon. Other than a set J of locations

where facilities are yet to be opened, we are also given a set Jb of locations where facilities are open before

the start of the planning horizon. Let aij ∈ [0, 1] be the level of coverage provided by the facility at j to the

demand node i. The demand at node i in period t is given by dti.

Let s ∈ S be the index that represents the future scenario in which new servers will be available at

each period of the planning horizon. A scenario (a1, a2, ..., a|T |) indicates that in the first period, a1 new

servers will be available (a1 facilities can be opened), a2 new servers in the second period, likewise and in

the last period a|T | new servers will be available. As the problem requires finding the sequence in which

n facilities shall be opened, scenarios are generated so as all n facilities are opened by the end of the last

period. This is equivalent to generation of all possible scenarios such that between 0 to n facilities are

opened by the first |T | − 1 periods. This adequately captures the uncertainty in the availability of the

servers. One of the concerns while generating scenarios is that some unrealistic scenarios might influence the

solution. However, in this problem we find that many such extreme scenarios do not determine the optimal

sequence, and we give some scenario dominance rules later in Section 4. To better understand how the

scenario are generated consider an example with n = 2 and |T | = 3. All possible scenarios for this problem

size are (0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0) and (2, 0, 0). With n candidate facilities to be opened in

|T | periods, number of scenarios of getting new servers over the planning horizon is
(
n+|T |−1

n

)
= (n+|T |−1)!

n!(|T |−1)! .

Notice that by the last period all the facilities have been opened, consequently, demand coverage in the last

period will be the same for all the scenarios. Hence, we need to consider only the first |T | − 1 periods to

capture all the uncertainty. We represent the first |T | − 1 periods as a set T0 = T\{|T |}.

To represent the facility opening sequence, we introduce a matrix R = [rjj′ ], where rjj′ takes a value of

1 if the facility at j has a rank j′ ∈ {1, 2, ..., n} of opening in a facility opening sequence, and 0 otherwise.

A subscript s is introduced in the parameters to represent the values with the scenario s ∈ S. ytjs = 1 if a

facility is open at the location j at the time period t when the facility opening scenario is s, and 0 otherwise.

xtis = 1 if the demand node i is within the covering distance of some opened facility at the time period t and

scenario s, and 0 otherwise. To establish a relation between the variables rjj′ and ytjs we can argue that a

facility at j is open at any given period, if and only if the rank of facility at j in the facility opening sequence

is not more than the total number of facilities opened till that period. Mathematically,

ytjs = 1 ⇐⇒
∑
j′

j′rjj′ ≤
∑
t′≤t

pt
′

s
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i.e., ytjs = 1 =⇒
∑
j′

j′rjj′ ≤
∑
t′≤t

pt
′

s and ytjs = 0 =⇒
∑
j′

j′rjj′ ≥
∑
t′≤t

pt
′

s + 1

This translates into two big-M type of constraints. To have tight constraints, the big-M values must be

as low as possible however, it should be sufficiently large for the problem. Hence, for the two constraints

introduced, we use the big-M values as:

max(
∑
j′

j′rjj′ −
∑
t′≤t

pt
′

s ) = n− 0 = n and max(
∑
t′≤t

pt
′

s + 1−
∑
j′

j′rjj′) = n+ 1− 1 = n respectively

Therefore the constraints are:∑
j′

j′rjj′ ≤
∑
t′≤t

pt
′

s + n(1− ytjs) ∀j ∈ J, t ∈ T0, s ∈ S (18)

∑
j′

j′rjj′ ≥
∑
t′≤t

pt
′

s + 1− nytjs ∀j ∈ J, t ∈ T0, s ∈ S (19)

Proposition 1: Constraint set (19) will not be binding at optimality.

Proof. The above two constraints give a bound of ytjs as:

(
∑
t′≤t

pt
′

s + 1−
∑
j′

j′rjj′)/n ≤ ytjs ≤ (
∑
t′≤t

pt
′

s + n−
∑
j′

j′rjj′)/n

Where,
∑
j′
j′rjj′ is the rank of facility j in a facility opening sequence. The objective ensures that maximum

coverage is attained for any given facility opening sequence and scenario. Coverage of any demand node is

constrained only by ytjs as can be seen from the constraint set (7) of the MMCLP formulation. Hence, only

the upper bound of ytjs will be binding at optimality as the objective guarantees that for any given facility

opening sequence and scenario, ytjs attains the maximum possible value.

Proposition 2: Constraint set (18) does not make the constraint set
∑
j

ytjs =
∑
t′≤t

pt
′

s ∀t ∈ T0, s ∈ S

redundant.

Proof. Constraint set (18) gives a bound of ytjs as:

ytjs ≤ (
∑
t′≤t

pt
′

s + n−
∑
j′

j′rjj′)/n ∀j, t, s

=⇒
∑
j

ytjs ≤
∑
j

(
∑
t′≤t

pt
′

s + n−
∑
j′

j′rjj′)/n ∀t, s

=
∑
t′≤t

pt
′

s + n−
∑
j

∑
j′

j′rjj′/n

=
∑
t′≤t

pt
′

s + n−
∑
j

(1rj1 + 2rj2 + ...+ nrjn)/n
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=
∑
t′≤t

pt
′

s + n− 1/n

(∑
j

rj1 + 2
∑
j

rj2 + ...+ n
∑
j

rjn

)
=
∑
t′≤t

pt
′

s + n− 1/n(1 + 2 + ...+ n) [∵
∑
j

rjj′ = 1 ∀j′]

=
∑
t′≤t

pt
′

s + n− (n+ 1)/2 =
∑
t′≤t

pt
′

s + (n− 1)/2

Number of candidate facilities n > 1, hence constraint set
∑
j

ytjs =
∑
t′≤t

pt
′
s ∀t ∈ T0, s ∈ S gives a tighter

upper bound of
∑
j

ytjs.

3.1 Uncapacitated problem with complete coverage

Let Π be the set of all possible facility opening sequence and Πk be one of the facility opening sequences.

Let the total demand coverage with Πk in scenario s ∈ S by the end of period |T0| be ζΠk,s. The maximal

demand coverage that can be achieved with scenario s ∈ S is ζ∗s = max
Πk∈Π

ζΠk,s, which is obtained by solving

the MMCLP with t ∈ T0 and server availability given by scenario s. Here aij = 1 if the demand node i is

within the covering distance from the facility at j, and 0 otherwise. The problem that minimizes the worst

case regret can be formulated as:

min
Πk∈Π

max
s∈S

(ζ∗s −
∑
t∈T0

∑
i∈I

dtix
t
is) (20)

s.t. xtis ≤
∑
j∈J

aijy
t
js +

∑
j∈Jb

aij ∀i ∈ I, t ∈ T0, s ∈ S (21)

∑
j∈J

ytjs =
∑
t′≤t

pt
′

s ∀t ∈ T0, s ∈ S (22)

∑
j′

rjj′ = 1 ∀j ∈ J (23)

∑
j∈J

rjj′ = 1 ∀j′ ∈ {1, 2, ..., n} (24)

∑
j′

j′rjj′ ≤
∑
t′≤t

pt
′

s + n(1− ytjs) ∀j ∈ J, t ∈ T0, s ∈ S (25)

0 ≤ xtis ≤ 1 ∀i ∈ I, t ∈ T0, s ∈ S (26)

ytjs = 1 ∀j ∈ Jb, t ∈ T0, s ∈ S (27)

ytjs ∈ {0, 1} ∀j ∈ J, t ∈ T0, s ∈ S (28)

rjj′ ∈ {0, 1} ∀j ∈ J, j′ ∈ {1, 2, ..., n} (29)

In the above formulation constraint set (21) and (22) come from the MMCLP formulation. Constraint set

(23) and (24) necessitate that all the facilities get a unique rank in a facility opening sequence. Constraint set

(25) relates the variables rjj′ and ytjs as explained earlier. The constraint set (8) of the MMCLP formulation is

not included in this formulation as it is redundant when the facilities are opened with a pre-defined sequence.

Here, the objective is nonlinear, which can be linearized using the standard linearization technique. The

resulting linear model for multi-period uncapacitated location problem with server uncertainty (MULPSU)
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can be formulated as follows:

MULPSU: Minimize θ (30)

s.t. (21)− (29)

θ ≥ ζ∗s −
∑
t∈T0

∑
i∈I

dtix
t
is ∀s ∈ S (31)

θ ≥ 0 (32)

In the above formulation constraint set (31) has been used for making the model linear.

Proposition 3: Assuming the set of locations where facilities are open before the start of the planning

horizon Jb = φ, and removing the set of demand nodes which are within the covering distance of facilities in

Jb, will not change the solution of MULPSU.

Proof. Let i ∈ Ib represent the demand nodes which are covered by the facilities opened before the start of

the planning horizon. Now, xtis = 1 ∀i ∈ Ib, t ∈ T0, s ∈ S, hence we have:

ζs =
∑
t∈T0

∑
i∈I

dtix
t
is =

∑
t∈T0

∑
i∈I\Ib

dtix
t
is +

∑
t∈T0

∑
i∈Ib

dtix
t
is =

∑
t∈T0

∑
i∈I\Ib

dtix
t
is +

∑
t∈T0

∑
i∈Ib

dti

The second term is a constant, consequently

θ = max
s

(ζ∗s − ζs) = max
s

( ∑
t∈T0

∑
i∈I\Ib

dtix
t∗
is −

∑
t∈T0

∑
i∈I\Ib

dtix
t
is

)
Therefore we can remove the set Jb and Ib to solve the MULPSU.

3.2 Uncapacitated location problem with gradual coverage

This problem generalizes the MULPSU. The demand nodes which lie within a minimum covering distance

δmin and a maximum covering distance δmax from a facility at j are considered partially covered by the

facility. Here aij ∈ [0, 1], which is the level of coverage provided by the facility at j to the demand node i,

can have a fractional value. The problem which minimizes the worst case regret can be formulated as:

MULPSU-P: Minimize θ (33)

s.t.
∑
j∈J

ytjs =
∑
t′≤t

pt
′

s ∀t ∈ T0, s ∈ S (34)

xtijs ≤ ytjs ∀i ∈ I, j ∈ Ni ∩ J, ∀t ∈ T0, s ∈ S (35)∑
j∈Ni

xtijs ≤ 1 ∀i ∈ I, t ∈ T0, s ∈ S (36)

θ ≥ ζ∗s −
∑
i∈I

∑
j∈Ni

∑
t∈T0

aijd
t
ix
t
ijs ∀s ∈ S (37)

∑
j′

rjj′ = 1 ∀j ∈ J (38)
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∑
j∈J

rjj′ = 1 ∀j′ ∈ {1, 2, ..., n} (39)

∑
j′

j′rjj′ ≤
∑
t′≤t

pt
′

s + n(1− ytjs) ∀j ∈ J, t ∈ T0, s ∈ S (40)

xtijs ∈ {0, 1} ∀i ∈ I, j ∈ Ni, t ∈ T0, s ∈ S (41)

θ ≥ 0 (42)

ytjs ∈ {0, 1} ∀j ∈ J, t ∈ T0, s ∈ S (43)

rjj′ ∈ {0, 1} ∀j ∈ J, j′ ∈ {1, 2, ..., n} (44)

In the above formulation the objective is to minimize across all facility opening sequence, the maximum

regret θ associated with any scenario. Constraint (34), (35) and (36) come from the MMCLP-P formulation.

Constraint (37) ensures that θ takes the highest value of regret across scenarios. Constraint set (38) and

(39) necessitate that all the facilities get a unique rank in a facility opening sequence. Constraint set (40)

relates the variables rj′j and ytjs as explained earlier as in the MULPSU formulation.

Proposition 4: The variables xtijs can be relaxed as continuous variable in the MULPSU-P formulation.

Proof. Let an optimal solution of MULPSU-P has some xtijs as fraction, for a scenario s and time t. Now∑
j∈Ni

xtijs ≤ 1 and the objective ensures that the variables xtijs take the maximum possible values. This means

that for the scenario s and time t, more than one facilities have been allotted to the demand node i. This

indicates that either all of those facilities fall within δmin, or are equidistant from the node i. As the facilities

do not have capacity limits, making xtijs = 1 for one of those facilities and zero for others will not make the

problem infeasible and will result in the same objective function value. Hence we can construct a feasible

solution which has the same objective function value, from the fractional solution of variable xtijs.

Notice that proposition 3 which was valid for MULPSU, does not hold for the MULPSU-P. Hence to

solve the MULPSU-P, we cannot ignore the set of facilities which are open before the start of planning

horizon. This is because the facilities which are open before the start of planning horizon might provide

partial coverage to some demand nodes. Those demand nodes which are only partially covered cannot be

removed from the problem as indicated in proposition 3.

4 Solution methodology

It is important to note at the onset that a greedy or ad hoc method will not give the optimal solution in

most problem instances because of the following proposition:
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Proposition 5: A facility opening sequence Π1 = (π1, π2, ..., πn) will give zero regret for all scenarios i.e.

will be the best sequence irrespective of the scenario if and only if all the following conditions hold true:

d̄tπ1
≥ d̄tπ′1 ∀t ∈ T0, π

′
1 ∈ J : π′1 6= π1

d̄π1∪π2 ≥ d̄π′1∪π′2 ∀t ∈ T0, (π
′
1, π
′
2) ∈ J : {π′1, π′2} 6= {π1, π2}

...

d̄tπ1∪π2∪...∪πn−1
≥ d̄tπ′1∪π′2∪...∪π′n−1

∀t ∈ T0, (π
′
1, π
′
2, ..., π

′
n−1) ∈ J : {π′1, π′2, ..., π′n−1} 6= {π1, π2, ..., πn−1}

Where, d̄tπ1∪π2∪...∪πi
represents the total demand covered by the set of facilities {π1, π2, ..., πi}.

Proof. We first prove by contradiction that if all the above conditions are met, the facility opening sequence

Π1 = (π1, π2, ..., πn) will give zero regret i.e. the highest coverage for all scenarios. Let there be s =

(a1, a2, .., at, .., a|T |) ∈ S, for which another sequence Π2 = (π′1, π
′
2, ..., π

′
n) gives more demand coverage even

though all the above conditions are met. Then there must be atleast one period for which demand covered

in that period with Π1 is less than the demand coverage with Π2, i.e.

∃t ∈ T : d̄tπ1∪π2∪...first (a1+a2+..at) facilities in Π1
< d̄tπ′1∪π′2∪...first (a1+a2+..at) facilities in Π2

This contradicts the assumption that all the relations in the proposition are satisfied.

We now prove that if any of the above conditions are not satisfied, facility opening sequence Π1 will not

give zero regret i.e. the highest coverage for all the scenarios. Let us assume that there exists t ∈ T0, l ∈
{1, 2.., n− 1} : d̄tπ1∪π2∪...∪πl

< d̄tπ′1∪π′2∪...∪π′l
. If we can find a scenario in which Π2 gives higher coverage than

Π1 our proof is done. Note that for the scenario when l new servers are available in period t and rest of the

n − l servers become available in the last period, Π2 gives a higher coverage. Hence for any facility to give

zero regret in all the scenarios, all the above conditions need to be satisfied.

The numbers of possible facility opening sequences when n is 5, 10 and 15 are 120, 3628800, and

1307674368000 respectively. Moreover, the number of server availability scenarios are 126, 1001 and 3876

for |T | = 5 and n = 5, 10 and 15 respectively. For any given scenario the problem reduces to a MMCLP,

which is the multi-period version of the MCLP. MMCLP is NP-hard since its single period version, MCLP

is known to be NP-Hard (Drezner & Hamacher, 2001). As MULPSU requires solving an NP hard problem

multiple times, exorbitant computational effort will be needed to solve the problem to optimality.

4.1 Dominance rules

Here we present some dominance rules to reduce the search space. We provide the formal proofs of these

rules in Appendix A.

Proposition 6: Let Π1 = (π1, π2, .., πi−1, πi, ..πj , πj+1..πn) be a sequence in which facilities are to be

opened, and let Π2 = (π1, π2, .., πi−1, πj , ..πi, πj+1..πn) be a sequence obtained by switching the positions of

πi and πj in Π1. Let d̄tπ1∪π2∪...∪πi
represent the total demand covered by the set of facilities (π1, π2, ..., πi).
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If all the inequalities below are satisfied, facility opening sequence Π1 will dominate Π2, or in other words,

regret associated with Π1 will be not be higher than that associated with Π2 for any corresponding scenario.

d̄tπ1∪π2∪...∪πi
≥ d̄tπ1∪π2∪...∪πj

∀t ∈ T0

d̄tπ1∪π2∪...∪πi∪πi+1
≥ d̄tπ1∪π2∪...∪πj∪πi+1

∀t ∈ T0

...

d̄tπ1∪π2∪...∪πi∪πi+1∪...∪πj−1
≥ d̄tπ1∪π2∪...∪πj∪πi+1∪...∪πj−1

∀t ∈ T0

The above set of inequalities in general form can be written as:

d̄tπ1∪π2∪...∪πi
≥ d̄tπ1∪π2∪...∪πj

∀t ∈ T0 (45)

d̄tπ1∪π2∪...∪πi...∪πl
≥ d̄tπ1∪π2∪...∪πj ...∪πl

∀t ∈ T0, l ∈ {i+ 1, i+ 2, ..., j − 1} (46)

Notice that in both Π1 and Π2, first i− 1 facilities are the same. Moreover, if j or more facilities are open,

the same set of facilities in both Π1 and Π2 will be open. Hence, the above proposition does not include

these conditions as they are trivial equality relations.

Computation of left hand and right hand side in each inequality of the above proposition takes O(nm)

time. Moreover, there are O(n) such inequalities for each t ∈ T0. Therefore, the dominance calculation will

take O(n2m|T0|) time for each sequence. In comparison, if a sequence is found to be dominated the time

saved will be O(nm|T0||S|), which will be O(n5m|T0|) when |T | is 5 periods i.e. |T0| = 4.

Proposition 7: Those server availability scenarios where all n servers become available in the same period

will have zero regret for any facility opening sequence.

Proposition 8a: For any facility opening sequence Πk = (π1, π2, ...πn), the regret associated with the

server availability scenario s1 = (0, a2, a3, .., a|T |) ∈ S will not be greater than that associated with the

scenario s2 = (1, a2 − 1, a3, .., a|T |) ∈ S if:

d̄1
π1
≤ ζ∗s2 − ζ

∗
s1 (47)

where, a2 > 0 and d̄1
π1

is the demand coverage by π1 in the first period of the planning horizon.

Proposition 8b: When a2 = 0 in scenario s1 = (0, a2, a3, .., a|T |) and i be the first period with a non-

zero ai. For any facility opening sequence Πk = (π1, π2, .., πn), regret associated with the scenario s1 =

(0, .., ai, .., a|T |) will not be greater than that associated with the scenario s2 = (1, .., ai − 1, .., a|T |) if:

d̄1
π1

+ d̄2
π1

+ ..+ d̄i−1
π1
≤ ζ∗s2 − ζ

∗
s1 (48)

Proposition 9a: For any facility opening sequence Πk = (π1, π2, ..., πn), regret associated with the scenario

s1 = (a1, a2, .., a|T |−1, 0) will not be greater than that associated with the scenario s2 = (a1, a2, .., a|T |−1−1, 1)
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if:

d̄
|T |−1
J − d̄|T |−1

J\πn
≥ ζ∗s1 − ζ

∗
s2 (49)

where, a|T |−1 > 0.

Proposition 9b: When a|T |−1 = 0 in scenario s1 = (a1, .., a|T |−1, 0) and i be the last period with a

non-zero ai. For any facility opening sequence Πk = (π1, π2, ..., πn), regret associated with the scenario

s1 = (a1, .., ai, ., 0) will not be greater than that associated with the scenario s2(a1, .., ai − 1, .., 1) if:

(d̄
|T |−1
J − d̄|T |−1

J\πn
) + (d̄

|T |−2
J − d̄|T |−2

J\πn
) + ...+ (d̄iJ − d̄iJ\πn

) ≥ ζ∗s1 − ζ
∗
s2

(50)

All possible facility opening sequence need not be checked to establish the dominance of the scenarios.

One of the n facilities will be the last facility or first facility and thus checking for these n facilities in the the

left hand side of inequality in proposition 8 or 9 will establish the dominance. This dominance calculation

will take O(n2m|T |) time for each scenario and if a scenario is found to be dominated the time saved will

be O(n3m|T ||Iter.|), where |Iter.|) is the total number of iterations in the neighborhood search. Number

of scenarios that have no new servers available in first or the last period is 2 ×
(
n+|T |−2

n

)
−
(
n+|T |−3

n

)
. For

example, with n = 10 and |T | = 5, number of such scenarios is 506 (out of 1001 total possible scenarios).

Proposition 10a: For any facility opening sequence Πk = (π1, π2, ..., πn), regret associated with the

scenario s1 = (1, a2, a3, .., a|T |) will not be greater than that associated with the scenario s2 = (2, a2 −
1, a3, .., a|T |) if:

d̄1
π1∪π2

− d̄1
π1
≤ ζ∗s2 − ζ

∗
s1 (51)

where, a2 > 0.

Proposition 10b: When a2 = 0 in scenario (1, a2, a3, .., a|T |) and i be the first period with a non-zero

ai (other than period 1). For any facility opening sequence Πk = (π1, π2, ..., πn), regret associated with the

scenario s1 = (1, .., ai, .., a|T |) will not be greater than that associated with the scenario s2 = (2, .., ai −
1, .., a|T |) if:

(d̄1
π1∪π2

− d̄1
π1

) + (d̄2
π1∪π2

− d̄2
π1

) + ..+ (d̄i−1
π1∪π2

− d̄i−1
π1

) ≤ ζ∗s2 − ζ
∗
s1

(52)

Proposition 11a: For any facility opening sequence Πk = (π1, π2, ..., πn), regret in the scenario s1 =

(a1, a2, .., a|T |−1, 1) will not be greater than that associated with the scenario s2 = (a1, a2, .., a|T |−1− 1, 2) if:

d̄
|T |−1
J\πn

− d̄|T |−1
J\(πn,πn−1) ≥ ζ

∗
s1 − ζ

∗
s2

(53)

where, a|T |−1 > 0.

W.P. No. 2014-11-03 Page No. 15



IIMA • INDIA
Research and Publications

Proposition 11b: When a|T |−1 = 0 in scenario (a1, .., a|T |−1, 1) and i be the last period with a non-zero

ai(other than period |T |). For any facility opening sequence Πk = (π1, π2, ..., πn), regret in the scenario

s1 = (a1, .., ai, .., 1) will not be greater than that in scenario s2 = (a1, .., ai − 1, .., 2) if:

(d̄
|T |−1
J\πn

− d̄|T |−1
J\(πn,πn−1)) + (d̄

|T |−2
J\πn

− d̄|T |−2
J\(πn,πn−1)) + ...+ (d̄iJ\πn

− d̄iJ\(πn,πn−1)) ≥ ζ
∗
s1 − ζ

∗
s2

(54)

It can be seen from the proposition 10 and 11 that all possible facility opening sequence need not be

checked to establish the dominance of the scenario. One of the n facilities will be the first (last) facility

and the second (second last) facility will be one of the remaining n − 1 facilities. Thus checking for these

n(n − 1) possibilities in the the left hand side of inequality in the proposition 10 or 11 will establish the

dominance. This dominance calculation will take O(n3m|T |) time for each scenario and if a scenario is found

to be dominated the time saved will be O(n3m|T ||Iter.|). Number of scenarios that have one new server

available in first or the last period (excluding the scenarios that have no new server available in first or last

period) is 2×
(
n+|T |−3
n−1

)
−
(
n+|T |−5
n−2

)
− 2×

(
n+|T |−4
n−1

)
. For example, with n = 10 and |T | = 5, number of such

scenarios is 285 (out of 1001 total possible scenarios).

Proposition 12a: For any facility opening sequence Πk = (π1, π2, ..., πn), regret in the scenario s1 =

(2, a2, a3, .., a|T |) will not be greater than that in scenario s2 = (3, a2 − 1, a3, .., a|T |) if:

d̄1
π1∪π2∪π3

− d̄1
π1∪π2

≤ ζ∗s2 − ζ
∗
s1 (55)

where, a2 > 0.

Proposition 12b: When a2 = 0 in scenario (2, a2, a3, .., a|T |) and i be the first period with a non-zero

ai (other than period 1). For any facility opening sequence Πk = (π1, π2, ..., πn), regret in the scenario

s1 = (2, .., ai, .., a|T |) will not be greater than that in scenario s2 = (3, .., ai − 1, .., a|T |) if:

(d̄1
π1∪π2∪π3

− d̄1
π1∪π2

) + (d̄2
π1∪π2∪π3

− d̄2
π1∪π2

) + ..+ (d̄i−1
π1∪π2∪π3

− d̄i−1
π1∪π2

) ≤ ζ∗s2 − ζ
∗
s1

(56)

Proposition 13a: For any facility opening sequence Πk = (π1, π2, ..., πn), regret in the scenario s1 =

(a1, a2, .., a|T |−1, 2) will not be greater than that in scenario s2 = (a1, a2, .., a|T |−1 − 1, 3) if:

d̄
|T |−1
J\(πn,πn−1) − d̄

|T |−1
J\(πn,πn−1,πn−2) ≥ ζ

∗
s1 − ζ

∗
s2

(57)

where, a|T |−1 > 0.

Proposition 13b: When a|T |−1 = 0 in scenario (a1, .., a|T |−1, 2) and i be the last period with a non-

zero ai(other than period |T |), for any facility opening sequence Πk = (π1, π2, ...πn), regret in the scenario
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s1 = (a1, .., ai, .., 1) will not be greater than that in scenario s2 = (a1, .., ai − 1, ., 2) if:

(d̄
|T |−1
J\(πn,πn−1) − d̄

|T |−1
J\(πn,πn−1,πn−2)) + (d̄

|T |−2
J\(πn,πn−1) − d̄

|T |−2
J\(πn,πn−1,πn−2)) + ...

+(d̄iJ\(πn,πn−1) − d̄
i
J\(πn,πn−1,πn−2)) ≥ ζ

∗
s1 − ζ

∗
s2

(58)

It can be seen from the proposition 12 and 13 that all possible facility opening sequence need not be

checked to establish the dominance of the scenario. One of the n facilities will be the first (last) facility, the

second (second last) and the third (third last) facility will be one of the remaining n− 1 and n− 2 facilities

respectively. Thus checking for these n(n−1)(n−2) possibilities in the the left hand side of inequality in the

proposition 12 or 13 will establish the dominance. This dominance calculation will take O(n4m|T |) time for

each scenario and if a scenario is found to be dominated the time saved will be O(n3m|T ||Iter.|). Number

of scenarios that have two new servers available in first or the last period (excluding the scenarios that have

no/one new server available in first or last period) is 2×
(
n+|T |−3
n−1

)
−
(
n+|T |−5
n−2

)
−2×

(
n+|T |−4
n−1

)
−2×

(
n+|T |−6
n−3

)
.

For example, with n = 10 and |T | = 5, number of such scenarios is 140 (out of 1001 total possible scenarios).

In a similar fashion we can have dominance rules for three or higher number of servers available in the first

(last) period. However, we have not used those relations because of two reasons. Firstly, the computational

time to check for dominance condition will be higher and as a result there will not be much saving in the

time even if a scenario is found to be dominated. Secondly, the number of scenarios that have not been

covered in the earlier propositions will be few. For example, with n = 10 and |T | = 5, a total of 931 out of

1001 all possible scenarios are covered in the earlier propositions. Using these propositions we have reduced

our search space and we can use the search methods given in the next subsection to find a good solution.

4.2 Neighborhood search based methods

These methods start with an initial solution as the current solution and then check the neighborhood for

a better solution. The initial solution can be generated using a greedy heuristics. In this problem we have

generated the initial solution by arranging the facility in non-increasing order of demand covered over the

planning horizon. We have used the swap neighborhood structure. In this neighborhood, a move from one

solution to the other is executed by interchanging two distinct elements in the permutation (Taillard, 1990).

Local search (LS): It is a basic neighborhood search heuristics. It starts with a given initial solution as

the current solution and checks its neighborhood for a better solution. If such a solution exists, the best

neighbor will be selected as the current solution for the next iteration. If the neighborhood of the current

solution does not contain any solution better than it, LS returns the current solution and terminates. This

method may give a local optima as a solution and does not guarantee globally optimal solutions to most

combinatorial problems. However, for many problems it returns relatively good quality solutions.

Tabu search (TS): It is one of the most effective improvements in the local search and was introduced by

Glover (1989, 1990). TS starts with a given initial solution as the current solution. It performs a search on

the neighbors of the current solution and selects the next solution keeping the search history in mind. This

technique allows it to overcome the local optima which local search cannot escape. A tabu list is maintained
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which prohibits certain moves from the current solution. A tabu tenure specifies the number of iterations

a given move will be in the tabu list. It has been shown in the literature that random tabu tenure gives a

better performance (Taillard, 1991, 1995). Another important feature of the TS is the aspiration criterion,

which ensures that moves which are exceptionally promising are not ignored due to their tabu status.

5 Computational experiments

The procedures were coded in C++ (Visual Studio 2010). IBM ILOG CPLEX 12.4 was used as the IP solver.

The procedures were implemented on an personal computer with Intel Core i5 (3.30 GHz) processors; 4 GB

RAM; and windows 64-bit operating system. In our implementation the tabu tenure was a random number

between 5 and 10. This tabu tenure was first suggested by Gendreau et al. (1999). It reduces the probability

of cycling and the search getting stuck at a local minima. We used a simple aspiration criterion: a move

is said to satisfy the aspiration criterion if it results in a solution with a regret lower than that of the best

solution found thus far. A move satisfying the aspiration criteria can be selected, overruling its tabu status.

We conducted some experiments to find out the minimum number of iterations after which the solution does

not improve further. In most of the problem instances the solution stabilized before 100 iterations. For a

few difficult instances nearly 200 iterations were needed. One such instance with n = 15, and m = 500

where 174 iterations were needed for solution to stabilize is given in Figure 1. Based on the these findings

we allowed our tabu search implementations to run for 250 iterations.
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Figure 1: Example of change in objective function value with TS iterations
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Problems of size 5, 10, 15 and 20 facilities with 100, 200, 300, 400 and 500 demand nodes were solved

for |T | = 5 periods for the uncapacitated problem with complete coverage. For the uncapacitated problem

with gradual coverage, we conducted the experiments with size 5, 10 and 15 facilities.

We generated abscissa and ordinates of all the demand nodes as random numbers from the uniform

distribution [0, 100]. The first period demand at each demand node i was selected from a uniform distribution

[50, 1500]. The demand at a node i changes in each period of the planning horizon with a growth rate gi,

which is assumed to remain constant over the planning horizon. Hence, the demand at a node i in period t

of the planning horizon is given by dti = (dt−1
i )gi. The annual demand growth rate for each demand node has

been generated from the uniform distribution [-0.04, 0.10]. This growth rate has been assumed to remain

constant over the planning horizon. Covering distance of 20 units was used for the the problem size of 5,

10 and 15 facilities. For the problem size of 20 facilities we used a covering distance of 15 units. For all

the problem sizes we assume that there are no open facilities before the start of the planning horizon. The

problem instance is generated by calculating the distance between all pairs of demand node i and candidate

facility location j. Subsequently we determine aij i.e. the level of coverage provided by the facility at j to

the demand node i. We then generate a set S of all server availability scenarios such that over |T | periods,

n servers become available.

We conducted our experiments with two implementations of the tabu search (TS-I and TS-II). In the

first implementation (TS-I) we did not use any of the dominance rules. The second implementation (TS-II)

included all the dominance rules given in Section 4. In TS-II a set of non-dominated scenarios S0 ⊂ S, as

per proposition 8 through 13, is found out. All the dominated scenarios S\S0 are removed from further

calculations in the algorithm. The pseudocodes for TS-II implementation is given in Algorithm 1. In TS-I

instead of the set S0, we consider the set S for calculation in step 17 and 25 of Algorithm 1. Note that in

our implementations, the maximum demand coverage for each scenario was computed using CPLEX.

For each of problem sizes we report the summary of 10 instances which do not give zero regret solutions.

Notice that such instances are more difficult to solve compared to the instances which output zero regret

solutions, because once a feasible solution (upper bound) of zero is found there can be no further improvement

and the search terminates. We present the summary of the performance of the solution methods on these

problems in Tables 3 through 9, more details has been provided in Appendix B. Tables 3 through 6 pertain to

the problem with complete coverage and tables 7 through 9 pertain to the problem with gradual coverage. We

report the average and the maximum times with different methods for the 10 instances not giving zero regret

solutions. Time taken to find the maximal coverage for all the scenarios using exact method (CPLEX 12.4)

is reported first. Then we report the time taken using CPLEX (excluding the time taken to find maximal

coverage for all scenarios). For this exact method we compare the time taken without the scenario dominance

rules (CP-I) and time taken when scenario dominance rules are included in the problem formulation (CP-II).

Then we report the solution times for the two TS implementations TS-I and TS-II. The column Opt# report

the number of instances out of the 10 instances with non-zero regret, the TS implementation could find an

optimal solution (CP-I or CP-II solution) .

For the problem size of n = 15 and m = 100, 200, 300, 400 and 500 in MULPSU, we found the best lower

and upper bound found using CP-II at the end of one hour. We also found the best lower and upper bound

for the problem size of n = 10 and m = 100, 200, 300, 400 and 500 with MULPSU-P. This can be used to

compare the quality of the solution returned by the exact method at the end of one hour with the heuristic
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Algorithm 1 Tabu search (TS-II implementation)

Input: A problem instance, tabu tenure parameter t, and the total no. of iterations k
Output: A facility opening sequence with minimax regret of demand coverage, and the maximum regret associated

with this sequence
Code
1: find the maximal demand coverage for each scenario s ∈ S, by solving the multi-period maximal coverage location

problem (complete or gradual coverage);
2: using dominance rules find a set of scenarios S0 ⊂ S which are not dominated;
3: generate initial facility opening sequence sequence Π (decreasing order of the total demand covered over the

planning horizon);
4: find coverage and regret with Π for each scenario s ∈ S0;
5: set Π∗ ← Π and minimax reg∗ ← maximum regret with Π across scenarios;
6: for iterations from 1 to k do
7: if minimax reg∗ == 0 then
8: break;
9: end if

10: generate all neighbors ΠN of Π;
11: for each neighbor Πn of Π do
12: if Π dominates Πn then
13: go to next neighbor
14: else
15: if Πn is a non-tabu neighbor Πn then
16: set nontabu regret neigh←∞;
17: find coverage and regret with Πn for each scenario s ∈ S0;
18: set tmp regret← maximum regret with Πn across scenarios;
19: if tmp regret < nontabu regret neigh then
20: set Πnon−tabu nbr ← Πn;
21: set nontabu regret neigh← tmp regret;
22: end if
23: else
24: set tabu regret neigh←∞;
25: find coverage and regret with Πn for each scenario s ∈ S0;
26: set tmp regret← maximum regret with Πn across scenarios;
27: if tmp regret < tabu regret neigh then
28: set Πtabu nbr ← Πn and tabu regret neigh← tmp regret;
29: end if
30: end if
31: end if
32: end for
33: if there are no undominated non-tabu neighbors of Π then
34: find the best dominated non-tabu neighbor using step 15 to 22 for each neighbor Πn of Π;
35: end if
36: select the best neighbor Πnbr keeping a check on the aspiration criterion;

37: set max regret neigh← maximum regret with Πnbr across scenarios;
38: update the tabu list using tabu tenure t selected randomly between an upper and a lower bound;
39: if max regret neigh < minimax reg∗ then
40: set Π∗ ← Πnbr and minimax reg∗ ← max regret neigh;
41: end if
42: set Π← Πnbr for the next iteration;
43: end for
44: output Π∗ and minimax reg∗;
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solution. We observe that for all the instances, the best feasible solution found by CPLEX at the end of one

hour is not better than the solution given by TS-II implementation.

Table 3: Computational results for MULPSU with n = 5, and |T | = 5

MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (68.33% of the solutions were zero regret solutions)
Avg. 0.29 0.53 0.19 0.70 10 0.16 10
Max. 0.35 0.78 0.36 0.72 0.19

m = 200 (71.67% of the solutions were zero regret solutions)
Avg. 0.42 0.96 0.37 1.35

10
0.32

10
Max. 0.58 1.37 0.87 1.38 0.46

m = 300 (78.33% of the solutions were zero regret solutions)
Avg. 0.51 1.36 0.51 2.02

10
0.52

10
Max. 0.64 2.54 1.31 2.11 0.75

m = 400 (70.0% of the solutions were zero regret solutions)
Avg. 0.68 2.44 0.88 2.69

10
0.66

10
Max. 0.95 4.51 1.45 2.75 1.03

m = 500 (76.67% of the solutions were zero regret solutions)
Avg. 0.81 2.51 1.17 3.33

10
0.90

10
Max. 1.09 3.95 2.89 3.43 1.37

Table 4: Computational results for MULPSU with n = 10, and |T | = 5

MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (13.33% of the solutions were zero regret solutions)
Avg. 4.90 158.59 37.85 35.30

10
5.42

10
Max. 6.16 331.94 67.91 37.62 9.25

m = 200 (37.5% of the solutions were zero regret solutions)
Avg. 8.07 399.47 64.16 69.57

10
8.82

10
Max. 12.10 1981.92 131.17 73.23 14.11

m = 300 (20.0% of the solutions were zero regret solutions)
Avg. 8.46 527.01 156.12 100.03

9
13.67

10
Max. 12.02 2302.27 273.40 102.80 25.77

m = 400 (13.33% of the solutions were zero regret solutions)
Avg. 10.31 637.45 335.26 133.40

8
19.77

10
Max. 14.34 1481.53 1193.70 137.01 27.80

m = 500 (33.33% of the solutions were zero regret solutions)
Avg. 23.67 2619.96 1059.83 175.39

10
30.37

10
Max. 56.92 11581.27 3786.10 181.96 54.26

It can be seen from the tables 4, 5 and 8 that TS-I could not give the optimal or the best solution for a few

problems, while the tabu search implementation TS-II gave the optimal solution for all the instances which

CPLEX could solve in reasonable time. It so happens because with the dominance rule on facility opening

sequence, a set of non-optimal solutions is cut off form the consideration set while doing the neighborhood

search. Consequently, when an incumbent solution is better than all its neighbors, a dominated non-tabu

move might be carried out in TS-I. This sometime entraps the search into a local minima. TS-II prevents

such moves and reduces chances of getting stuck into a local minima.

For the complete coverage problem CPLEX could solve most of the problems upto the size of 15 facilities

and 200 demand nodes in 24 hours, while for the gradual coverage problem, size of 10 facilities and 100
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Table 5: Computational results for MULPSU with n = 15, and |T | = 5

MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (0.0% of the solutions were zero regret solutions)
Avg. 22.04 36469.57 27277.72 431.69

8
60.77

10
Max. 28.40 171646.02 143033.60 455.89 157.18

m = 200 (7.14% of the solutions were zero regret solutions)
Avg. 34.03 - 13343.96 734.82

10
83.59

10
Max. 56.01 - 60755.85 769.04 164.20

m = 300 (6.67% of the solutions were zero regret solutions)
Avg. 43.01 - - 1090.20

-
136.41

-
Max. 49.31 - - 1157.80 466.20

m = 400 (0.0% of the solutions were zero regret solutions)
Avg. 59.78 - - 1429.45

-
160.85

-
Max. 93.34 - - 1493.53 491.77

m = 500 (0.0% of the solutions were zero regret solutions)
Avg. 76.29 - - 1791.11

-
226.48

-
Max. 154.97 - - 1832.42 476.77

Table 6: Computational results for MULPSU with n = 20, and |T | = 5

MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (0.0% of the solutions were zero regret solutions)
Avg. 51.21 - - 2581.69

-
137.73

-
Max. 58.27 - - 2970.99 345.96

m = 200 (0.0% of the solutions were zero regret solutions)
Avg. 77.69 - - 5099.88

-
382.99

-
Max. 121.64 - - 5324.05 1803.33

m = 300 (9.09% of the solutions were zero regret solutions)
Avg. 111.64 - - 7386.42

-
318.03

-
Max. 140.71 - - 7561.08 629.08

m = 400 (0.0% of the solutions were zero regret solutions)
Avg. 119.83 - - 9682.58

-
669.64

-
Max. 141.36 - - 9967.05 2546.68

m = 500 (0.0% of the solutions were zero regret solutions)
Avg. 164.75 - - 12921.81

-
797.65

-
Max. 197.84 - - 16072.58 1402.69
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Table 7: Computational results for MULPSU-P with n = 5, and |T | = 5

MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (66.67% of the solutions were zero regret solutions)
Avg. 0.59 5.21 2.01 1.52

10
0.42

10
Max. 0.80 9.44 3.65 1.58 0.58

m = 200 (67.74% of the solutions were zero regret solutions)
Avg. 1.49 16.78 7.83 2.89

10
0.91

10
Max. 2.09 34.90 19.33 3.07 1.20

m = 300 (68.75% of the solutions were zero regret solutions)
Avg. 1.78 18.66 7.68 4.36

10
1.35

10
Max. 3.37 46.71 27.96 4.74 1.97

m = 400 (62.96% of the solutions were zero regret solutions)
Avg. 4.60 44.12 21.29 5.91

10
2.17

10
Max. 7.85 84.33 52.99 6.23 2.61

m = 500 (73.68% of the solutions were zero regret solutions)
Avg. 4.62 53.91 16.07 7.54

10
2.31

10
Max. 12.42 147.03 27.99 7.77 2.98

Table 8: Computational results for MULPSU-P with n = 10, and |T | = 5

MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt# CPU (s) Opt#

m = 100 (0.0% of the solutions were zero regret solutions)
Avg. 28.98 22652.95 11172.37 69.45

10
13.77

10
Max. 35.15 101723.11 53292.26 73.59 22.03

m = 200 (0.0% of the solutions were zero regret solutions)
Avg. 42.99 - 8931.43 139.62

9
26.12

10
Max. 69.62 - 27674.67 148.14 36.19

m = 300 (9.09% of the solutions were zero regret solutions)
Avg. 92.54 - - 224.56

-
37.43

-
Max. 123.08 - - 257.39 51.78

m = 400 (16.67% of the solutions were zero regret solutions)
Avg. 167.19 - - 302.20

-
55.52

-
Max. 231.14 - - 312.54 70.03

m = 500 (23.08% of the solutions were zero regret solutions)
Avg. 241.29 - - 393.92

-
84.02

-
Max. 309.98 - - 413.80 144.16
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Table 9: Computational results for MULPSU-P with n = 15, and |T | = 5

MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) CPU (s) Opt # CPU (s) Opt #

m = 100 (9.09% of the solutions were zero regret solutions)
Avg. 125.80 - - 830.69

-
79.24

-
Max. 174.51 - - 934.99 123.30

m = 200 (0.0% of the solutions were zero regret solutions)
Avg. 379.93 - - 1714.40

-
160.03

-
Max. 739.90 - - 1884.22 302.92

m = 300 (0.0% of the solutions were zero regret solutions)
Avg. 675.93 - - 2489.32

-
235.83

-
Max. 996.94 - - 2693.89 374.07

m = 400 (0.0% of the solutions were zero regret solutions)
Avg. 975.75 - - 3419.59

-
425.92

-
Max. 1361.29 - - 3670.19 601.84

m = 500 (9.09% of the solutions were zero regret solutions)
Avg. 1356.31 - - 4357.58

-
394.59

-
Max. 1693.78 - - 4664.50 491.16

demand nodes could be solved using CPLEX in that time. Higher sized problems could not be solved due

to memory limitations. CPLEX took much larger amount of time compared to the time taken by the TS

implementations to solve the larger instances of the problem. Among the TS implementations, TS-II took

significantly lower time than TS-I, while it was able to find the best solution for all the instances. We also

notice that the quality of feasible solution given by the exact solver in one hour for the large instances (which

could not be solved in one hour by CP-II) is much worse than the solution obtained by TS-II implementation

in most cases.

6 Conclusions

In this paper we have provided a formulation as well as solution method for the multi-period facility location

problem with an uncertain number of servers, and the facility opening sequence as the decision variable. We

looked at two variants of the problem. First is the problem with complete coverage where all the demand

nodes falling just within the covering distance from a facility are considered covered, while those just outside

the covering distance are not covered. In the other variant we generalized the problem by allowing partial

coverage between a minimum and a maximum covering distance. Partial or gradual covering problems have

been studied by Church & Roberts (1983); Berman et al. (2003); Karasakal & Karasakal (2004); Berman et

al. (2010). For both the above mentioned problem variants we evaluate the performance of commercial solver

and two implementations of tabu search with a swap neighborhood structure. The best customized tabu

search algorithm was able to solve instances of practical size which CPLEX could not solve. Furthermore, it

gave the optimal solution for all instances which could be solved using CPLEX and took significantly lesser

time.

We have used tabu search based meta-heuristics to solve the multi-period facility location problem with

an uncertain number of servers. Other exact and approximation methods can be further explored to solve a

similar problem. Another extension of this work will be to consider the problem with capacity limitations on

facilities. Furthermore, if the probability of different scenarios can be ascertained beforehand, other decision
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making criterion instead of minimax regret can be studied. Some examples are maximizing the expected

coverage over all scenarios, minimizing the expected regret or α-reliable p-minimax regret.

Appendix A

Proposition 6:

Proof. Assume that Π1 does not dominate Π2 even though all the above relationships are satisfied. Then

there must exist a scenario of server availability s = (a1, a2, ..a|T |) ∈ S for which regret with Π1 is more

than regret with Π2, or in other words demand coverage with Π1 is less than the demand coverage with Π2.

If this hold then there must be atleast one period for which demand covered in that period with Π1 is less

than the demand coverage with Π2, i.e.

∃t ∈ T : d̄tπ1∪π2∪...first (a1+a2+..at) facilities in Π1
< d̄tπ1∪π2∪...first (a1+a2+..at) facilities in Π2

This contradicts the assumption that all the relations in the proposition are satisfied. Hence, Π1 will dominate

Π2 if all the above set of relationships are satisfied.

Proposition 7:

Proof. It is easy to see that when all n servers become available in the same period, the facility opening

sequence becomes immaterial, i.e. all facility opening sequence will provide the same demand coverage.

Proposition 8a:

Proof. Notice that d̄1
π1

is the additional demand covered when the first facility of the facility opening sequence

Πk is opened in the first period instead of the second period. Hence, d̄1
π1

= ζΠk,s2 − ζΠk,s1 and we have:

d̄1
π1
≤ ζ∗s2 − ζ

∗
s1

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1

(A.1)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (A.2)

or, Regret associated with the scenario s1 = (0, a2, a3, .., a|T |) ≤ Regret associated with the scenario s2 =

(1, a2 − 1, a3, .., a|T |)

Proposition 8b:

Proof. The left hand side of the above inequality is the coverage by the first facility of the facility opening

sequence Πk ∈ Π, in the first period through i−1 periods of the planning horizon. Hence, it is the additional
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demand covered when the first facility of the facility opening sequence Πk is opened in the first period instead

of the ith period. The proof for this is similar to the earlier one. Note that in this case

ζΠk,s2 − ζΠk,s1 = d̄1
π1

+ d̄2
π1

+ ..+ d̄i−1
π1

(A.3)

Proposition 9a:

Proof. The left hand side of the above inequality is the unique coverage by the last facility of the facility

opening sequence Πk ∈ Π, in the second last period of the planning horizon. Hence, d̄
|T |−1
J − d̄

|T |−1
J\πn

=

ζΠk,s1 − ζΠk,s2 , and we have:

d̄
|T |−1
J − d̄|T |−1

J\πn
≥ ζ∗s1 − ζ

∗
s2

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2

(A.4)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (A.5)

or, Regret associated with the scenario s1 = (a1, a2, .., a|T |−1 − 1, 1) ≥ Regret associated with the scenario

s2 = (a1, a2, .., a|T |−1, 0)

Proposition 9b:

Proof. The left hand side of the above inequality is the unique demand covered by the last facility of any

facility opening sequence Πk ∈ Π, in the ith period through (T −1)th periods of the planning horizon. Hence,

it is the additional demand covered when the last facility of the facility opening sequence Πk is opened in

the ith period instead of the last period. The proof for this is similar to the earlier one. Note that in this

case the the left hand side of inequality is given by ζΠk,s2 − ζΠk,s1 .

Proposition 10a:

Proof. The left hand side of the above inequality is the unique coverage by the second facility of any facility

opening sequence Πk ∈ Π, in the first period of the planning horizon. Hence, it is the additional demand

covered when the second facility of the facility opening sequence Πk is opened in the first period instead of

the second period. Therefore, d̄1
π1∪π2

− d̄1
π1

= ζΠk,s2 − ζΠk,s1 and we have:

d̄1
π1∪π2

− d̄1
π1
≤ ζ∗s2 − ζ

∗
s1

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1

(A.6)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (A.7)

or, Regret associated with the scenario s1 = (1, a2, a3, .., a|T |) ≤ Regret associated with the scenario s2 =

(2, a2 − 1, a3, .., a|T |)
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Proposition 10b:

Proof. The left hand side of the above inequality is the unique coverage by the second facility of any facility

opening sequence Πk ∈ Π, in the first period through i− 1 periods of the planning horizon. Hence, it is the

additional demand covered when the second facility of the facility opening sequence Πk is opened in the first

period instead of the ith period. The proof for this is similar to the earlier one.

Proposition 11a:

Proof. The left hand side of the above inequality is the unique coverage by the second last facility of any

facility opening sequence Πk ∈ Π, in the second last period of the planning horizon. Hence, d̄
|T |−1
J\πn

−
d̄
|T |−1
J\(πn,πn−1) = ζΠk,s1 − ζΠk,s2 and we have:

d̄
|T |−1
J\πn

− d̄|T |−1
J\(πn,πn−1) ≥ ζ

∗
s1 − ζ

∗
s2

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2

(A.8)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (A.9)

or, Regret associated with the scenario s2 = (a1, a2, .., a|T |−1 − 1, 2) ≥ Regret associated with the scenario

s1 = (a1, a2, .., a|T |−1, 1)

Proposition 11b:

Proof. The left hand side of the above inequality is the unique demand covered by the second last facility of

any facility opening sequence Πk ∈ Π, in the ith period through (T − 1)th periods of the planning horizon.

The proof for this is similar to the earlier one.

Proposition 12a:

Proof. The left hand side of the above inequality is the unique coverage by the third facility of any facility

opening sequence Πk ∈ Π, in the first period of the planning horizon. Hence d̄1
π1∪π2∪π3

− d̄1
π1∪π2

= ζΠk,s2 −
ζΠk,s1 and we have:

d̄1
π1∪π2∪π3

− d̄1
π1∪π2

≤ ζ∗s2 − ζ
∗
s1

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1

(A.10)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (A.11)

or, Regret in scenario s1 = (2, a2, a3, .., a|T |) ≤ Regret in the scenario s2 = (3, a2 − 1, a3, .., a|T |)

Proposition 12b:
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Proof. The left hand side of the above inequality is the unique coverage by the third facility of any facility

opening sequence Πk ∈ Π in the first period through i − 1 periods of the planning horizon. The proof for

this is similar to the earlier one.

Proposition 13a:

Proof. The left hand side of the above inequality is the unique coverage by the third last facility of any

facility opening sequence Πk ∈ Π in the second last period of the planning horizon. Hence d̄
|T |−1
J\(πn,πn−1) −

d̄
|T |−1
J\(πn,πn−1,πn−2) = ζΠk,s1 − ζΠk,s2 and we have:

d̄
|T |−1
J\(πn,πn−1) − d̄

|T |−1
J\(πn,πn−1,πn−2) ≥ ζ

∗
s1 − ζ

∗
s2

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2

(A.12)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (A.13)

or, Regret in the scenario s2 = (a1, a2, .., a|T |−1 − 1, 3) ≥ Regret in scenario s1 = (a1, a2, .., a|T |−1, 2)

Proposition 13b:

Proof. The left hand side of the above inequality is the unique demand covered by the third last facility of

any facility opening sequence Πk ∈ Π, in the ith period through (|T | − 1)th periods of the planning horizon.

The proof for this is similar to the earlier one.

Appendix B

Table B.1: Computational results for MULPSU with n = 5, m = 100 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.32 0.50 0.18 16.6 0.67 0.0 0.15 0.0
2 0.24 0.43 0.14 687.0 0.72 0.0 0.18 0.0
3 0.27 0.38 0.11 472.2 0.71 0.0 0.14 0.0
4 0.27 0.48 0.13 45.6 0.70 0.0 0.14 0.0
5 0.35 0.78 0.36 1015.5 0.70 0.0 0.18 0.0
6 0.30 0.55 0.21 203.0 0.71 0.0 0.19 0.0
7 0.30 0.55 0.17 16.6 0.71 0.0 0.15 0.0
8 0.28 0.53 0.28 2248.1 0.70 0.0 0.17 0.0
9 0.30 0.48 0.16 13.0 0.70 0.0 0.15 0.0
10 0.30 0.58 0.19 133.2 0.70 0.0 0.15 0.0

Avg. 0.29 0.53 0.19 0.70 0.16
Max. 0.35 0.78 0.36 0.72 0.19

68.33% of the solutions were zero regret solutions for this problem size
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Table B.2: Computational results for MULPSU with n = 5, m = 200 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.36 0.69 0.22 115.0 1.34 0.0 0.31 0.0
2 0.38 0.87 0.27 159.0 1.31 0.0 0.23 0.0
3 0.47 1.03 0.44 6772.5 1.28 0.0 0.31 0.0
4 0.38 0.87 0.30 4.0 1.37 0.0 0.30 0.0
5 0.48 1.37 0.87 6011.5 1.38 0.0 0.46 0.0
6 0.36 0.72 0.25 576.8 1.37 0.0 0.31 0.0
7 0.33 0.56 0.17 136.0 1.36 0.0 0.28 0.0
8 0.58 1.36 0.34 3585.0 1.35 0.0 0.40 0.0
9 0.41 1.20 0.50 474.2 1.38 0.0 0.33 0.0
10 0.44 0.92 0.30 391.9 1.35 0.0 0.25 0.0

Avg. 0.42 0.96 0.37 1.35 0.32
Max. 0.58 1.37 0.87 1.38 0.46

71.67% of the solutions were zero regret solutions for this problem size

Table B.3: Computational results for MULPSU with n = 5, m = 300 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.55 1.42 0.44 852.5 2.10 0.0 0.38 0.0
3 0.48 1.00 0.28 130.0 2.11 0.0 0.51 0.0
4 0.53 1.54 0.75 2449.3 2.10 0.0 0.75 0.0
10 0.44 1.05 0.34 730.9 2.07 0.0 0.44 0.0
12 0.56 1.33 0.39 157.1 2.03 0.0 0.38 0.0
20 0.39 0.87 0.25 106.0 1.95 0.0 0.47 0.0
23 0.41 0.94 0.30 30.0 1.88 0.0 0.47 0.0
25 0.52 1.15 0.33 94.9 1.91 0.0 0.51 0.0
30 0.56 1.73 0.69 452.1 2.03 0.0 0.61 0.0
36 0.64 2.54 1.31 5509.5 2.03 0.0 0.69 0.0

Avg. 0.51 1.36 0.51 2.02 0.52
Max. 0.64 2.54 1.31 2.11 0.75

78.33% of the solutions were zero regret solutions for this problem size

Table B.4: Computational results for MULPSU with n = 5, m = 400 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.70 2.36 1.01 9968.8 2.65 0.0 0.53 0.0
2 0.62 1.78 0.64 863.7 2.64 0.0 0.54 0.0
3 0.81 2.64 1.08 3478.1 2.75 0.0 0.77 0.0
4 0.52 1.33 0.44 1476.0 2.71 0.0 0.65 0.0
5 0.50 1.22 0.37 449.3 2.68 0.0 0.58 0.0
6 0.73 1.97 1.45 18969.7 2.66 0.0 1.03 0.0
7 0.67 2.96 1.40 5742.5 2.69 0.0 0.66 0.0
8 0.50 1.47 0.44 349.1 2.71 0.0 0.60 0.0
9 0.76 4.51 0.73 353.9 2.72 0.0 0.66 0.0
10 0.95 4.18 1.20 3575.2 2.66 0.0 0.60 0.0

Avg. 0.68 2.44 0.88 2.69 0.66
Max. 0.95 4.51 1.45 2.75 1.03

70.0% of the solutions were zero regret solutions for this problem size
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Table B.5: Computational results for MULPSU with n = 5, m = 500 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.95 3.48 2.89 10055.0 3.26 0.0 1.02 0.0
2 1.09 3.87 1.64 2432.2 3.30 0.0 1.06 0.0
3 0.72 2.15 0.86 441.0 3.37 0.0 0.94 0.0
4 0.64 1.75 0.52 107.8 3.34 0.0 0.76 0.0
5 0.59 1.39 0.44 178.0 3.20 0.0 0.78 0.0
6 0.97 3.95 1.55 20461.3 3.34 0.0 0.75 0.0
7 0.87 2.23 1.03 408.0 3.34 0.0 0.82 0.0
8 0.94 2.53 1.59 1884.1 3.31 0.0 1.37 0.0
9 0.62 1.47 0.44 6.0 3.40 0.0 0.72 0.0
10 0.73 2.26 0.81 275.0 3.43 0.0 0.76 0.0

Avg. 0.81 2.51 1.17 3.33 0.90
Max. 1.09 3.95 2.89 3.43 1.37

76.67% of the solutions were zero regret solutions for this problem size

Table B.6: Computational results for MULPSU with n = 10, m = 100 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 3.67 34.14 13.95 159.6 34.73 0.0 9.25 0.0
2 4.11 66.67 20.29 1532.4 34.11 0.0 4.74 0.0
3 4.51 331.94 21.60 3822.3 35.05 0.0 2.38 0.0
4 4.15 185.84 55.31 3643.9 34.63 0.0 2.63 0.0
5 5.95 263.73 67.91 6197.2 35.65 0.0 5.48 0.0
6 6.16 92.96 57.95 2507.9 35.58 0.0 3.56 0.0
7 4.67 215.57 55.60 2911.0 37.62 0.0 5.91 0.0
8 5.32 139.12 44.51 2442.2 34.97 0.0 9.17 0.0
9 5.45 137.90 22.20 249.7 33.85 0.0 8.50 0.0
10 5.03 118.07 19.19 5065.4 36.81 0.0 2.61 0.0

Avg. 4.90 158.59 37.85 35.30 5.42
Max. 6.16 331.94 67.91 37.62 9.25

13.33% of the solutions were zero regret solutions for this problem size

Table B.7: Computational results for MULPSU with n = 10, m = 200 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 11.41 428.07 100.46 4673.2 68.73 0.0 7.76 0.0
2 8.32 261.08 39.98 7509.0 69.61 0.0 10.14 0.0
3 7.17 108.50 131.17 19828.6 73.23 0.0 11.37 0.0
4 5.24 115.04 41.64 115.7 70.94 0.0 14.11 0.0
5 5.74 122.69 48.12 8758.8 69.27 0.0 4.86 0.0
6 12.10 1981.92 66.55 13179.4 70.57 0.0 6.90 0.0
7 6.19 186.49 57.25 1536.8 68.38 0.0 9.31 0.0
8 6.70 430.22 59.59 5849.1 68.10 0.0 5.29 0.0
9 6.85 85.62 25.04 36.0 68.11 0.0 12.52 0.0
10 11.01 275.05 71.82 212.4 68.78 0.0 5.94 0.0

Avg. 8.07 399.47 64.16 69.57 8.82
Max. 12.10 1981.92 131.17 73.23 14.11

37.50% of the solutions were zero regret solutions for this problem size
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Table B.8: Computational results for MULPSU with n = 10, m = 300 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 8.49 275.70 219.65 8557.7 101.09 0.0 10.57 0.0
2 7.87 343.57 190.84 5174.2 98.33 0.0 7.12 0.0
3 8.40 254.94 268.08 7986.4 102.11 0.0 25.77 0.0
4 6.79 136.10 78.29 255.9 102.80 0.0 22.25 0.0
5 8.20 2302.27 273.40 21763.9 101.00 4473.3 11.23 0.0
6 8.83 702.33 169.55 4618.1 99.45 0.0 12.22 0.0
7 12.02 374.08 119.63 863.1 97.58 0.0 9.55 0.0
8 7.79 71.12 18.64 13.0 101.75 0.0 19.79 0.0
9 6.53 457.43 83.75 5917.8 96.89 0.0 11.01 0.0
10 9.73 352.52 139.34 3627.6 99.31 0.0 7.14 0.0

Avg. 8.46 527.01 156.12 100.03 13.67
Max. 12.02 2302.27 273.40 102.80 25.77

20.0% of the solutions were zero regret solutions for this problem size

Table B.9: Computational results for MULPSU with n = 10, m = 400 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 9.16 475.14 139.19 10688.6 132.68 0.0 19.16 0.0
2 7.70 123.37 41.99 374.6 134.85 0.0 27.64 0.0
3 8.11 132.78 46.48 396.9 134.71 0.0 24.28 0.0
4 8.59 345.42 185.66 10033.1 135.28 0.0 11.36 0.0
5 14.34 1127.47 841.57 20531.7 132.77 0.0 13.89 0.0
6 9.81 1222.05 1193.70 14744.4 137.01 6597.6 16.68 0.0
7 10.86 439.29 109.90 13783.7 131.87 0.0 18.41 0.0
8 12.71 603.44 243.70 7549.6 134.92 0.0 20.13 0.0
9 11.63 1481.53 412.19 15144.2 132.22 2653.8 18.32 0.0
10 10.17 423.98 138.22 2192.6 127.72 0.0 27.80 0.0

Avg. 10.31 637.45 335.26 133.40 19.77
Max. 14.34 1481.53 1193.70 137.01 27.80

13.33% of the solutions were zero regret solutions for this problem size

Table B.10: Computational results for MULPSU with n = 10, m = 500 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 20.43 1091.96 550.78 1966.1 176.91 0.0 14.48 0.0
2 17.38 5225.95 1013.19 9289.5 172.32 0.0 21.59 0.0
3 12.80 608.88 230.60 5094.7 175.49 0.0 14.61 0.0
4 19.05 680.13 328.40 7181.4 176.87 0.0 54.26 0.0
5 16.87 1795.82 298.39 9362.9 177.89 0.0 47.94 0.0
6 16.79 886.58 580.06 2680.2 174.14 0.0 28.58 0.0
7 22.09 2008.01 217.66 3969.9 174.84 0.0 32.71 0.0
8 26.33 11581.27 3786.10 14057.9 167.74 0.0 26.07 0.0
9 28.08 1837.01 3366.29 14543.8 181.96 0.0 26.66 0.0
10 56.92 484.03 226.85 42.0 175.74 0.0 36.78 0.0

Avg. 23.67 2619.96 1059.83 175.39 30.37
Max. 56.92 11581.27 3786.10 181.96 54.26

33.33% of the solutions were zero regret solutions for this problem size

W.P. No. 2014-11-03 Page No. 31



IIMA • INDIA
Research and Publications

Table B.11: Computational results for MULPSU with n = 15, m = 100 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II CP-II (1 hr)

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap UB LB
1 20.07 2054.8 398.7 159.6 432.3 5132.5 15.2 0.0 - -
2 16.69 1266.0 285.9 73.7 455.9 0.0 101.3 0.0 - -
3 21.97 6200.4 2045.8 6075.3 411.7 0.0 32.4 0.0 - -
4 19.93 2355.6 483.5 18.8 439.9 0.0 125.8 0.0 - -
5 21.12 70710.4 3093.7 3221.5 414.1 0.0 15.6 0.0 - -
6 27.39 4785.8 3515.2 5471.8 443.0 0.0 76.6 0.0 - -
7 25.83 102270.2 118323.8 7631.9 425.2 0.0 31.6 0.0 99190.9 5268.3
8 28.40 171646.0 143033.6 4106.3 429.1 0.0 15.8 0.0 4717.9 3152.8
9 18.27 1596.6 626.5 3293.7 443.9 4060.2 36.2 0.0 - -
10 20.70 1810.0 970.5 249.7 421.7 0.0 157.2 0.0 - -

Avg. 22.04 36469.6 27277.7 431.7 60.8
Max. 28.40 171646.0 143033.6 455.9 157.2

0.0% of the solutions were zero regret solutions for this problem size

Table B.12: Computational results for MULPSU with n = 15, m = 200 and |T | = 5

Instance MMCLPs CPLEX TS-I TS-II CP-II (1 hr)

CPU (s) CP-II (s) Solution CPU (s) Solution CPU (s) Solution UB LB
1 48.2 60755.9 13335.4 699.5 13335.4 60.0 13335.4 132904.0 10559.9
2 33.6 1491.6 7509.0 737.1 7509.0 46.1 7509.0 - -
3 30.7 33042.6 4833.0 731.6 4833.0 55.5 4833.0 4833.0 3885.9
4 27.2 5258.4 9274.4 769.0 9274.4 62.0 9274.4 166950.0 9274.4
5 30.2 1428.5 3608.8 734.0 3608.8 121.7 3608.8 - -
6 26.5 10357.9 904.0 749.4 904.0 77.0 904.0 904.0 760.8
7 29.9 2545.6 3215.5 690.7 3215.5 47.1 3215.5 - -
8 56.0 * * 757.7 6263.6 115.5 6263.6 93780.1 0.0
9 30.2 3632.4 16059.5 758.1 16059.5 86.8 16059.5 16059.5 11948.5
10 27.7 1582.7 1853.6 721.1 1853.6 164.2 1853.6 - -

Avg. 34.0 13344.0 734.8 83.6
Max. 56.0 60755.9 769.0 164.2

7.14% of the solutions were zero regret solutions for this problem size
* : Terminated due to insufficient memory

Table B.13: Computational results for MULPSU with n = 15, m = 300 and |T | = 5

Instance MMCLPs TS-I TS-II CP-II (1 hr)

CPU (s) CPU (s) Solution CPU (s) Solution UB LB
1 41.1 1095.9 863.5 249.5 863.5 863.5 863.5
2 43.6 1092.8 7991.5 47.6 7991.5 120294.0 0.0
3 42.7 1128.8 18405.0 100.4 18405.0 18405.0 10682.8
4 38.4 1097.3 1582.7 100.9 1582.7 1582.7 1582.7
5 47.7 1144.7 20642.3 83.4 20642.3 206240.0 0.0
6 48.3 1157.8 13364.7 91.4 13364.7 132970.0 0.0
7 41.8 1121.5 7406.8 46.7 7406.8 7406.8 7406.8
8 49.3 994.7 22592.7 73.4 19254.6 64386.2 0.0
9 44.1 1057.4 9712.3 104.7 9712.3 149622.0 0.0
10 33.155 1011.126 876.6 466.200 876.6 876.6 876.6

Avg. 43.0 1090.2 136.4
Max. 49.3 1157.8 466.2

6.67% of the solutions were zero regret solutions for this problem size
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Table B.14: Computational results for MULPSU with n = 15, m = 400 and |T | = 5

Instance MMCLPs TS-I TS-II CP-II (1 hr)

CPU (s) CPU (s) Solution CPU (s) Solution UB LB
1 51.8 1410.4 10688.6 175.2 7520.3 242875.0 0.0
2 64.1 1493.5 17916.3 81.5 17916.3 299084.0 0.0
3 51.4 1450.7 4162.9 137.7 4162.9 232404.0 0.0
4 41.3 1437.6 12103.4 110.1 12103.4 12103.4 12103.4
5 60.1 1399.0 26243.2 154.0 18194.5 263782.0 0.0
6 61.7 1444.6 27138.1 126.1 27138.1 313474.0 0.0
7 54.3 1429.5 617.0 491.8 617.0 617.0 617.0
8 66.0 1379.2 12120.2 63.6 12120.2 12120.2 7742.0
9 93.3 1435.3 14726.4 201.2 12313.0 213073.0 0.0
10 53.8 1414.8 15144.2 67.3 15144.2 242291.0 0.0

Avg. 59.8 1429.5 160.8
Max. 93.3 1493.5 491.8

0.0% of the solutions were zero regret solutions for this problem size

Table B.15: Computational results for MULPSU with n = 15, m = 500 and |T | = 5

Instance MMCLPs TS-I TS-II CP-II (1 hr)

CPU (s) CPU (s) Solution CPU (s) Solution UB LB
1 64.4 1814.8 29318.7 125.0 20806.6 297428.0 0.0
2 79.0 1816.1 17766.4 103.1 17766.4 326766.0 0.0
3 71.4 1764.0 15251.8 104.8 12126.9 398029.0 0.0
4 46.0 1729.2 4972.4 136.0 4972.4 4972.4 4972.4
5 73.0 1768.2 17206.1 120.0 17206.1 452067.0 0.0
6 64.4 1809.6 9248.3 467.1 9248.3 336854.0 0.0
7 60.5 1814.9 732.0 359.8 732.0 732.0 732.0
8 59.6 1832.4 14151.6 205.1 4748.5 541377.0 0.0
9 89.6 1745.5 41226.1 476.8 8087.1 257911.0 0.0
10 155.0 1816.4 34245.4 167.0 22524.7 359558.0 0.0

Avg. 76.3 1791.1 226.5
Max. 155.0 1832.4 476.8

0.0% of the solutions were zero regret solutions for this problem size

Table B.16: Computational results for MULPSU with n = 20, m = 100 and |T | = 5

Instance MMCLPs TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 50.5 174.9 0.0 17.4 0.0
2 48.5 2959.8 1517.3 112.3 1517.3
3 51.4 2795.3 3036.7 58.6 3036.7
4 52.1 2759.8 8496.9 181.5 5742.8
5 52.5 2829.7 4312.9 115.8 4312.9
6 46.9 2908.6 181.6 148.1 181.6
7 52.7 2752.7 6408.5 207.9 6408.5
8 58.3 2782.2 1767.2 346.0 1767.2
9 45.6 2971.0 3363.8 113.0 3363.8
10 53.7 2883.0 2730.9 76.9 2730.9

Avg. 51.2 2581.7 137.7
Max. 58.3 2971.0 346.0

0.0% of the solutions were zero regret solutions for this problem size
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Table B.17: Computational results for MULPSU with n = 20, m = 200 and |T | = 5

Instance MMCLPs TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 84.8 5020.7 4991.5 218.3 3492.3
2 76.5 4877.2 3222.5 166.4 3222.5
3 67.5 5105.5 360.0 1803.3 360.0
4 63.0 5105.3 541.2 401.0 541.2
5 73.7 5051.8 1806.3 106.2 1806.3
6 66.7 5237.0 808.7 372.8 808.7
7 73.2 5203.1 2464.9 179.0 2464.9
8 72.6 5001.9 561.2 193.8 561.2
9 77.2 5072.3 5813.0 152.2 5813.0
10 121.6 5324.0 420.7 236.8 420.7

Avg. 77.7 5099.9 383.0
Max. 121.6 5324.0 1803.3

0.0% of the solutions were zero regret solutions for this problem size

Table B.18: Computational results for MULPSU with n = 20, m = 300 and |T | = 5

Instance MMCLPs TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 135.9 7270.4 5679.0 243.5 5679.0
2 105.8 7175.9 7633.0 424.0 7633.0
3 98.4 7394.5 3723.2 257.9 3723.2
4 110.2 7426.5 16877.7 365.0 10221.8
5 100.4 7370.6 4659.3 300.4 4659.3
6 92.8 7561.1 12304.8 629.1 9978.9
7 140.7 7411.8 3906.0 136.2 3906.0
8 117.4 7371.1 6518.0 231.6 6518.0
9 121.3 7403.1 11025.5 268.3 11025.5
10 93.5 7479.2 4940.2 324.3 4940.2

Avg. 111.6 7386.4 318.0
Max. 140.7 7561.1 629.1

9.09% of the solutions were zero regret solutions for this problem size

Table B.19: Computational results for MULPSU with n = 20, m = 400 and |T | = 5

Instance MMCLPs TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 119.0 9098.3 2257.3 337.3 2257.3
2 141.4 9507.9 8364.5 396.2 8364.5
3 113.1 9967.0 5297.3 398.6 5297.3
4 103.8 9551.5 8180.6 613.9 8180.6
5 141.1 9687.4 8351.3 224.0 8351.3
6 117.7 9683.0 5257.1 527.3 5257.1
7 110.4 9950.0 13696.3 573.7 13696.3
8 109.1 9679.0 20711.8 2546.7 13.0
9 124.1 9886.1 5021.5 654.4 5021.5
10 118.7 9815.7 18366.6 424.4 13158.8

Avg. 119.8 9682.6 669.6
Max. 141.4 9967.0 2546.7

0.0% of the solutions were zero regret solutions for this problem size
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Table B.20: Computational results for MULPSU with n = 20, m = 500 and |T | = 5

Instance MMCLPs TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 181.1 12009.3 16880 1027.3 16067
2 197.8 12046.2 19299 1342.0 19299
3 178.0 11787.1 10163 426.2 10163
4 124.1 11929.0 5262.4 1402.7 5262.4
5 195.1 12362.4 6761.3 501.8 6761.3
6 188.0 12557.4 14324 823.3 14324
7 125.4 14151.3 9511 582.9 5918.8
8 157.2 16072.6 10377 899.0 10377
9 157.5 12744.5 9723.9 485.3 9723.9
10 143.2 13558.5 4167.9 486.1 4167.9

Avg. 164.7 12921.8 797.7
Max. 197.8 16072.6 1402.7

0.0% of the solutions were zero regret solutions for this problem size

Table B.21: Computational results for MULPSU-P with n = 5, m = 100 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 0.61 4.56 1.58 31.8 1.55 0.0 0.44 0.0
2 0.53 3.62 1.00 459.1 1.56 0.0 0.39 0.0
3 0.67 6.61 1.89 61.9 1.56 0.0 0.34 0.0
4 0.55 4.03 0.91 598.3 1.56 0.0 0.36 0.0
5 0.72 8.53 3.65 45.0 1.58 0.0 0.45 0.0
6 0.52 3.90 2.31 540.5 1.53 0.0 0.41 0.0
7 0.42 2.45 0.73 152.9 1.55 0.0 0.38 0.0
8 0.80 9.44 3.26 1147.0 1.47 0.0 0.58 0.0
9 0.50 3.92 1.69 334.4 1.45 0.0 0.36 0.0
10 0.62 5.01 3.12 509.9 1.44 0.0 0.53 0.0

Avg. 0.59 5.21 2.01 1.52 0.42
Max. 0.80 9.44 3.65 1.58 0.58

66.67% of the solutions were zero regret solutions for this problem size

Table B.22: Computational results for MULPSU-P with n = 5, m = 200 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 1.17 12.92 2.54 19.1 2.90 0.0 0.81 0.0
2 0.66 6.23 1.78 457.9 2.79 0.0 0.75 0.0
3 1.36 13.17 5.37 3079.5 3.03 0.0 0.98 0.0
4 1.47 15.24 5.21 11446.5 3.04 0.0 0.75 0.0
5 1.83 17.08 16.13 812.1 3.03 0.0 0.95 0.0
6 1.98 34.90 19.33 4662.6 2.70 0.0 0.98 0.0
7 1.05 7.44 1.73 178.1 2.76 0.0 0.87 0.0
8 2.09 29.75 10.59 426.9 2.79 0.0 0.87 0.0
9 1.34 12.00 2.98 4373.3 3.07 0.0 0.91 0.0
10 2.00 19.13 12.64 4677.4 2.79 0.0 1.20 0.0

Avg. 1.49 16.78 7.83 2.89 0.91
Max. 2.09 34.90 19.33 3.07 1.20

67.74% of the solutions were zero regret solutions for this problem size
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Table B.23: Computational results for MULPSU-P with n = 5, m = 300 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 3.37 46.71 27.96 351.0 4.45 0.0 1.69 0.0
2 1.56 14.38 4.84 525.4 4.17 0.0 1.31 0.0
3 1.36 13.49 5.51 410.2 4.74 0.0 1.19 0.0
4 1.61 12.90 3.45 124.0 4.62 0.0 1.12 0.0
5 2.22 18.21 6.99 8184.4 4.59 0.0 1.44 0.0
6 0.81 5.62 1.97 14.3 4.28 0.0 1.17 0.0
7 2.39 27.91 13.10 8749.5 4.35 0.0 1.97 0.0
8 1.36 13.26 6.44 591.6 4.12 0.0 1.23 0.0
9 2.09 21.28 4.31 374.9 4.13 0.0 1.23 0.0
10 1.01 12.89 2.23 286.1 4.20 0.0 1.12 0.0

Avg. 1.78 18.66 7.68 4.36 1.35
Max. 3.37 46.71 27.96 4.74 1.97

68.75% of the solutions were zero regret solutions for this problem size

Table B.24: Computational results for MULPSU-P with n = 5, m = 400 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 6.04 54.12 25.97 10634.6 5.73 0.0 1.69 0.0
2 4.60 38.02 13.67 2347.2 5.98 0.0 1.87 0.0
3 7.85 84.33 40.55 15026.5 6.10 0.0 2.61 0.0
4 4.71 53.51 52.99 14828.1 5.73 0.0 2.57 0.0
5 2.34 26.11 3.62 363.4 5.77 0.0 1.73 0.0
6 5.04 31.12 21.86 8114.8 6.23 0.0 2.12 0.0
7 4.20 63.99 6.86 90.9 6.13 0.0 1.86 0.0
8 3.73 34.41 14.74 24859.0 5.87 0.0 2.56 0.0
9 5.79 34.96 18.97 5993.2 5.63 0.0 2.48 0.0
10 1.75 20.64 13.68 12168.5 5.91 0.0 2.26 0.0

Avg. 4.60 44.12 21.29 5.91 2.17
Max. 7.85 84.33 52.99 6.23 2.61

62.96% of the solutions were zero regret solutions for this problem size

Table B.25: Computational results for MULPSU-P with n = 5, m = 500 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap
1 3.32 54.69 8.77 189.2 7.60 0.0 2.03 0.0
2 1.54 15.12 3.01 261.5 7.54 0.0 2.06 0.0
3 4.21 34.66 11.23 68.5 7.66 0.0 2.56 0.0
4 2.53 35.19 16.40 15543.7 7.52 0.0 2.17 0.0
5 6.75 63.12 24.24 29176.3 7.50 0.0 2.59 0.0
6 2.89 25.23 11.29 10454.2 6.88 0.0 2.79 0.0
7 4.34 40.50 22.95 12974.8 7.75 0.0 2.98 0.0
8 2.79 42.74 6.93 37.5 7.71 0.0 2.03 0.0
9 5.38 147.03 27.99 24700.7 7.46 0.0 1.61 0.0
10 12.42 80.82 27.86 23865.5 7.77 0.0 2.26 0.0

Avg. 4.62 53.91 16.07 7.54 2.31
Max. 12.42 147.03 27.99 7.77 2.98

73.68% of the solutions were zero regret solutions for this problem size
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Table B.26: Computational results for MULPSU-P with n = 10, m = 100 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II CP-II (1 hr)

CPU (s) CP-I (s) CP-II (s) solution CPU (s) gap CPU (s) gap UB LB
1 26.6 3687.1 327.2 280.6 70.5 0.0 9.6 0.0 - -
2 19.7 1273.1 570.6 7.3 73.6 0.0 17.5 0.0 - -
3 28.2 8143.0 670.1 3908.7 68.7 0.0 5.5 0.0 - -
4 27.0 20423.5 1572.2 3262.5 71.6 0.0 8.1 0.0 - -
5 34.2 7328.3 9368.5 1920.6 63.7 0.0 10.6 0.0 1920.6 1687.8
6 31.7 101723.1 53292.3 10066.3 71.1 0.0 18.2 0.0 86901.1 4551.1
7 30.3 8475.3 5890.8 8496.6 68.4 0.0 12.8 0.0 86255.4 4943.7
8 35.1 8538.1 2892.3 5663.0 70.3 0.0 22.0 0.0 - -
9 23.4 1675.9 662.2 10.0 70.1 0.0 19.7 0.0 - -
10 33.5 65262.1 36477.5 5097.5 66.5 0.0 13.7 0.0 54123.9 2101.2

Avg. 29.0 22652.9 11172.4 69.5 13.8
Max. 35.1 101723.1 53292.3 73.6 22.0

0.0% of the solutions were zero regret solutions for this problem size

Table B.27: Computational results for MULPSU-P with n = 10, m = 200 and |T | = 5

Instance MMCLP-Ps CPLEX TS-I TS-II CP-II (1 hr)

CPU (s) CP-II (s) solution CPU (s) gap CPU (s) gap UB LB
1 45.6 19497.5 11272.2 140.8 0.0 17.8 0.0 11272.2 5933.2
2 69.6 3814.1 2227.8 148.1 0.0 28.3 0.0 2227.8 2000.8
3 51.8 8197.3 11591.5 141.5 0.0 25.8 0.0 155530.0 7243.1
4 24.2 777.1 540.0 147.3 0.0 36.2 0.0 - -
5 46.7 2353.1 823.3 139.5 0.0 25.7 0.0 - -
6 47.9 12415.0 6862.4 144.5 0.0 27.0 0.0 176669.0 3999.9
7 22.1 599.6 3079.5 129.4 0.0 22.7 0.0 - -
8 46.3 27674.7 2901.2 137.5 0.0 32.1 0.0 81697.7 0.0
9 40.7 7930.1 4972.4 131.6 8939.8 21.5 0.0 121496.0 0.0
10 35.0 6055.8 2832.5 135.8 0.0 24.1 0.0 2832.5 1667.0

Avg. 43.0 8931.4 139.6 26.1
Max. 69.6 27674.7 148.1 36.2

0.0% of the solutions were zero regret solutions for this problem size

Table B.28: Computational results for MULPSU-P with n = 10, m = 300 and |T | = 5

Instance MMCLP-Ps TS-I TS-II CP-II (1 hr)

CPU (s) CPU (s) Solution CPU (s) Solution UB LB
1 96.00 227.52 30305.1 41.93 13040.9 134513.0 0.0
2 103.96 226.65 11574.0 51.78 11574.0 108453.0 0.0
3 123.08 234.00 18321.9 35.29 17891.7 134564.0 0.0
4 73.26 257.39 16340.6 50.79 16340.6 236152.0 0.0
5 115.82 206.47 11633.1 26.26 11633.1 124797.0 0.0
6 122.94 217.14 10260.9 51.56 10260.9 113046.0 0.0
7 70.51 223.12 12196.8 20.45 12196.8 197000.0 11625.9
8 108.30 213.03 10965.5 25.60 10965.5 82236.6 0.0
9 41.18 220.60 44.9 42.03 44.9 160197.0 0.0
10 70.36 219.74 14723.4 28.58 14723.4 133775.0 0.0

Avg. 92.54 224.56 37.43
Max. 123.08 257.39 51.78

9.09% of the solutions were zero regret solutions for this problem size

W.P. No. 2014-11-03 Page No. 37



IIMA • INDIA
Research and Publications

Table B.29: Computational results for MULPSU-P with n = 10, m = 400 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 103.34 284.40 13199.7 51.91 13199.7
2 148.02 302.10 13922.7 67.85 13922.7
3 136.23 299.19 23551.0 56.19 23551.0
4 156.90 304.05 10634.6 68.80 10634.6
5 219.88 304.33 9475.6 48.05 9475.6
6 192.54 304.50 15026.5 70.03 15026.5
7 144.11 306.61 39187.1 51.27 30696.0
8 231.14 308.66 12520.3 60.87 12520.3
9 176.89 295.62 20226.0 41.56 20226.0
10 162.82 312.54 12807.7 38.65 12807.7

Avg. 167.19 302.20 55.52
Max. 231.14 312.54 70.03

16.67% of the solutions were zero regret solutions for this problem size

Table B.30: Computational results for MULPSU-P with n = 10, m = 500 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 255.75 377.78 55221.4 113.01 55221.4
2 286.49 403.03 21287.3 68.03 21287.3
3 213.75 398.37 20978.7 83.95 20978.7
4 225.36 408.13 2168.2 56.19 2168.2
5 242.80 413.80 5692.6 144.16 5692.6
6 191.46 382.08 18005.9 120.08 18005.9
7 232.73 391.53 10452.8 52.71 10452.8
8 220.73 388.84 5205.0 47.95 5205.0
9 233.83 399.68 2334.0 39.77 2334.0
10 309.98 376.02 42478.8 114.36 42478.8

Avg. 241.29 393.92 84.02
Max. 309.98 413.80 144.16

23.08% of the solutions were zero regret solutions for this problem size

Table B.31: Computational results for MULPSU-P with n = 15, m = 100 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 85.88 810.42 5162.9 71.21 5162.9
2 128.55 854.27 4025.6 59.17 4025.6
3 142.92 749.34 4336.9 63.40 4336.9
4 82.59 835.47 1478.7 45.26 1478.7
5 124.15 732.61 10212.4 78.42 10212.4
6 174.51 836.68 12137.0 99.22 10131.6
7 147.92 835.61 12321.4 123.30 11693.0
8 147.50 853.87 16028.0 60.97 3226.9
9 124.08 863.61 9443.1 103.30 9443.1
10 99.89 934.99 2686.5 88.13 2686.5

Avg. 125.80 830.69 79.24
Max. 174.51 934.99 123.30

9.09% of the solutions were zero regret solutions for this problem size
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Table B.32: Computational results for MULPSU-P with n = 15, m = 200 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 502.30 1638.98 21085.2 149.28 21085.2
2 422.29 1827.40 23183.0 195.42 23183.0
3 285.64 1671.15 4635.7 181.97 4635.7
4 193.17 1884.22 6605.7 87.23 6605.7
5 336.53 1737.57 7287.6 137.88 7287.6
6 268.12 1719.45 6434.5 118.13 6434.5
7 337.44 1548.26 11732.4 100.95 11732.4
8 739.90 1717.86 8372.1 302.92 8372.1
9 377.48 1700.91 10936.2 109.18 7480.8
10 336.46 1698.24 21227.4 217.35 2832.5

Avg. 379.93 1714.40 160.03
Max. 739.90 1884.22 302.92

0.0% of the solutions were zero regret solutions for this problem size

Table B.33: Computational results for MULPSU-P with n = 15, m = 300 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 844.08 2463.13 16711.6 217.92 16563.4
2 996.94 2463.47 24973.9 312.66 23362.5
3 723.00 2607.80 13450.2 234.61 13450.2
4 618.87 2600.26 19648.8 229.89 19648.8
5 388.80 2401.23 43670.1 121.73 2890.1
6 599.18 2405.60 13262.0 212.25 13262.0
7 903.60 2329.00 35707.6 374.07 13293.4
8 459.31 2693.89 15356.1 218.24 15356.1
9 525.35 2283.49 10250.7 148.62 10250.7
10 700.19 2645.39 18249.3 288.29 18249.3

Avg. 675.93 2489.32 235.83
Max. 996.94 2693.89 374.07

0.0% of the solutions were zero regret solutions for this problem size

Table B.34: Computational results for MULPSU-P with n = 15, m = 400 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 905.80 3292.49 18523.9 507.73 13706.7
2 862.07 3589.47 38724.2 601.84 38724.2
3 873.22 3670.19 18023.2 420.87 18023.2
4 858.67 3500.03 22114.1 481.13 22114.1
5 813.59 3369.38 38087.8 351.27 20806.4
6 932.04 3478.80 12505.6 390.33 12505.6
7 1361.29 3325.18 19116.4 378.19 19116.4
8 915.13 3266.16 37372.0 357.05 37372.0
9 1101.79 3477.17 14657.5 486.58 14657.5
10 1133.92 3227.07 20226.0 284.19 20226.0

Avg. 975.75 3419.59 425.92
Max. 1361.29 3670.19 601.84

0.0% of the solutions were zero regret solutions for this problem size
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Table B.35: Computational results for MULPSU-P with n = 15, m = 500 and |T | = 5

Instance MMCLP-Ps TS-I TS-II

CPU (s) CPU (s) Solution CPU (s) Solution
1 1395.64 4379.83 55221.4 491.16 53670.4
2 1410.20 4664.50 9142.0 475.60 9142.0
3 1471.66 4213.80 13426.1 299.38 13426.1
4 1693.78 4432.52 26155.8 424.53 21214.9
5 1156.74 4473.56 9824.0 452.28 9824.0
6 1205.34 4270.90 52971.8 280.40 33889.3
7 1171.62 4471.51 16802.1 313.46 16802.1
8 1413.57 4153.49 27899.4 426.02 27899.4
9 1517.23 4374.83 19117.5 472.70 19117.5
10 1127.27 4140.86 68280.1 310.38 21040.6

Avg. 1356.31 4357.58 394.59
Max. 1693.78 4664.50 491.16

9.09% of the solutions were zero regret solutions for this problem size
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