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Uncertain Number of Servers

Amit Vatsa

Abstract

We study the problem of allocating doctors to primary health centers. We model the prob-
lem as a multi-period uncapacitated facility location problem under uncertainty. The problem
is unconventional in that the uncertainty is in the number and period of availability of doctors.
We use a minmax regret approach to solve the problem. We present solution techniques using
local search and tabu search and compare our solutions with optimal solutions obtained using
commercial solvers. We see that one of our tabu search algorithms is faster and yields optimal
solutions in the problems we tested on.

Keywords: Facility location, Heuristics, Tabu search

1 Introduction

This study has been motivated by the primary healthcare sector in the developing countries. Pro-
viding basic health care to its citizens is an important function of any government. Almost all the
developing countries have rural populations that are larger than urban populations. Despite this,
healthcare facilities are mostly concentrated in the urban regions. Policy makers try to minimize
this disparity and make basic health amenities available to everyone in the rural areas as well.

In the Alma-Ata declaration of 1978 by the members of World Health Organization (WHO), a
need for primary health care was reiterated. It was suggested in the declaration that there should
be one Primary Health Center (PHC), which is essentially a single doctor clinic, for a population of
30,000 in plains and 20,000 for hilly regions. Many developing countries have tried to achieve this
goal. However, due to many reasons this target could not be fulfilled (Walley et al., 2008; Rohde et
al., 2008). Rapid growth in populations in most of these countries require that the targets should
be revisited. With the economic development in many of these countries and the resulting rise in
income, the urban-rural disparity will be huge if basic amenities are not made available at the local
level in rural areas. Locating these PHCs so as to meet all the local demand is a major challenge
for the government. The government tries to establish a network of PHCs so that basic health care
facilities are available to the largest possible rural population.In most of the developing countries,
availability of doctors in rural areas is a constraint, even if the physical infrastructure exists (Lawn
et al., 2008). When doctors become available it needs to be decided to which among those PHCs
without a doctor, should the doctor be assigned.

We define the uncapacitated PHC location problem(UPHCLP) of determining the sequence in
which the PHCs should be assigned with a doctor. The numbers of doctors who become available
in each period of the planning horizon is uncertain. Our solution will minimize the maximum regret
from an ex post optimal population coverage, i.e., the population coverage which could have been
acheived had the numbers of doctors who will join in each period of the planning horizon been known
a proiri.

This paper attempts to model the UPHCLP and develop a solution methodology to determine
the sequence of opening facilities, i.e., assigning doctors to the PHCs. The remainder of this paper
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is organized as follows. We first provide the overview of related existing literature in section 2. In
section 3 we provide a formulation of the problem. In Section 4 we give some dominance rules to
fasten the heuristics and discuss the local search and three tabu search based heuristics. In section
5 we report our computational experience with these heuristics and compare the solution with the
solution given by CPLEX 12.4. In the last section we provide a summary of the current work and
present some future research directions.

2 Related work

The general facility location problem involves two decisions, a location decision to decide where a
facility should be set up, and an allocation decision to decide which customers will be served by a
particular facility. Opening of new facilities involve time and capital investment, and it is one of
the most important decisions for any institution. Hence, facility location models have been exten-
sively used by the World Bank and various government projects. Some examples of the areas where
they find application are location of schools (Antunes & Peeters, 2000, 2001); ambulance deploy-
ment (Brotcorne et al., 2003) and establishment of the network of health care facilities (Ghaderi &
Jabalameli, 2012).

Facility location problems have been widely addressed in the literature (See, e.g., Drezner &
Hamacher, 2001; Farahani & Hekmatfar, 2009). There are two predominant objective function
variants which have been widely studied: minisum and minimax (Hale & Moberg, 2003). These are
also known as median and center problems respectively. Other than these two objective functions,
set covering and maximal covering objectives have also been studied for more than three decades.

Depending on number of periods in the planning horizon in which location and allocation de-
cisions are to be made, facility location problems can be categorized as single-period or multi-
period. Most of the early work was done for the static or single period case. Multi-period facility
location problems are important because of two reasons. First, customer demands, transporta-
tion/assignment costs and other parameters change over time. Secondly, relocation of facilities
involve capital expenditure. In absence of the first characteristic, a single period model can be used
to solve the problem and, in the absence of second criteria a series of disconnected static formulations
can be used (Erlenkotter, 1981). In presence of budget constraints all facilities cannot be opened at
once and thus the multi-period problem becomes important.

Multi-period facility location problems have been widely studied after the initial works by Warsza-
wski (1973); Erlenkotter (1981); Van Roy & Erlenkotter (1982). In the single period literature,
p-median problem, UFLP, CFLP, p-center problem, set covering problem, and maximal covering
location problem (MCLP) have been widely studied (See, e.g., Drezner & Hamacher, 2001; Farahani
& Hekmatfar, 2009).

Work on the dynamic counterpart of the minisum problems like the p-median, UFLP, CFLP
started in 1970s and 1980s. Problems under various constraints were looked at. Some example of
these variants are constraints on location and relocation of facilities (Wesolowsky & Truscott, 1975;
Melo et al., 2006), reopening cost different than first time opening cost (Dias et al., 2006, 2007,
2008), and non-zero closing cost (Wesolowsky & Truscott, 1975; Saldanha da Gama & Captivo,
1998; Canel et al., 2001).

There are many papers in the facility location literature which consider the uncertainty in de-
cision making environment. Most of the problems which have been studied in the literature have
uncertainty or incomplete information of the demand at the nodes (Killmer et al., 2001; Averbakh,
2003; Albareda-Sambola et al., 2011). Current et al. (1998) used the minimax regret criteria to de-
cide where to set up the initial set of facilities when the total number of facilities to be set up in the
future is uncertain. The procedure was presented in the context of p-median problem. Berman &
Wang (2011) modeled the MCLP with partial coverages. In their problem demand at the nodes are
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random variables whose probability distributions are unknown. They used the information on the
range of these variables to find the minimax regret location that minimizes the worst-case coverage
loss. We now discuss the single period and multi-period version of the maximal covering location
problem.

2.1 Maximal covering location problem

The MCLP was introduced by Church & ReVelle (1974). In the MCLP we are given a set I of
demand nodes, a set J of candidate locations for facilities, a matrix C = [cij ] of distance between
each i ∈ I and each j ∈ J , a vector (di) of demand at each demand node, and a covering distance.
Each facility has an infinite capacity. We are required to locate p facilities so that the maximum
demand at the demand nodes can be met by the facilities. The variables are: yj = 1 if a facility
is opened at location j, 0 otherwise; xi = 1 if demand node i is within a covering distance of some
opened facility, 0 otherwise. The problem can be formulated as follows:

MCLP: maximize
∑
i

dixi (1)

subject to ∑
j

yj = p (2)

xi ≤
∑
j

aijyj ∀i (3)

yj ∈ {0, 1} ∀j (4)

xi = [0, 1] ∀i ∈ I (5)

Here aij = 1 if demand node i is within covering distance from facility j, 0 otherwise. The
objective in the above formulation maximize the total demand covered. Constraint (2) limits the
number of facility to be opened. Constraint (3) ensures that any demand node will be covered only
if a facility within a covering distance from that demand node is opened. In the above formulation
xi need not be declared an integer. As yj are integers and xi are constrained only by the first
constraint in the formulation, xi will be integers too.

Church & ReVelle (1976) discussed the links between the MCLP and the p-median problem. If
the distance cij is in binary form such that cij = 1 if the actual distance is within the covering
distance, else cij = 0, then the p-median problem reduces to MCLP. Thus, the MCLP can also be
solved by any of the solution methods for the p-median problem. However, it is not necessary that
any such method will have the same efficiency in the MCLP as well.

Chung (1986) discuss various applications of the MCLP. Daskin (2000) used MCLP to solve the
p-center problem to optimality. An MCLP is solved with different covering distances. When all the
demand is met at some least possible covering distance, the p-center problem is solved to optimality.
Schilling et al. (1993) reviewed papers on covering problems. Most of the studies focus on improving
reliability of the system by providing multiple coverage with applications in emergency services like
ambulance, fire stations and blood banks.

Berman et al. (2003); Karasakal & Karasakal (2004); Berman et al. (2010) consider a generaliza-
tion of the maximal cover location problem. Their model allows for partial coverage of the demand
nodes, and the degree of coverage is a non-increasing function of the distance to the nearest facility.
Linear coverage decay function and step-function have been considered by them to account for the
partial coverage in the objective function.
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2.2 Multi-period maximal covering location problem

There has been limited work on the multi-period covering problems. Gunawardane (1982) first
introduced the maximal coverage location problem in the dynamic scenario. In the problem setup,
location of the facilities and the possible relocation within the planning horizon was considered.
Small problems of size 10 to 30 centers and 5 periods were solved by the standard solvers. Most of
the times the LP relaxation yielded integer solutions. The problem is an extension of MCLP, and a
superscript t has been used in the notation of the parameters to indicate the values at time period
t. The variables in this formulation are: ytj = 1 if a facility is open at location j at time period t,
0 otherwise; xti = 1 if demand node i is within a covering distance of some opened facility at time
period t, 0 otherwise. The problem can be formulated as follows:

DMCLP: maximize
∑
t

∑
i

dtix
t
i (6)

subject to

xti ≤
∑
j

aijy
t
j ∀i, t (7)

ytj ≥ yt−1
j ∀j, t > 1 (8)∑

j

(ytj − yt−1
j ) = pt ∀t (9)

ytj ∈ {0, 1} ∀j, t (10)

xti = [0, 1] ∀i, t (11)

In the above formulation xti’s need not be declared integer. As ytj are integers and xti are
constrained only by the first constraint in the formulation, xti will be integers too. The objective in
the above formulation maximizes the total demand covered in the planning horizon. Constraint (7)
ensures that any demand node will be covered only if a facility within a covering distance from that
demand node is open. Constraint (8) guarantees that facility once opened will not be closed in the
planning horizon. Constraint (9) limits the number of facilities to be opened.

Zarandi et al. (2013) was the only study dealing with the multi-period MCLP and used simulated
annealing to solve problems of size 2500 demand nodes and 200 potential candidate locations. A lot
of work has been done on these minisum problems and there are many efficient algorithms to solve
even the large instances of such problems. However, the problems with minimax structure like the
p-center problem are relatively difficult to solve as they are generally solved by repeatedly solving
NP hard set covering problems.

Till now no work has been done which takes into account the uncertainty in number of servers,
i.e. in which the numbers of facilities that will be opened in any period are not known beforehand
are not known beforehand. In many practical problems this uncertainty exists. For example in the
UPHCLP , physical infrastructure for the PHC exist at many locations but due to unavailability
of doctors, complete service cannot be provided by these PHCs. Those PHCs where doctors are
not present can only provide very limited healthcare facilities and hence its objectives are not met.
Number of doctors joining rural healthcare in any district is not known a priori. When a doctor joins,
they are allocated to an unmanned PHCs. The sequence of opening new facilities, i.e. allocating a
doctor to a site where physical infrastructure already exists, is pre-decided for a planning horizon.
The above mentioned uncertainty may lead to such a facility opening sequence being considered,
which is far from the optimal ex post decision, i.e. the optimal decision had the number and timing
of doctors joining been known a priori.
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In this work we are given a set of demand nodes and a set of candidate facility locations. Each
facility has infinite capacity but can only meet demand which fall within a covering distance. The
number of facilities to be opened in various periods of planning horizon is uncertain and gives rise to
different scenarios. The objective of the problem is to determine the sequence of opening facilities
(staffing PHCs with doctors) which creates the least worst case deviation from the optimal over all
scenarios. This solution thus minimizes the maximum regret across scenarios.

3 Problem formulation

When the future scenario i.e the number of facilities which will be opened in all periods of the
planning horizon is known, DMCLP gives the location of the facilities. However, when there is
uncertainty in the numbers of facilities that can be opened in each period of the planning horizon,
the objective can be to minimize the worst case regret from the decision. In this problem the regret
associated with any solution for a given scenario is the difference of the ex post optimal coverage for
that scenario and the coverage obtained with the solution.

We model the problem as follows. There is a set of demand nodes I = {1, 2, ..,m} and a set of
facilities J = {1, 2, .., n} which are to be opened. The first period demand at each demand node i is
given by d1

i . The demand at a node i changes in each period of the planning horizon with a growth
rate gi, which is assumed to remain constant over the planning horizon. Hence, the demand at a
node i in period t of the planning horizon is given by dti = d1

i (gi)
t−1.

Let s ∈ S be the index which represents the future scenario in which new servers will be available
at each period of the planning horizon. Thus, a scenario (a1, a2, ..., aT ) indicates that in the first
period, a1 new servers will be available (a1 facilities can be opened), a2 new servers in the second
period, likewise and in the last period aT new servers will be available. With n candidate facilities
to be opened in |T | periods, number of scenarios of getting new servers over the planning horizon is(
n+|T |−1

n

)
= (n+|T |−1)!

n!(|T |−1)! . For |T | = 5, total number of scenarios will be 126, 1001 and 3876 when n is

5, 10 and 15 respectively.

A solution in this problem is the facility opening permutation, and we introduce a variable Rj′j
to represent that. Rj′j = 1 if facility j has a rank j′ of opening in a facility opening permutation,
0 otherwise. The variables of the DMCLP have been retained with an addition of subscript s to
represent the values with the scenario s ∈ S. ytjs = 1 if a facility is open at location j at time
period t when the facility opening scenario is s, 0 otherwise; and, xtis = 1 if demand node i is within
a covering distance of some opened facility at the time period t and scenario s; 0 otherwise. To
establish a relation between the variables Rj′j and ytjs we can argue that a facility at j is open
if and only if rank of facility j is less than the total number of facilities opened till that instant.
Mathematically,

ytjs = 1 ⇐⇒
∑
j′

j′Rj′j ≤
∑
t′≤t

pt
′

s

Which translates into these two inequalities:∑
j′

j′Rj′j ≤
∑
t′≤t

pt
′

s + n(1− ytjs) (12)

∑
j′

j′Rj′j ≥
∑
t′≤t

pt
′

s + 1− nytjs (13)

Here pts is the number of new servers which become available at period t when the scenario is s.
Let Π be the set of all possible facility opening permutation and Πk be one of the facility opening
permutations. Demand coverage with Πk in scenario s ∈ S be ζΠk,s. The maximal demand coverage
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which can be achieved with scenario s ∈ S is ζ∗s = max
Πk∈Π

ζΠk,s, which is obtained by solving the

DMCLP with scenario s. The problem which minimizes the worst case regret can be formulated as:

min
Πk∈Π

max
s∈S

(ζ∗s −
∑
t

∑
i

dtix
t
is) (14)

subject to :

xtis ≤
∑
j

aijy
t
js ∀i, t, s (15)

ytjs ≥ y
(t−1)
js ∀j, t > 1, s (16)∑

j

ytjs − y
(t−1)
js = pts ∀t, s (17)

∑
j′

Rj′j = 1 ∀j (18)

∑
j

Rj′j = 1 ∀j′ (19)

∑
j′

j′Rj′j ≤
∑
t′≤t

pt
′

s + n(1− ytjs) ∀j, t, s (20)

∑
j′

j′Rj′j ≥
∑
t′≤t

pt
′

s + 1− nytjs ∀j, t, s (21)

xtis, y
t
js, Rj′j = {0, 1} (22)

In the above formulation constraint (15),(16) and (17) come from the DMCLP formulation.
Constraint set (18) and (19) necessitate that all the facilities get a unique rank in a facility opening
permutation. Constraint set (20) and (21) related the variables Rj′j and ytjs as explained earlier.
Here the objective is nonlinear which can be linearized using the standard technique. The linear
model for multi-period uncapacitated location problem with server uncertainty (MULPSU) can be
formulated a follows:

MULPSU: Minimize θ (23)

subject to :

xtis ≤
∑
j

aijy
t
js ∀i, t, s (24)

ytjs ≥ y
(t−1)
js ∀j, t > 1, s (25)∑

j

ytjs − y
(t−1)
js = pts ∀t, s (26)

∑
j′

Rj′j = 1 ∀j (27)

∑
j

Rj′j = 1 ∀j′ (28)

∑
j′

j′Rj′j ≤
∑
t′≤t

pt
′

s + n(1− ytjs) ∀j, t, s (29)

∑
j′

j′Rj′j ≥
∑
t′≤t

pt
′

s + 1− nytjs ∀j, t, s (30)

θ ≥ (ζ∗s −
∑
t

∑
i

dtix
t
is) ∀s (31)
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xtis, y
t
js, Rj′j = {0, 1} (32)

In the above formulation constraint set (31) has been used for making the model linear.

4 Solution methodology

4.1 Dominance rules for sequence of opening facilities

Let Π1 = (π1, π2, ...πi, ...πj , ...πn) be a sequence in which facilities are to be opened, and let Π2 =
(π1, π2, ...πj , ...πi, ...πn) be a sequence obtained by switching the positions of πi and πj in Π1. Let
the demand at period t within the covering distance of a facility πi be dtπi

, and total demand covered
by the set of facilities (π1, π2, ..., πi) be dtπ1∪π2∪...∪πi

.

Proposition 1: If all the inequalities below are satisfied, facility opening sequence Π1 will dominate
Π2, or in other words, regret associated with Π1 will be not be higher than regret associated with
Π2 for any corresponding scenario.

dtπ1∪π2∪...∪πi
≥ dtπ1∪π2∪...∪πj

∀t ∈ T
dtπ1∪π2∪...∪πi∪πi+1

≥ dtπ1∪π2∪...∪πj∪πi+1
∀t ∈ T

.

.

dtπ1∪π2∪...∪πi∪πi+1∪...∪πj−1
≥ dtπ1∪π2∪...∪πj∪πi+1∪...∪πj−1

∀t ∈ T

Proof. Assume that Π1 does not dominate Π2 even though all the above relationships are satisfied.
Then there must exist a scenario of server availability s = (a1, a2, ..aT ) ∈ S for which regret with Π1

is more than regret with Π2, or in other words demand coverage with Π1 is less than the demand
coverage with Π2. If this hold then there must be atleast one period for which demand covered in
that period with Π1 is less than the demand coverage with Π2.

dtπ1∪π2∪...first (a1+a2+..at) facilities in Π1
< dtπ1∪π2∪...first (a1+a2+..at) facilities in Π2

for some t ∈ T . This contradicts the assumption that all the relations in the proposition are satisfied.
Hence, Π1 will dominate Π2 if all the above set of relationships are satisfied.

This dominance calculation will take O(n2m|T |) time for each permutation and if a permutation
is found to be dominated the time saved will be O(nm|T ||S|) which will be O(n5m|T |) when |T | is
5 periods.

4.2 Dominance rules for server availability scenarios

4.2.1 All the scenarios which have no new servers available in first or the last period

Proposition 2a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), the regret in the server

availability scenario s1 = (0, a2, a3, .., aT ) ∈ S will not be greater than regret in scenario s2 =
(1, a2 − 1, a3, ..aT ) ∈ S if:

d1
πk
1
≤ LB(ζ∗s2)− UB(ζ∗s1) (33)
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where, a2 > 0 and d1
πk
1

is the coverage by the first facility of any facility opening sequence Πk ∈ Π in

the first period of the planning horizon. Hence, it is the additional demand covered when the first
facility of the facility opening sequence Πk is opened in the first period instead of the second period.
LB and UB represent the lower and upper bounds respectively.

Proof.

d1
πk
1
≤ LB(ζ∗s2)− UB(ζ∗s1)

⇒ d1
πk
1
≤ ζ∗s2 − ζ

∗
s1 (34)

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1 (35)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (36)

or, Regret in scenario s1 = (0, a2, a3, .., aT ) ≤ Regret in the scenario s2 = (1, a2 − 1, a3, ..aT )

Proposition 2b: If a2 = 0 in scenario s1 = (0, a2, a3, .., aT ) and ai be the first period with
a non-zero element, for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the scenario

s1 = (0, .., ai, .., aT ) will not be greater than regret in scenario s2 = (1, .., ai − 1, .., aT ) if:

d1
πk
1

+ d2
πk
1

+ ..+ di−1
πk
1
≤ LB(ζ∗s2)− UB(ζ∗s1) (37)

where, LHS is the coverage by the first facility of any facility opening sequence Πk ∈ Π in the first
period through i − 1 periods of the planning horizon. Hence, it is the additional demand covered
when the first facility of the facility opening sequence Πk is opened in the first period instead of the
ith period.

Proof. The proof for this is similar to the earlier one. Note that in this case

ζΠk,s2 − ζΠk,s1 = d1
πk
1

+ d2
πk
1

+ ..+ di−1
πk
1

(38)

Proposition 3a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), regret in the scenario

s1 = (a1, a2, .., aT−1, 0) will not be greater than regret in scenario s2 = (a1, a2, .., aT−1 − 1, 1) if:

dT−1
πk
1∪πk

2∪...∪πk
n−1∪πk

n
− dT−1

πk
1∪πk

2∪...∪πk
n−1

≥ UB(ζ∗s1)− LB(ζ∗s2) (39)

where, aT−1 > 0 and LHS is the unique coverage by the last facility of any facility opening sequence
Πk ∈ Π in the second last period of the planning horizon.

Proof.

dT−1
πk
1∪πk

2∪...∪πk
n−1∪πk

n
− dT−1

πk
1∪πk

2∪...∪πk
n−1

≥ UB(ζ∗s1)− LB(ζ∗s2)

⇒ dT−1
πk
1∪πk

2∪...∪πk
n−1∪πk

n
− dT−1

πk
1∪πk

2∪...∪πk
n−1

≥ ζ∗s1 − ζ
∗
s2 (40)

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2 (41)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (42)

or, Regret in the scenario s1 = (a1, a2, .., aT−1−1, 1) ≥ Regret in scenario s2 = (a1, a2, .., aT−1, 0)

W.P. No. 2014-02-06 Page No. 9



IIMA • INDIA
Research and Publications

Proposition 3b: If aT−1 = 0 in scenario s1 = (a1, .., aT−1, 0) and ai be the last period with
a non-zero element, for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the scenario

s1 = (a1, .., ai, ., 0) will not be greater than regret in scenario s2(a1, .., ai − 1, ., 1) if:

(dT−1
πk
1∪πk

2∪...∪πk
n−1∪πk

n
− dT−1

πk
1∪πk

2∪...∪πk
n−1

) + (dT−2
πk
1∪πk

2∪...∪πk
n−1∪πk

n
− dT−2

πk
1∪πk

2∪...∪πk
n−1

) + ...

+(diπk
1∪πk

2∪...∪πk
n−1∪πk

n
− diπk

1∪πk
2∪...∪πk

n−1
) ≥ UB(ζ∗s1)− LB(ζ∗s2)

(43)

where, LHS is the unique demand covered by the last facility of any facility opening sequence Πk ∈ Π
in the ith period through (T−1)th periods of the planning horizon. Hence, it is the additional demand
covered when the last facility of the facility opening sequence Πk is opened in the ith period instead
of the last period.

Proof. The proof for this is similar to the earlier one. Note that in this case the LHS is given by
ζΠk,s2 − ζΠk,s1 .

All possible facility opening permutation need not be checked to establish the dominance of the
scenarios. One of the n facilities will be the last facility or first facility and thus checking for these
n facilities in the LHS of the proposition 3 or 4 will establish the dominance. This dominance
calculation will take O(n2m|T |) time for each scenario and if a scenario is found to be dominated
the time saved will be O(n3m|T ||Iter.|), where |Iter.|) is the total number of iterations in the
neighborhood search. Number of scenarios which have no new servers available in first or the last
period is 2×

(
n+|T |−2

n

)
−
(
n+|T |−3

n

)
. For example, with n = 10 and |T | = 5, number of such scenarios

is 506 (out of 1001 total possible scenarios).

4.2.2 All the scenarios which have one new servers available in first or the last period

Proposition 4a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), regret in the scenario

s1 = (1, a2, a3, .., aT ) will not be greater than regret in scenario s2 = (2, a2 − 1, a3, ..aT ) if:

d1
πk
1∪πk

2
− d1

πk
1
≤ LB(ζ∗s2)− UB(ζ∗s1) (44)

where, a2 > 0 and LHS is the unique coverage by the second facility of any facility opening sequence
Πk ∈ Π in the first period of the planning horizon. Hence, it is the additional demand covered when
the second facility of the facility opening sequence Πk is opened in the first period instead of the
second period.

Proof.

d1
πk
1∪πk

2
− d1

πk
1
≤ LB(ζ∗s2)− UB(ζ∗s1)

⇒ d1
πk
1∪πk

2
− d1

πk
1
≤ ζ∗s2 − ζ

∗
s1 (45)

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1 (46)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (47)

or, Regret in scenario s1 = (1, a2, a3, ..aT ) ≤ Regret in the scenario s2 = (2, a2 − 1, a3, ..aT )

Proposition 4b: If a2 = 0 in scenario (1, a2, a3, .., aT ) and ai be the first period with a non-zero
element(other than period 1), for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the

scenario s1 = (1, .., ai, .., aT ) will not be greater than regret in scenario s2 = (2, .., ai − 1, .., aT ) if:

(d1
πk
1∪πk

2
− d1

πk
1
) + (d2

πk
1∪πk

2
− d2

πk
1
) + ..+ (di−1

πk
1∪πk

2
− di−1

πk
1

) ≤ LB(ζ∗s2)− UB(ζ∗s1) (48)
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where, LHS is the unique coverage by the second facility of any facility opening sequence Πk ∈ Π
in the first period through i− 1 periods of the planning horizon. Hence, it is the additional demand
covered when the second facility of the facility opening sequence Πk is opened in the first period
instead of the ith period.

Proof. The proof for this is similar to the earlier one.

Proposition 5a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), regret in the scenario

s1 = (a1, a2, .., aT−1, 1) will not be greater than regret in scenario s2 = (a1, a2, .., aT−1 − 1, 2) if:

dT−1
πk
1∪πk

2∪...∪πk
n−2∪πk

n−1

− dT−1
πk
1∪πk

2∪...∪πk
n−2

≥ UB(ζ∗s1)− LB(ζ∗s2) (49)

where, aT−1 > 0 and LHS is the unique coverage by the second last facility of any facility opening
sequence Πk ∈ Π in the second last period of the planning horizon.

Proof.

dT−1
πk
1∪πk

2∪...∪πk
n−2∪πk

n−1

− dT−1
πk
1∪πk

2∪...∪πk
n−2

≥ UB(ζ∗s1)− LB(ζ∗s2)

⇒ dT−1
πk
1∪πk

2∪...∪πk
n−2∪πk

n−1

− dT−1
πk
1∪πk

2∪...∪πk
n−2

≥ ζ∗s1 − ζ
∗
s2 (50)

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2 (51)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (52)

or, Regret in the scenario s2 = (a1, a2, .., aT−1−1, 2) ≥ Regret in scenario s1 = (a1, a2, .., aT−1, 1)

Proposition 5b: If aT−1 = 0 in scenario (a1, .., aT−1, 1) and ai be the last period with a non-zero
element(other than period T ), for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the

scenario s1 = (a1, .., ai, ., 1) will not be greater than regret in scenario s2 = (a1, .., ai − 1, ., 2) if:

(dT−1
πk
1∪πk

2∪...∪πk
n−2∪πk

n−1

− dT−1
πk
1∪πk

2∪...∪πk
n−2

) + (dT−2
πk
1∪πk

2∪...∪πk
n−2∪πk

n−1

− dT−2
πk
1∪πk

2∪...∪πk
n−2

) + ...

+(diπk
1∪πk

2∪...∪πk
n−2∪πk

n−1
− diπk

1∪πk
2∪...∪πk

n−2
) ≥ UB(ζ∗s1)− LB(ζ∗s2)

(53)

where, LHS is the unique demand covered by the second last facility of any facility opening sequence
Πk ∈ Π in the ith period through (T − 1)th periods of the planning horizon.

Proof. The proof for this is similar to the earlier one.

It can be seen from the proposition 4 and 5 that all possible facility opening permutation need
not be checked to establish the dominance of the scenario. One of the n facilities will be the first
(last) facility and the second (second last) facility will be one of the remaining n− 1 facilities. Thus
checking for these n(n − 1) possibilities in the LHS of the proposition 4 or 5 will establish the
dominance. This dominance calculation will take O(n3m|T |) time for each scenario and if a scenario
is found to be dominated the time saved will be O(n3m|T ||Iter.|). Number of scenarios which have
one new server available in first or the last period (excluding the scenarios which have no new server

available in first or last period) is 2 ×
(
n+|T |−3
n−1

)
−
(
n+|T |−5
n−2

)
− 2 ×

(
n+|T |−4
n−1

)
. For example, with

n = 10 and |T | = 5, number of such scenarios is 285 (out of 1001 total possible scenarios).
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4.2.3 All the scenarios which have two new servers available in first or the last period

Proposition 6a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), regret in the scenario

s1 = (2, a2, a3, .., aT ) will not be greater than regret in scenario s2 = (3, a2 − 1, a3, ..aT ) if:

d1
πk
1∪πk

2∪πk
3
− d1

πk
1∪πk

2
≤ LB(ζ∗s2)− UB(ζ∗s1) (54)

where, a2 > 0 and LHS is the unique coverage by the third facility of any facility opening sequence
Πk ∈ Π in the first period of the planning horizon.

Proof.

d1
πk
1∪πk

2∪πk
3
− d1

πk
1∪πk

2
≤ LB(ζ∗s2)− UB(ζ∗s1)

⇒ d1
πk
1∪πk

2∪πk
3
− d1

πk
1∪πk

2
≤ ζ∗s2 − ζ

∗
s1 (55)

⇒ ζΠk,s2 − ζΠk,s1 ≤ ζ∗s2 − ζ
∗
s1 (56)

⇒ ζ∗s1 − ζΠk,s1 ≤ ζ∗s2 − ζΠk,s2 (57)

or, Regret in scenario s1 = (2, a2, a3, ..aT ) ≤ Regret in the scenario s2 = (3, a2 − 1, a3, ..aT )

Proposition 6b: If a2 = 0 in scenario (2, a2, a3, .., aT ) and ai be the first period with a non-zero
element(other than period 1), for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the

scenario s1 = (2, .., ai, .., aT ) will not be greater than regret in scenario s2 = (3, .., ai − 1, .., aT ) if:

(d1
πk
1∪πk

2∪πk
3
− d1

πk
1∪πk

2
) + (d2

πk
1∪πk

2∪πk
3
− d2

πk
1∪πk

2
) + ..+ (di−1

πk
1∪πk

2∪πk
3
− di−1

πk
1∪πk

2
) ≤ LB(ζ∗s2)− UB(ζ∗s1)

(58)

where, LHS is the unique coverage by the third facility of any facility opening sequence Πk ∈ Π
in the first period through i− 1 periods of the planning horizon.

Proof. The proof for this is similar to the earlier one.

Proposition 7a: For any facility opening sequence Πk = (πk1 , π
k
2 , ...π

k
n), regret in the scenario

s1 = (a1, a2, .., aT−1, 2) will not be greater than regret in scenario s2 = (a1, a2, .., aT−1 − 1, 3) if:

dT−1
πk
1∪πk

2∪...∪πk
n−3∪πk

n−2

− dT−1
πk
1∪πk

2∪...∪πk
n−3

≥ UB(ζ∗s1)− LB(ζ∗s2) (59)

where, aT−1 > 0 and LHS is the unique coverage by the third last facility of any facility opening
sequence Πk ∈ Π in the second last period of the planning horizon.

Proof.

dT−1
πk
1∪πk

2∪...∪πk
n−3∪πk

n−2

− dT−1
πk
1∪πk

2∪...∪πk
n−3

≥ UB(ζ∗s1)− LB(ζ∗s2)

⇒ dT−1
πk
1∪πk

2∪...∪πk
n−3∪πk

n−2

− dT−1
πk
1∪πk

2∪...∪πk
n−3

≥ ζ∗s1 − ζ
∗
s2 (60)

⇒ ζΠk,s1 − ζΠk,s2 ≥ ζ∗s1 − ζ
∗
s2 (61)

⇒ ζ∗s2 − ζΠk,s2 ≥ ζ∗s1 − ζΠk,s1 (62)

or, Regret in the scenario s2 = (a1, a2, .., aT−1−1, 3) ≥ Regret in scenario s1 = (a1, a2, .., aT−1, 2)
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Proposition 7b: If aT−1 = 0 in scenario (a1, .., aT−1, 2) and ai be the last period with a non-zero
element(other than period T ), for any facility opening sequence Πk = (πk1 , π

k
2 , ...π

k
n), regret in the

scenario s1 = (a1, .., ai, ., 1) will not be greater than regret in scenario s2 = (a1, .., ai − 1, ., 2) if:

(dT−1
πk
1∪πk

2∪...∪πk
n−3∪πk

n−2

− dT−1
πk
1∪πk

2∪...∪πk
n−3

) + (dT−2
πk
1∪πk

2∪...∪πk
n−3∪πk

n−2

− dT−2
πk
1∪πk

2∪...∪πk
n−3

) + ...

+(diπk
1∪πk

2∪...∪πk
n−3∪πk

n−2
− diπk

1∪πk
2∪...∪πk

n−3
) ≥ UB(ζ∗s1)− LB(ζ∗s2)

(63)

where, LHS is the unique demand covered by the third last facility of any facility opening sequence
Πk ∈ Π in the ith period through (T − 1)th periods of the planning horizon.

Proof. The proof for this is similar to the earlier one.

One of the n facilities will be the first (last) facility, the second (second last) and the third (third
last) facility will be one of the remaining n − 1 and n − 2 facilities respectively. Thus checking for
these n(n−1)(n−2) possibilities in the LHS of the proposition 7 will establish the dominance. This
dominance calculation will take O(n4m|T |) time for each scenario and if a scenario is found to be
dominated the time saved will be O(n3m|T ||Iter.|). Number of scenarios which have two new servers
available in first or the last period (excluding the scenarios which have no/one new server available

in first or last period) is 2 ×
(
n+|T |−3
n−1

)
−
(
n+|T |−5
n−2

)
− 2 ×

(
n+|T |−4
n−1

)
− 2 ×

(
n+|T |−6
n−3

)
. For example,

with n = 10 and |T | = 5, number of such scenarios is 140 (out of 1001 total possible scenarios).

In a similar fashion we can have dominance rules for three or higher number of servers available
in the first (last) period. However, we have not used those relations because of two reasons. First,
the computational time to check for dominance condition will be higher and as a result there will
not be much saving in the time even if a scenario is found to be dominated. Secondly, number
of scenarios, which have not been covered in the earlier propositions will be fewer. For example,
with n = 10 and |T | = 5, a total of 931 out of 1001 all possible scenarios are covered in the earlier
propositions.

4.3 Neighborhood search based methods

These methods start with an initial solution as the current solution and then check the neighborhood
for a better solution. We have used the transposition neighborhood structure. In this neighborhood
a move from one solution to the other can be executed by transposition of two distinct elements in
the permutation.

4.3.1 Local search

Local search (LS) is one of the neighborhood search heuristics. It starts with a given initial solution
as the current solution and checks its neighborhood for a better solution. If such a solution exist,
the best neighbor will be selected as the current solution for the next iteration. If the neighborhood
of the current solution does not contain any solution better than it, local search returns the current
solution and terminates. This method may give a local optima as a solution and does not guarantee
globally optimal solutions to most combinatorial problems. However, for many problems it returns
relatively good quality solutions. The pseudocode for our local search implementation is given in
algorithm 1.

4.3.2 Tabu search

Tabu search (TS) is one of the most effective improvements in the local search. TS starts with a
given initial solution as the current solution. It performs a search on the neighbors of the current
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Algorithm 1 Local search

Input: Co-ordinates, initial demand, growth rate of demand nodes; list of facilities and the covering
distance

Output: Permutation of facility opening with minimax regret of demand coverage, and maximum
regret associated with this permutation

Code
1: find all the inter-demand node distances
2: determine which nodes are within the covering distance of a candidate facility location
3: generate all facility opening scenarios
4: find the maximal demand coverage for each scenario by solving the multi-period maximal cov-

erage location problem using CPLEX
5: generate initial permutation Π of facility opening sequence (decreasing order of the total demand

covered over the planning horizon)
6: find coverage and regret for Π across each scenarios
7: set Π∗ ← Π; minimax reg∗ ← maximum regret with Π across scenarios
8: set improv ← 1
9: while improv > 0 do

10: set improv ← 0; tmp regret neigh←∞
11: generate all neighbors ΠN of Π
12: for each neighbor Πn of Π do
13: if Π dominates Πn then
14: go to next neighbor
15: else
16: find out the maximum regret across scenarios for Πn

17: if maximum regret across scenarios for Πn is less than tmp regret neigh then
18: set Πnbr ← Πn; tmp regret neigh← maximum regret across scenarios for Πn

19: end if
20: end if
21: end for
22: if tmp regret neigh is less than minimax reg∗ then
23: Π∗ ← Πnbr; minimax reg∗ ← tmp regret neigh
24: set improv ← 1; Π← Πnbr for the next iteration
25: end if
26: end while
27: output Π∗ and minimax reg∗

solution and selects the next solution keeping the search history in mind. This technique allows it
to overcome the local optima which local search cannot escape. A tabu list is maintained which
prohibits certain moves from the current solution. A tabu tenure specifies the number of iterations
a given move will be in the tabu list. It has been shown in the literature that random tabu tenure
gives a better performance (Taillard, 1991, 1995). Another important feature of the tabu search is
the aspiration criterion, which ensures that moves which are exceptionally promising are not ignored
due to their tabu status. In our implementation the tabu tenure was a random number between 3
and 8. We used a simple aspiration criterion: a move is said to satisfy the aspiration criterion if
it results in a solution with a regret lower than that of the best solution found thus far. A move
satisfying the aspiration criteria can be selected, overruling its tabu status.

We give three implementations of the TS. In the first implementation (TS 1) we do not use any
of the dominance rules. In the second implementation (TS 2), dominance rule for facility opening
sequences has been considered. Third implementation (TS 3) includes all the dominance rules given
in the earlier part of this section. In TS 3 a set of scenarios S0 ⊂ S, which are not dominated
by another scenario given in proposition 2 through 7, is found out. All the dominated scenarios
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S\S0 are removed from further calculations in the algorithm. The pseudocodes for the three TS
implementations are given in algorithm 2, 3 and 4.

Algorithm 2 Tabu search 1

Input: Co-ordinates, initial demand, growth rate of demand nodes; list of facilities, covering dis-
tance, tabu tenure parameter t, total no. of iterations k

Output: Permutation of facility opening with minimax regret of demand coverage, and maximum
regret associated with this permutation

Code
1: find all the inter-demand node distances
2: determine which nodes are within the covering distance of a candidate facility location
3: generate all facility opening scenarios
4: find the maximal demand coverage for each scenario by solving the multi-period maximal cov-

erage location problem using CPLEX
5: generate initial permutation Π of facility opening sequence (decreasing order of the total demand

covered over the planning horizon)
6: find coverage and regret for Π across each scenarios
7: set Π∗ ← Π; minimax reg∗ ← maximum regret with Π across scenarios
8: for iterations from 1 to k do
9: generate all neighbors ΠN of Π

10: for each neighbor Πn of Π do
11: if Πn is a non-tabu neighbor Πn then
12: set tmp regret neigh←∞
13: find out the maximum regret across scenarios for Πn

14: if maximum regret across scenarios for Πn is less than tmp regret neigh then
15: set Πnon−tabu nbr ← Πn

16: set tmp regret neigh← maximum regret across scenarios for Πn

17: end if
18: else
19: set tabu regret neigh←∞
20: find out the maximum regret across scenarios for Πn

21: if maximum regret across scenarios for Πn is less than tabu regret neigh then
22: set Πtabu nbr ← Πn

23: set tabu regret neigh← maximum regret across scenarios for Πn

24: end if
25: end if
26: end for
27: select the best neighbor Πnbr keeping a check on the aspiration criterion
28: update the tabu list using tabu tenure t selected randomly between an upper and a lower

bound

29: if maximum regret of Πnbr across all scenarios is less than minimax reg∗ then
30: Π∗ ← Πnbr; minimax reg∗ ← maximum regret with Πnbr across scenarios
31: end if
32: set Π← Πnbr for the next iteration
33: end for
34: output Π∗ and minimax reg∗
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Algorithm 3 Tabu search 2 (with dominance criteria for facility opening sequences)

Input: Co-ordinates, initial demand, growth rate of demand nodes; list of facilities, covering dis-
tance, tabu tenure parameter t, total no. of iterations k

Output: Permutation of facility opening with minimax regret of demand coverage, and maximum
regret associated with this permutation

Code
1: find all the inter-demand node distances
2: determine which nodes are within the covering distance of a candidate facility location
3: generate all facility opening scenarios
4: find the maximal demand coverage for each scenario by solving the multi-period maximal cov-

erage location problem using CPLEX
5: generate initial permutation Π of facility opening sequence (decreasing order of the total demand

covered over the planning horizon)
6: find coverage and regret for Π across each scenarios
7: set Π∗ ← Π; minimax reg∗ ← maximum regret with Π across scenarios
8: for iterations from 1 to k do
9: generate all neighbors ΠN of Π

10: for each neighbor Πn of Π do
11: if Π dominates Πn then
12: go to next neighbor
13: else
14: if Πn is a non-tabu neighbor Πn then
15: set tmp regret neigh←∞
16: find out the maximum regret across scenarios for Πn

17: if maximum regret across scenarios for Πn is less than tmp regret neigh then
18: set Πnon−tabu nbr ← Πn

19: set tmp regret neigh← maximum regret across scenarios for Πn

20: end if
21: else
22: set tabu regret neigh←∞
23: find out the maximum regret across scenarios for Πn

24: if maximum regret across scenarios for Πn is less than tabu regret neigh then
25: set Πtabu nbr ← Πn

26: set tabu regret neigh← maximum regret across scenarios for Πn

27: end if
28: end if
29: end if
30: end for
31: if there are no undominated non-tabu neighbors of Π then
32: find the best dominated non-tabu neighbor using the above procedure
33: end if
34: select the best neighbor Πnbr keeping a check on the aspiration criterion
35: update the tabu list using tabu tenure t selected randomly between an upper and a lower

bound

36: if maximum regret of Πnbr across all scenarios is less than minimax reg∗ then
37: Π∗ ← Πnbr; minimax reg∗ ← maximum regret with Πnbr across scenarios
38: end if
39: set Π← Πnbr for the next iteration
40: end for
41: output Π∗ and minimax reg∗
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Algorithm 4 Tabu search 3 (with dominance criteria for facility opening sequences and scenarios)

Input: Co-ordinates, initial demand, growth rate of demand nodes; list of facilities, covering dis-
tance, tabu tenure parameter t, total no. of iterations k

Output: Permutation of facility opening with minimax regret of demand coverage, and maximum
regret associated with this permutation

Code
1: find all the inter-demand node distances
2: determine which nodes are within the covering distance of a candidate facility location
3: generate all facility opening scenarios
4: find the maximal demand coverage for each scenario by solving the multi-period maximal cov-

erage location problem using CPLEX
5: using scenario dominance rule find a set of scenarios S0 ⊂ S which are not dominated
6: generate initial permutation Π of facility opening sequence (decreasing order of the total demand

covered over the planning horizon)
7: find coverage and regret for Π for each scenario s0 ∈ S0

8: set Π∗ ← Π; minimax reg∗ ← maximum regret with Π across S0

9: for iterations from 1 to k do
10: generate all neighbors ΠN of Π
11: for each neighbor Πn of Π do
12: if Π dominates Πn then
13: go to next neighbor
14: else
15: if Πn is a non-tabu neighbor Πn then
16: set tmp regret neigh←∞
17: find out the maximum regret across scenarios for Πn

18: if maximum regret across S0 for Πn is less than tmp regret neigh then
19: set Πnon−tabu nbr ← Πn

20: set tmp regret neigh← maximum regret across S0 for Πn

21: end if
22: else
23: set tabu regret neigh←∞
24: find out the maximum regret across S0 for Πn

25: if maximum regret across S0 for Πn is less than tabu regret neigh then
26: set Πtabu nbr ← Πn

27: set tabu regret neigh← maximum regret across S0 for Πn

28: end if
29: end if
30: end if
31: end for
32: if there are no undominated non-tabu neighbors of Π then
33: find the best dominated non-tabu neighbor using the above procedure
34: end if
35: select the best neighbor Πnbr keeping a check on the aspiration criterion
36: update the tabu list using tabu tenure t selected randomly between an upper and a lower

bound

37: if maximum regret of Πnbr across S0 is less than minimax reg∗ then
38: Π∗ ← Πnbr; minimax reg∗ ← maximum regret with Πnbr across S0

39: end if
40: set Π← Πnbr for the next iteration
41: end for
42: output Π∗ and minimax reg∗
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5 Computational experiments

The procedures were coded in C++ (Visual Studio 2010). IBM ILOG CPLEX 12.4 was used as the
IP solver. The procedures were implemented on an personal computer with Intel Core i5 (3.30 GHz)
processors; 4 GB RAM; and windows 64-bit operating system.

Problems of size 5, 10 and 15 facilities with 100, 200 and 300 demand nodes were solved for
|T | = 5 periods using CPLEX , local search (LS); and three tabu search implementations (TS1, TS2
and TS3). We generated abscissa and ordinates of all the demand nodes as random numbers from
the uniform distribution [0, 100]. The first period demands of all the demand nodes was selected
from a uniform distribution [200, 3000]. Annual demand growth rate which has been assumed to
be deterministic and constant for each demand point, over the planning horizon has been generated
from the uniform distribution [-0.04, 0.06]. Covering distance of 30 units was used with the problem
instance of size 5 facilities, while for the problem size 10 and 15 facilities, a covering distance of 20
units was used.

We allowed our tabu search implementations to run for 1000 iterations. Further, a tabu tenure
parameter was selected randomly from a uniform distribution [3, 8] in the TS implementations.

We generated fifty instances for the six problem sizes of 5 or 10 facilities with 100, 200 or 300
demand nodes. For the problem sizes of 15 facilities with 100, 200 or 300 demand nodes, only five
instances were solved due to the large time taken for each run. The optimal solution for each of the
instances in the problems was also found using the exact method (CPLEX 12.4) using the MULPSU
formulation. We computed the gap of the solutions returned by LS and the three TS implementa-
tions with respect to the optimal solution. Gap for a heuristic solution θH compared to an optimal
solution θ∗ is defined as:

Gap = θH − θ∗

and has been given in the result tables whenever an exact solution could be calculated by CPLEX.
We present the details of the performance of the solution methods on these problems in table 1
through 9.

It can be seen from the tables that for many instances local search did give the optimum solution,
however an optimal solution is not guaranteed. TS 1 also could not give the optimal or the best
solution for a few problems (table 4, 6 and 7), while the tabu search implementation TS 2 and TS
3 gave the optimal solution for all the instances which CPLEX could solve in reasonable time. This
is because with the dominance rule on facility opening permutation, a set of non-optimal solution
is cut off form the consideration set. This prevents the search getting stuck in local optima. TS 2
and TS 3 took significantly lower CPU time than the exact method. Time taken by TS 3 was the
least in all the three tabu search implementations and at the same time it was able to find the best
solution for all the instances.

One important observation is that the CPU time taken to find the optimal coverage for all the
scenarios (by solving DMCLP using CPLEX) is the major component of the total CPU time taken
by the algorithm. The neighborhood search after that takes relatively lesser time.

6 Conclusions

In this paper we have provided a formulation as well as solution method for the multi-period facility
location problem with an uncertain number of servers, and the facility opening permutation as the
decision variable. We study the performance of local search and three implementations of TS with
a transposition neighborhood structure. The best customized tabu search algorithm was able to
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Table 1: Computational results with 5 facilities and 100 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 10.140 34258 1.248 1863.2 13.852 0.0 3.135 0.0 1.794 0.0
2 8.143 0 1.123 0.0 14.867 0.0 3.931 0.0 1.528 0.0
3 7.488 0 1.154 0.0 14.567 0.0 4.602 0.0 1.625 0.0
4 9.048 16455.6 1.186 0.0 8.190 0.0 3.635 0.0 1.817 0.0
5 10.265 0 1.092 0.0 7.597 0.0 4.243 0.0 1.356 0.0
6 8.502 0 1.217 0.0 8.237 0.0 4.134 0.0 1.764 0.0
7 9.141 20565.9 1.123 0.0 8.455 0.0 3.697 0.0 1.821 0.0
8 6.662 0 1.076 0.0 8.674 0.0 3.978 0.0 1.617 0.0
9 8.611 1258.95 1.170 0.0 9.313 0.0 3.510 0.0 1.905 0.0

10 6.771 1529.74 1.092 0.0 9.438 0.0 3.401 0.0 1.622 0.0
11 6.099 0 1.092 0.0 10.483 0.0 4.649 0.0 1.643 0.0
12 9.407 4627.08 1.201 0.0 11.325 0.0 3.291 0.0 1.853 0.0
13 4.712 0 1.170 0.0 8.206 0.0 4.088 0.0 1.62 0.0
14 5.288 2167.61 1.154 0.0 12.605 0.0 3.853 0.0 1.608 0.0
15 4.773 0 1.170 0.0 14.037 0.0 4.118 0.0 1.598 0.0
16 4.368 178.917 1.155 0.0 14.534 0.0 4.212 0.0 1.491 0.0
17 3.370 0 1.123 0.0 14.028 0.0 3.978 0.0 1.636 0.0
18 3.697 0 1.139 0.0 14.061 0.0 4.368 0.0 1.636 0.0
19 4.196 5770.35 1.170 0.0 13.663 0.0 3.978 0.0 1.664 0.0
20 4.540 34258 1.154 1982.8 13.487 0.0 3.105 0.0 1.578 0.0
21 3.432 0 1.170 0.0 13.354 0.0 4.056 0.0 1.574 0.0
22 5.257 0 1.217 17543.8 14.352 0.0 4.024 0.0 1.68 0.0
23 6.911 3180.73 1.201 0.0 13.806 0.0 3.214 0.0 1.656 0.0
24 9.484 13738.7 1.217 0.0 14.555 0.0 3.307 0.0 1.468 0.0
25 5.492 0 1.185 0.0 15.304 0.0 4.399 0.0 1.374 0.0
26 7.550 781.67 1.217 0.0 14.009 0.0 3.245 0.0 1.372 0.0
27 4.960 0 1.123 0.0 12.667 0.0 3.276 0.0 1.611 0.0
28 4.400 0 1.139 0.0 12.652 0.0 3.885 0.0 1.576 0.0
29 5.600 0 1.170 0.0 12.979 0.0 3.822 0.0 1.666 0.0
30 5.007 5158.22 1.138 0.0 13.088 0.0 2.325 0.0 1.419 0.0
31 7.878 0 1.264 0.0 13.868 0.0 4.025 0.0 1.297 0.0
32 8.424 12318.4 1.248 0.0 13.042 0.0 3.416 0.0 1.602 0.0
33 9.501 2816.68 1.139 6322.5 13.400 0.0 3.603 0.0 1.911 0.0
34 8.221 3096.36 1.248 0.0 13.494 0.0 2.777 0.0 2.079 0.0
35 6.739 0 1.107 0.0 15.304 0.0 3.837 0.0 2.079 0.0
36 12.573 0 1.077 0.0 13.572 0.0 3.885 0.0 1.52 0.0
37 10.015 0 1.107 0.0 16.037 0.0 3.931 0.0 1.382 0.0
38 11.497 0 1.108 0.0 14.535 0.0 3.819 0.0 1.861 0.0
39 14.633 0 1.232 0.0 12.995 0.0 4.571 0.0 1.636 0.0
40 14.493 4314.38 1.279 25835.2 14.040 0.0 4.056 0.0 1.781 0.0
41 12.854 5393.51 1.076 15694.2 13.681 0.0 2.870 0.0 1.672 0.0
42 12.027 0 1.061 0.0 13.494 0.0 4.041 0.0 1.6 0.0
43 12.886 0 1.060 0.0 13.619 0.0 3.900 0.0 1.572 0.0
44 12.231 0 1.046 0.0 13.759 0.0 3.837 0.0 1.553 0.0
45 13.947 5047.65 1.123 0.0 14.539 0.0 3.713 0.0 1.995 0.0
46 10.935 0 1.029 0.0 13.260 0.0 3.354 0.0 1.458 0.0
47 12.730 0 1.046 0.0 12.090 0.0 3.573 0.0 1.543 0.0
48 12.885 0 1.107 0.0 11.185 0.0 4.118 0.0 1.543 0.0
49 12.761 0 1.030 0.0 13.759 0.0 3.775 0.0 1.505 0.0
50 13.510 0 1.154 0.0 15.210 0.0 4.150 0.0 1.598 0.0

Avg. 8.481 1.147 12.825 3.774 1.635

Max. 14.633 1.279 16.037 4.649 2.079
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Table 2: Computational results with 5 facilities and 200 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 11.434 0 8.720 0.0 30.279 0.0 12.745 0.0 2.841 0.0
2 12.511 758.89 10.889 0.0 28.486 0.0 11.481 0.0 3.14 0.0
3 22.652 22376.8 10.514 0.0 29.063 0.0 10.889 0.0 3.337 0.0
4 22.917 19605.7 9.781 0.0 28.736 0.0 13.291 0.0 3.231 0.0
5 11.341 7915.36 8.237 0.0 26.629 0.0 13.151 0.0 3.183 0.0
6 12.558 0 8.346 0.0 25.599 0.0 13.775 0.0 2.929 0.0
7 13.557 0 7.785 0.0 26.380 0.0 11.373 0.0 2.738 0.0
8 11.700 0 8.471 0.0 26.364 0.0 11.061 0.0 2.756 0.0
9 15.990 0 9.220 0.0 26.396 0.0 13.806 0.0 3.006 0.0

10 16.068 37119.2 8.782 0.0 28.767 0.0 13.354 0.0 3.537 0.0
11 12.526 0 9.547 0.0 25.989 0.0 15.179 0.0 2.394 0.0
12 12.402 0 9.345 0.0 28.423 0.0 15.881 0.0 2.454 0.0
13 14.211 0 9.781 0.0 28.329 0.0 14.711 0.0 2.859 0.0
14 12.901 0 8.908 0.0 27.284 0.0 11.091 0.0 3.116 0.0
15 14.258 0 8.767 0.0 27.284 0.0 15.132 0.0 3.461 0.0
16 9.266 0 6.864 0.0 17.347 0.0 12.807 0.0 3.229 0.0
17 14.103 24160.2 7.254 0.0 18.970 0.0 13.806 0.0 3.588 0.0
18 9.188 17850.6 7.317 9659.1 19.235 0.0 15.351 0.0 3.128 0.0
19 10.967 0 7.504 0.0 19.875 0.0 20.686 0.0 3.34 0.0
20 12.121 0 7.394 0.0 24.320 0.0 18.861 0.0 3.315 0.0
21 12.511 124 7.020 0.0 19.905 0.0 17.238 0.0 3.106 0.0
22 29.468 179.876 6.630 0.0 26.717 0.0 14.383 0.0 2.955 0.0
23 8.767 0 6.646 0.0 29.006 0.0 21.341 0.0 3.136 0.0
24 13.182 0 6.380 0.0 30.325 0.0 20.576 0.0 3.14 0.0
25 20.483 23842.7 7.348 10155.5 25.509 0.0 19.843 0.0 3.398 0.0
26 14.321 35892.5 8.502 5841.9 26.537 0.0 13.650 0.0 3.68 0.0
27 13.167 0 7.534 0.0 29.453 0.0 14.399 0.0 3.593 0.0
28 21.450 3 4.774 0.0 29.616 0.0 14.633 0.0 3.672 0.0
29 15.101 29274.9 4.992 0.0 29.490 0.0 17.581 0.0 4.953 0.0
30 14.804 0 4.680 0.0 24.491 0.0 17.659 0.0 4.354 0.0
31 17.846 0 4.493 0.0 26.970 0.0 18.112 0.0 3.644 0.0
32 14.508 0 4.431 0.0 27.690 0.0 18.361 0.0 3.879 0.0
33 16.567 0 4.524 0.0 26.329 0.0 17.144 0.0 3.806 0.0
34 15.958 0 4.805 0.0 25.272 0.0 20.046 0.0 3.872 0.0
35 12.745 31860.2 4.555 0.0 25.771 0.0 13.868 0.0 3.74 0.0
36 11.154 0 4.431 0.0 27.05 0.0 17.394 0.0 3.957 0.0
37 9.891 0 4.040 0.0 33.447 0.0 19.843 0.0 3.989 0.0
38 11.170 0 4.836 0.0 34.898 0.0 18.626 0.0 4.184 0.0
39 15.382 0 4.649 0.0 30.888 0.0 20.389 0.0 3.816 0.0
40 16.973 0 4.025 0.0 31.122 0.0 14.898 0.0 3.846 0.0
41 14.009 0 4.024 0.0 24.914 0.0 18.174 0.0 4.276 0.0
42 30.249 41171.8 4.259 0.0 22.308 0.0 14.025 0.0 3.735 0.0
43 20.093 26193.5 4.227 0.0 21.466 0.0 21.106 0.0 3.542 0.0
44 8.549 0 4.103 0.0 17.534 0.0 18.377 0.0 3.216 0.0
45 8.050 0 3.978 0.0 19.172 0.0 17.597 0.0 3.272 0.0
46 5.585 0 4.088 0.0 19.594 0.0 18.003 0.0 3.797 0.0
47 32.791 7285.53 4.071 0.0 19.001 0.0 16.598 0.0 4.424 0.0
48 9.641 0 3.666 0.0 21.248 0.0 19.921 0.0 3.958 0.0
49 8.533 0 4.072 0.0 24.789 0.0 20.046 0.0 3.905 0.0
50 7.597 0 4.244 0.0 19.921 0.0 18.736 0.0 3.599 0.0

Avg. 14.464 6.469 25.684 16.220 3.481

Max. 32.791 10.889 34.898 21.341 4.953
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Table 3: Computational results with 5 facilities and 300 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 19.174 0 10.249 0.0 18.205 0.0 14.515 0.0 4.744 0.0
2 16.967 0 11.294 0.0 17.534 0.0 12.559 0.0 4.616 0.0
3 27.541 0 10.936 0.0 17.254 0.0 11.014 0.0 4.919 0.0
4 24.482 0 10.686 0.0 18.486 0.0 11.894 0.0 4.945 0.0
5 26.039 0 10.202 0.0 19.095 0.0 11.630 0.0 3.812 0.0
6 12.574 69956.7 11.388 0.0 19.157 0.0 9.713 0.0 5.083 0.0
7 11.622 27816.5 10.171 0.0 19.172 0.0 6.925 0.0 4.295 0.0
8 14.773 448.258 10.983 0.0 18.439 0.0 7.385 0.0 4.542 0.0
9 32.058 33275.9 11.061 0.0 19.188 0.0 5.957 0.0 6.05 0.0

10 14.368 11258.4 10.718 0.0 19.624 0.0 7.258 0.0 6.005 0.0
11 14.617 0 10.920 0.0 20.920 0.0 10.319 0.0 5.591 0.0
12 13.384 0 10.374 0.0 20.514 0.0 10.358 0.0 6.152 0.0
13 16.567 0 10.655 0.0 20.436 0.0 10.818 0.0 5.806 0.0
14 14.492 0 10.514 0.0 19.890 0.0 10.925 0.0 5.783 0.0
15 19.640 0 10.093 0.0 20.171 0.0 10.642 0.0 6.149 0.0
16 25.771 0 10.234 0.0 19.734 0.0 11.023 0.0 6.08 0.0
17 13.354 0 10.546 0.0 19.672 0.0 11.219 0.0 5.475 0.0
18 22.495 53098.4 10.576 0.0 20.265 0.0 9.371 0.0 5.995 0.0
19 25.771 3221.21 10.405 0.0 20.187 0.0 8.823 0.0 5.891 0.0
20 21.871 0 10.998 0.0 20.093 0.0 11.650 0.0 5.388 0.0
21 32.073 0 9.782 0.0 20.592 0.0 9.654 0.0 5.504 0.0
22 32.246 45084.9 10.046 0.0 20.108 0.0 7.395 0.0 6.538 0.0
23 19.875 0 10.296 0.0 20.873 0.0 10.241 0.0 5.836 0.0
24 31.855 0 10.327 0.0 20.171 0.0 7.552 0.0 5.739 0.0
25 26.785 0 10.966 0.0 19.921 0.0 7.463 0.0 4.973 0.0
26 26.816 45587 10.998 0.0 20.311 0.0 7.629 0.0 6.482 0.0
27 17.114 0 10.577 0.0 20.030 0.0 8.715 0.0 4.549 0.0
28 28.673 4394.69 10.811 0.0 20.264 0.0 6.006 0.0 5.312 0.0
29 29.734 0 10.936 0.0 20.421 0.0 8.705 0.0 4.435 0.0
30 26.396 0 11.107 0.0 19.968 0.0 7.649 0.0 4.767 0.0
31 21.731 40575.8 11.201 4250.6 20.186 0.0 6.407 0.0 6.142 0.0
32 18.580 3088.02 10.452 0.0 19.625 0.0 5.780 0.0 7.487 0.0
33 9.282 0 10.389 0.0 20.014 0.0 7.600 0.0 4.851 0.0
34 14.836 0 11.482 0.0 20.514 0.0 8.011 0.0 5.195 0.0
35 13.619 0 11.232 0.0 19.953 0.0 8.520 0.0 5.048 0.0
36 14.462 0 10.343 0.0 19.859 0.0 8.177 0.0 5.28 0.0
37 11.997 0 10.499 0.0 19.844 0.0 8.372 0.0 4.311 0.0
38 14.727 0 11.154 0.0 19.983 0.0 7.864 0.0 6.186 0.0
39 17.597 0 10.468 0.0 19.828 0.0 7.864 0.0 6.171 0.0
40 17.971 0 10.935 0.0 20.296 0.0 8.451 0.0 5.954 0.0
41 13.088 0 10.842 0.0 19.718 0.0 8.314 0.0 5.781 0.0
42 46.847 4394.29 11.248 0.0 20.483 0.0 8.431 0.0 6.319 0.0
43 26.021 0 11.404 0.0 19.999 0.0 9.224 0.0 5.674 0.0
44 22.761 0 10.983 0.0 19.859 0.0 10.016 0.0 6.998 0.0
45 25.990 834.325 11.949 0.0 20.249 0.0 10.310 0.0 6.571 0.0
46 20.312 769.608 11.513 0.0 20.124 0.0 9.419 0.0 6.373 0.0
47 22.636 7948.93 11.669 0.0 20.795 0.0 9.938 0.0 6.547 0.0
48 39.578 9758.16 12.152 18667.2 20.405 0.0 9.625 0.0 6.639 0.0
49 17.020 0 11.903 0.0 19.640 0.0 9.527 0.0 5.314 0.0
50 30.701 0 12.028 0.0 20.217 0.0 11.062 0.0 6.401 0.0

Avg. 21.578 10.854 19.846 9.158 5.614

Max. 46.847 12.152 20.920 14.515 7.487
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Table 4: Computational results with 10 facilities and 100 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 449.774 3989.44 73.616 0.0 304.730 0.0 133.800 0.0 76.021 0.0
2 132.990 0 70.980 0.0 304.933 0.0 314.403 0.0 85.876 0.0
3 236.699 0 70.715 0.0 324.745 0.0 212.581 0.0 102.928 0.0
4 241.894 21 69.639 0.0 325.867 0.0 134.020 0.0 87.603 0.0
5 291.567 0 68.344 0.0 286.371 0.0 227.246 0.0 100.879 0.0
6 168.634 343 70.184 0.0 327.382 0.0 114.051 0.0 63.999 0.0
7 162.577 0 69.529 13249.0 297.025 0.0 293.937 0.0 82.343 0.0
8 305.823 89 69.529 0.0 275.887 0.0 107.047 0.0 86.135 0.0
9 356.818 6862.13 67.782 0.0 326.618 0.0 115.393 0.0 79.812 0.0

10 506.549 5738.75 68.344 0.0 271.425 0.0 114.083 0.0 78.509 0.0
11 424.930 125.727 69.327 0.0 308.413 0.0 221.404 0.0 92.183 0.0
12 193.752 923.048 69.483 23033.8 273.188 0.0 124.787 0.0 84.41 0.0
13 159.573 0 68.359 0.0 280.738 0.0 195.172 0.0 99.551 0.0
14 287.914 0 69.811 0.0 271.893 0.0 227.199 0.0 102.491 0.0
15 607.122 9957.89 68.687 0.0 276.604 0.0 134.753 0.0 63.571 0.0
16 203.924 0 69.404 0.0 284.545 0.0 221.084 0.0 95.912 0.0
17 132.101 516.614 68.687 0.0 280.457 0.0 164.284 0.0 79.278 0.0
18 254.031 324.53 64.631 0.0 279.240 0.0 201.256 0.0 86.899 0.0
19 255.139 311 56.098 0.0 268.399 0.0 195.656 0.0 92.578 0.0
20 378.722 3989.44 57.471 0.0 263.126 0.0 124.332 0.0 69.497 0.0
21 299.841 232.184 55.911 0.0 262.798 0.0 208.042 0.0 81.469 0.0
22 179.476 1299.26 57.580 0.0 266.418 0.0 105.488 0.0 57.997 0.0
23 716.900 9261.36 57.362 0.0 265.481 0.0 89.856 0.0 80.91 0.0
24 157.591 40.8745 56.098 0.0 289.412 0.0 156.750 0.0 98.746 0.0
25 189.416 0 56.628 0.0 298.117 0.0 205.795 0.0 86.863 0.0
26 418.954 3572.88 56.379 4709.6 295.558 0.0 103.023 0.0 72.692 0.0
27 207.012 1989.63 56.426 0.0 341.172 0.0 189.025 0.0 119.066 0.0
28 204.750 18 54.631 0.0 286.682 0.0 178.480 0.0 72.555 0.0
29 132.444 0 56.254 0.0 307.960 0.0 255.934 0.0 84.393 0.0
30 171.818 5758.29 56.956 13586.0 289.958 0.0 113.193 0.0 91.499 0.0
31 375.227 451.181 57.128 0.0 337.117 0.0 182.458 0.0 105.096 0.0
32 260.692 11190.1 56.145 0.0 308.678 0.0 118.342 0.0 63.921 0.0
33 240.225 10876.1 56.051 3157.7 272.720 0.0 152.864 0.0 95.78 0.0
34 532.289 2662.87 56.128 0.0 266.308 0.0 84.583 0.0 76.144 0.0
35 237.823 3963.42 55.037 5664.8 278.023 0.0 157.638 0.0 85.272 0.0
36 288.834 46 56.378 0.0 270.910 0.0 219.250 0.0 77.71 0.0
37 139.823 8126.74 55.723 0.0 266.995 0.0 110.127 0.0 116.662 0.0
38 272.970 1851.47 56.066 0.0 269.397 0.0 122.912 0.0 73.953 0.0
39 319.426 0 55.302 0.0 270.692 0.0 212.878 0.0 98.038 0.0
40 190.882 2655 56.971 0.0 267.868 0.0 149.916 0.0 86.871 0.0
41 200.772 480.406 55.021 0.0 285.247 0.0 139.558 0.0 70.833 0.0
42 213.096 6.46165 55.022 0.0 282.704 0.0 164.050 0.0 78.685 0.0
43 216.997 416.384 56.441 14638.7 275.179 0.0 139.183 0.0 99.756 0.0
44 281.815 45.5691 55.473 0.0 278.220 0.0 102.586 0.0 64.023 0.0
45 707.040 5321.99 54.101 8133.8 258.945 14532.2 100.838 0.0 63.361 0.0
46 337.460 10113.2 54.444 0.0 250.864 0.0 135.689 0.0 83.035 0.0
47 166.374 941.92 55.864 0.0 262.876 0.0 231.208 0.0 83.911 0.0
48 173.737 0 58.000 0.0 263.983 0.0 285.044 0.0 95.602 0.0
49 299.240 0 57.018 0.0 261.005 0.0 171.116 0.0 98.709 0.0
50 279.209 224.832 57.018 0.0 261.940 0.0 98.451 0.0 93.259 0.0

Avg. 283.253 60.884 284.496 165.215 85.346

Max. 716.900 73.616 341.172 314.403 119.066
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Table 5: Computational results with 10 facilities and 200 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 1012.145 220.432 92.367 0.0 538.403 0.0 180.804 0.0 139.961 0.0
2 597.746 0 114.255 0.0 549.542 0.0 331.453 0.0 197.216 0.0
3 716.275 415.349 117.999 0.0 559.402 0.0 165.454 0.0 141.284 0.0
4 795.524 8045.59 116.953 0.0 617.012 0.0 172.240 0.0 163.94 0.0
5 476.550 5310 118.451 0.0 616.451 0.0 199.867 0.0 170.963 0.0
6 835.741 4348.61 116.392 0.0 602.863 0.0 272.283 0.0 159.83 0.0
7 617.433 0 116.423 0.0 609.618 0.0 331.032 0.0 184.276 0.0
8 756.617 7045.41 116.611 0.0 639.368 0.0 249.694 0.0 195.707 0.0
9 852.307 0 114.598 0.0 587.013 0.0 332.530 0.0 211.404 0.0

10 1072.923 0 123.058 0.0 634.344 0.0 348.785 0.0 191.374 0.0
11 823.838 1691.32 143.107 0.0 584.939 0.0 184.392 0.0 191.374 0.0
12 332.655 0 143.677 0.0 600.897 0.0 381.207 0.0 164.204 0.0
13 953.936 3367.37 145.315 6218.7 591.990 0.0 163.405 0.0 164.204 0.0
14 2111.718 9501.81 143.271 0.0 622.488 0.0 141.873 0.0 128.357 0.0
15 1416.123 0 145.891 0.0 649.960 0.0 323.201 0.0 218.08 0.0
16 1288.626 2223.96 145.361 0.0 652.253 0.0 166.577 0.0 150.043 0.0
17 1487.338 11042 143.707 0.0 611.724 0.0 151.258 0.0 157.389 0.0
18 1205.461 72 139.886 0.0 567.436 0.0 169.931 0.0 167.47 0.0
19 1125.745 0 143.084 50481.9 923.738 0.0 319.644 0.0 208.021 0.0
20 1150.143 0 143.848 0.0 1138.334 0.0 299.146 0.0 201.472 0.0
21 1415.063 0 144.519 0.0 894.133 0.0 383.683 0.0 201.696 0.0
22 1068.119 0 142.069 42080.9 1214.837 0.0 547.966 0.0 178.713 0.0
23 1000.897 0 140.306 0.0 1186.336 0.0 331.001 0.0 179.258 0.0
24 3333.944 2541.86 146.360 0.0 836.910 0.0 290.551 0.0 194.541 0.0
25 2491.122 22428.9 140.041 0.0 966.843 0.0 206.825 0.0 118.043 0.0
26 970.244 2799.25 142.506 0.0 1095.527 0.0 216.778 0.0 137.21 0.0
27 1823.783 7453.7 139.683 12360.9 743.264 0.0 255.310 0.0 145.26 0.0
28 1062.767 1968.92 142.724 0.0 835.491 0.0 240.537 0.0 116.907 0.0
29 1597.724 3532.3 144.722 0.0 919.044 0.0 154.019 0.0 134.054 0.0
30 2369.316 2320.18 147.265 0.0 1108.928 0.0 357.787 0.0 147.436 0.0
31 1324.443 845.806 139.714 0.0 1115.697 0.0 279.537 0.0 157.89 0.0
32 2367.943 5125.91 139.636 252.0 1101.768 0.0 197.059 0.0 130.739 0.0
33 1006.140 1720.04 136.921 0.0 1448.837 0.0 210.273 0.0 118.152 0.0
34 1070.100 166 141.087 0.0 1238.720 0.0 344.418 0.0 155.847 0.0
35 825.788 6975.62 133.911 0.0 836.521 0.0 448.361 0.0 118.377 0.0
36 1164.354 16592.2 146.719 15760.2 1183.278 0.0 239.944 0.0 140.942 0.0
37 1970.050 11783.7 143.657 0.0 1145.853 0.0 234.999 0.0 112.466 0.0
38 1955.620 15296.8 143.657 0.0 976.733 0.0 246.823 0.0 129.873 0.0
39 1191.342 0 141.243 0.0 1247.877 0.0 438.642 0.0 165.753 0.0
40 1124.949 15826 139.964 0.0 1202.029 0.0 217.495 0.0 128.574 0.0
41 976.187 0 137.841 0.0 816.787 0.0 357.209 0.0 182.382 0.0
42 1413.003 18111 140.088 12021.3 1125.386 0.0 250.787 0.0 126.662 0.0
43 679.989 11353.9 140.977 0.0 1340.354 0.0 317.663 0.0 139.805 0.0
44 1209.829 1759.01 137.499 0.0 1106.744 0.0 246.590 0.0 159.614 0.0
45 1564.121 1697.56 144.596 0.0 1156.757 0.0 256.777 0.0 128.089 0.0
46 1454.656 170.245 142.475 0.0 1123.140 0.0 399.954 0.0 148.134 0.0
47 3717.596 17527.1 143.910 0.0 1122.531 0.0 268.242 0.0 134.397 0.0
48 1841.895 0 141.960 0.0 1056.761 0.0 416.817 0.0 177.5 0.0
49 1695.193 6631.2 140.041 0.0 1211.233 0.0 217.449 0.0 128.495 0.0
50 1401.818 4467.99 137.499 5596.3 941.477 0.0 167.841 0.0 128.275 0.0

Avg. 1334.337 136.557 903.951 272.522 157.433

Max. 3717.596 147.265 1448.837 547.966 218.080
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Table 6: Computational results with 10 facilities and 300 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 1045.412 10248.9 180.320 0.0 1163.918 0.0 765.508 0.0 277.626 0.0
2 1323.182 70.9714 181.865 0.0 1000.585 0.0 712.188 0.0 250.297 0.0
3 4482.093 27414.5 181.241 0.0 1259.952 0.0 453.868 0.0 249.418 0.0
4 2088.002 11369.2 181.007 0.0 1161.859 0.0 633.860 0.0 230.281 0.0
5 2024.899 4927.08 182.474 0.0 1306.549 0.0 550.860 0.0 233.421 0.0
6 744.449 0 203.898 0.0 1258.142 0.0 866.644 0.0 312.202 0.0
7 1151.859 0 222.791 0.0 1189.923 0.0 851.175 0.0 302.719 0.0
8 1314.192 0 225.873 0.0 1600.532 0.0 806.955 0.0 316.177 0.0
9 3774.864 0 226.949 0.0 1228.783 0.0 774.418 0.0 302.595 0.0

10 2146.969 374.717 233.111 0.0 1226.645 0.0 572.090 0.0 256.703 0.0
11 2575.378 3639.42 220.288 0.0 1278.376 0.0 604.985 0.0 242.551 0.0
12 2646.826 351 229.819 0.0 1495.699 0.0 579.792 0.0 262.812 0.0
13 1218.721 0 225.234 0.0 1346.532 0.0 828.846 0.0 308.426 0.0
14 5255.322 22648.3 233.470 0.0 1321.454 0.0 440.954 0.0 238.905 0.0
15 1685.911 0 225.077 0.0 976.472 0.0 680.177 0.0 310.788 0.0
16 5651.749 20335.3 227.776 0.0 1034.469 0.0 472.415 0.0 208.853 0.0
17 1067.244 0 220.788 0.0 1232.669 0.0 867.081 0.0 262.744 0.0
18 659.913 12492.6 228.587 0.0 1343.350 0.0 600.664 0.0 225.716 0.0
19 933.474 724 225.031 0.0 1276.874 0.0 360.080 0.0 205.058 0.0
20 2483.789 0 226.200 0.0 1247.487 0.0 701.331 0.0 275.753 0.0
21 938.607 0 225.498 0.0 1258.049 0.0 634.485 0.0 254.429 0.0
22 1180.298 0 223.403 0.0 1247.582 0.0 887.220 0.0 267.568 0.0
23 2157.203 1857.83 224.381 0.0 1321.228 0.0 739.301 0.0 245.436 0.0
24 3381.290 2870.64 229.742 0.0 1475.512 0.0 384.088 0.0 207.726 0.0
25 1397.232 3819.54 214.017 0.0 1240.475 0.0 598.495 0.0 218.457 0.0
26 1221.076 0 232.721 0.0 1370.509 0.0 723.092 0.0 291.41 0.0
27 1149.270 34075.4 226.575 31499.7 1357.843 0.0 515.830 0.0 204.665 0.0
28 1715.769 747.918 223.580 0.0 1348.061 0.0 588.775 0.0 249.269 0.0
29 1715.410 21320 228.259 0.0 1019.415 0.0 699.614 0.0 210.369 0.0
30 1050.756 0 224.656 46192.2 1061.458 0.0 1183.121 0.0 290.705 0.0
31 1794.229 13962.2 214.064 0.0 1189.517 0.0 838.314 0.0 195.182 0.0
32 1394.130 0 172.989 10471.7 1073.767 0.0 762.389 0.0 250.367 0.0
33 1018.992 3252.46 173.800 0.0 994.939 0.0 675.606 0.0 184.116 0.0
34 1273.495 9.97008 174.518 0.0 1031.475 0.0 947.140 0.0 223.23 0.0
35 2504.987 0 192.114 0.0 1244.383 0.0 602.645 0.0 169.322 0.0
36 2409.627 13442.3 225.888 0.0 1299.374 0.0 661.675 0.0 185.734 0.0
37 2469.953 31803 228.229 21527.0 1397.765 21527.0 534.863 0.0 189.084 0.0
38 1098.959 0 220.647 0.0 1442.238 0.0 835.334 0.0 221.785 0.0
39 1211.482 0 229.694 0.0 1185.712 0.0 872.900 0.0 238.532 0.0
40 1184.525 0 210.975 0.0 954.285 0.0 1013.955 0.0 238.849 0.0
41 2274.843 2362.46 176.217 0.0 991.273 0.0 737.132 0.0 227.939 0.0
42 1199.393 0 174.283 0.0 1127.102 0.0 1257.705 0.0 225.888 0.0
43 879.014 342.725 188.339 0.0 1337.641 0.0 629.072 0.0 173.53 0.0
44 3747.954 19297.7 232.971 5773.0 1355.284 0.0 889.467 0.0 168.26 0.0
45 1071.441 0 223.891 0.0 1337.376 0.0 1224.914 0.0 235.714 0.0
46 1089.225 10929.9 218.323 0.0 1181.663 0.0 625.405 0.0 230.465 0.0
47 2004.354 7829.23 219.758 1904.0 1253.618 0.0 536.828 0.0 175.013 0.0
48 2496.832 397.435 215.593 0.0 1211.280 0.0 872.666 0.0 226.888 0.0
49 1053.064 0 174.128 0.0 1291.281 0.0 914.005 0.0 253.558 0.0
50 1515.123 13256.7 179.447 0.0 1329.575 0.0 315.883 0.0 180.594 0.0

Avg. 1877.456 211.610 1237.599 716.516 238.143

Max. 5651.749 233.470 1600.532 1257.705 316.177
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Table 7: Computational results with 15 facilities and 100 demand nodes

CPLEX LS TS 1 TS 2 TS 3

Instance CPU (s) Solution CPU (s) Gap CPU (s) Gap CPU (s) Gap CPU (s) Gap

1 17816.530 3989.44 1,160.459 0.0 3882.051 0.0 1644.024 0.0 1315.222 0.0
2 4541.684 2740.07 1,189.393 5782.3 3891.333 5782.3 1540.753 0.0 1299.025 0.0
3 8855.220 2251.24 1,215.741 0.0 3984.964 0.0 1757.203 0.0 1548.522 0.0
4 15021.782 21 1,206.942 28883.6 3929.694 0.0 1603.402 0.0 1248.049 0.0
5 18196.776 4483.77 1,151.453 0.0 3767.157 0.0 1684.460 0.0 1548.755 0.0

Avg time 12886.398 1184.798 3891.040 1645.968 1391.915

Max time 18196.776 1215.741 3984.964 1757.203 1548.755

Table 8: Computational results with 15 facilities and 200 demand nodes

LS TS 2 TS 3

Instance CPU (s) Solution CPU (s) Solution CPU (s) Solution

1 1,521.634 16133.67 2183.930 16133.67 1830.715 16133.67
2 2,084.943 13926.33 2084.215 13926.33 1653.9 13926.33
3 1,824.657 23076.71 2182.522 23076.71 1764.949 23076.71
4 2,000.079 29842.48 2332.360 9251.14 1696.491 9251.14
5 1,845.998 17133.97 2273.049 17133.97 1826.07 17133.97

Avg time 1855.462 2211.215 1754.425

Max time 2084.943 2332.360 1830.715

Table 9: Computational results with 15 facilities and 300 demand nodes

LS TS 2 TS 3

Instance CPU (s) Solution CPU (s) Solution CPU (s) Solution

1 3,372.289 4942.97 3584.574 4942.97 3519.26 4942.97
2 3,382.102 41291.08 4338.742 33648 3620.82 33648
3 3,310.622 3044.44 5047.795 3044.44 3797.48 3044.44
4 3,224.994 0 11190.617 0 5872.22 0
5 3,022.958 26218.58 4268.118 23666 3598.61 23666

Avg time 3262.593 5685.969 4081.679

Max time 3382.102 11190.617 5872.224
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solve instances of practical size which CPLEX could not solve. Furthermore, it gave the optimal
solution for all the instances for which the optimal solution could be found using CPLEX and took
significantly lesser time.

Future research direction can be to consider the problem when the facilities have capacity lim-
itations. In that problem, all the operational facilities also need to considered, which was not the
case in our current problem as all such facilities and the demand nodes catered by them could have
been simply removed to obtain a reduced problem. Problems with a gradual covering model like
discussed by Berman et al. (2003); Karasakal & Karasakal (2004); Berman et al. (2010) can also be
considered where coverage function will be a non-increasing function of distance.
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