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Value at Risk Models in the Indian Stock Market 

Abstract 

This paper provides empirical tests of different risk management models in 

the Value at Risk (VaR) framework in the Indian stock market. It is found that 

the GARCH-GED (Generalised Auto-Regressive Conditional 

Heteroscedasticity with Generalised Error Distribution residuals) performs 

exceedingly well at all common risk levels (ranging from 0.25% to 10%). The 

EWMA (Exponentially Weighted Moving Average) model used in J. P. 

Morgan’s RiskMetrics® methodology does well at the 10% and 5% risk 

levels but breaks down at the 1% and lower risk levels. The paper then 

suggests a way of salvaging the EWMA model by using a larger number of 

standard deviations to set the VaR limit. For example, the paper suggests 

using 3 standard deviations for a 1% VaR while the normal distribution 

indicates 2.58 standard deviations and the GED indicates 2.85 standard 

deviations. With this modification the EWMA model is shown to work quite 

well. Given its greater simplicity and ease of interpretation, it may be more 

convenient in practice to use this model than the more accurate GARCH-GED 

specification. The paper also provides evidence suggesting that it may be 

possible to improve the performance of the VaR models by taking into 

account the price movements in foreign stock markets. 
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Value at Risk Models in the Indian Stock Market 

In volatile financial markets, both market participants and market regulators need models for 
measuring, managing and containing risks. Market participants need risk management 
models to manage the risks involved in their open positions. Market regulators on the other 
hand must ensure the financial integrity of the stock exchanges and the clearing houses by 
appropriate margining and risk containment systems. 

The successful use of risk management models is critically dependent upon estimates of the 
volatility of underlying prices. The principal difficulty is that the volatility is not constant 
over time - if it were, it could be estimated with very high accuracy by using a sufficiently 
long sample of data. Thus models of time varying volatility become very important. 
Practitioners and econometricians have developed a variety of different models for this 
purpose. Whatever intuitive or theoretical merits any such model may have, the ultimate test 
of its usability is how well it holds up against actual data. Empirical tests of risk management 
models in the Indian stock market are therefore of great importance in the context of the 
likely introduction of index futures trading in India.  

Data 

The data used in this study consists of daily values of the National Stock Exchange’s NSE-50 
(Nifty) index. The NSE has back-calculated this index for the period prior to the formation of 
the NSE by using the prices on the Bombay Stock Exchange. 

Sample Period  

The data period used is from July 1, 1990 to June 30, 1998. The long sample period reflects 
the view that risk management studies must attempt (wherever possible) to cover at least two 
full business cycles (which would typically cover more than two interest rate cycles and two 
stock market cycles). It has been strongly argued on the other hand that studies must exclude 
the securities scam of 1992 and must preferably confine itself to the period after the 
introduction of screen based trading (post 1995).  

The view taken in this study is that the post 1995 period is essentially half a business cycle 
though it includes complete interest rate and stock market cycles. The 1995-97 period is also 
an aberration in many ways as during this period there was a high positive autocorrelation in 
the index. High positive autocorrelation violates the weak form efficiency of the market and 
is suggestive of an administered market; for example, it is often seen in a managed exchange 
rate market. The following table shows that the autocorrelation in the stock market was 
actually low till about mid 1992 and peaked in 1995-96 when volatility reached very low 
levels. In mid-1998, the autocorrelations dropped as volatility rose sharply. In short there is 
distinct cause for worry that markets were artificially smoothed during the 1995-97 periods1. 

                                                 
1 The cause for this high autocorrelation is a subject for further research. Some experts believe that front-
running for the FIIs could have led to this phenomenon. 
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Similarly, this study takes the view that the scam is a period of episodic volatility (event risk) 
which could quite easily recur. If we disregard issues of morality and legality, the scam was 
essentially a problem of monetary policy or credit policy. Since both the bull and bear sides 
of the market financed themselves through the scam in roughly equal measure, the scam was 
roughly neutral in terms of direct buy or sell pressure on the market. What caused a strong 
impact on stock prices was the vastly enhanced liquidity in the stock market. The scam was 
(in its impact on the stock market) essentially equivalent to monetary easing or credit 
expansion on a large scale. The exposure of the scam was similarly equivalent to dramatic 
monetary (or credit) tightening. Any sudden and sharp change in the stance of monetary 
policy can be expected to have an impact on the stock market very similar to the scam and its 
exposure. A prudent risk management system must be prepared to deal with events of this 
kind. 

Distribution of Market Returns  

The usual definition of return as the percentage change in price has a very serious problem in 
that it is not symmetric. For example, if the index rises from 1000 to 2000, the percentage 
return would be 100%, but if it falls back from 2000 to 1000, the percentage return is not 
-100% but only -50%. As a result, the percentage return on the negative side cannot be below 
-100%, while on the positive side, there is no limit on the return. The statistical implication of 
this is that returns are skewed in the positive direction and the use of the normal distribution 
becomes inappropriate. 

For statistical purposes, therefore, it is convenient to define the return in logarithmic terms as 
rt = ln(It/It-1) where It is the index at time t. The logarithmic return can also be rewritten as 
rt = ln(1+Rt) where Rt is the percentage return showing that it is essentially a logarithmic 
transformation of the usual return. In the reverse direction, the percentage return can be 
recovered from the logarithmic return by the formula, Rt = exp(rt)-1. Thus after the entire 
analysis is done in terms of logarithmic return, the results can be restated in terms of 
percentage returns. 

It is worth pointing out that the percentage return and the logarithmic return are very close to 
each other when the return is small in magnitude. However, when there is a large return 
(positive or negative) the logarithmic return can be substantially different from the 
percentage return. For example, in the earlier illustration of the index rising from 1000 to 
2000 and then dropping back to 1000, the logarithmic returns would be +69.3% and -69.3% 
respectively as compared to the percentage returns of +100% and -50% respectively. 
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Figure 1 

Figure 1 shows the probability density function of the distribution of stock market returns 
estimated using a gaussian kernel2 with a bandwidth of 0.20 standard deviations. (In this and 
all subsequent density plots, the units on the X axis are in terms of the historical standard 
deviation calculated over the full sample). As can be seen the distribution is characterised by 
a thinner waist and fatter tails than the normal distribution. The summary statistics of the 
distribution are as follows: 

Mean 0.07% 
Median 0.00% 
Standard Deviation (σ) 1.96% 
Quartile Deviation x 0.7413 (this should equal 
the standard deviation for a normal distribution) 

1.50% 

Skewness 0.04 
Excess Kurtosis (Excess of the kurtosis over the 
normal distribution value of 3). 

5.42 

Maximum 12.11% (= 6.2 σ) 
Minimum -12.54% (= -6.4 σ) 
 

The non-normality of the distribution is evident from the large extreme values and the high 
excess kurtosis. However, it is well known that the principal reason for the non-normality of 
the unconditional distribution is that the volatility is varying over time. The observed 

                                                 
2 For a description of kernel and other methods of density estimation, see Silverman (1986). 
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unconditional distribution is actually a mixture of these conditional distributions of varying 
volatility. These conditional distributions are expected to be much closer to normality. 

Modelling Time Varying Volatility 

Practitioners have often dealt with time varying parameters by confining attention to the 
recent past and ignoring observations from the distant past. Econometricians have on the 
other hand developed sophisticated models of time varying volatility like the GARCH 
(Generalised Auto-Regressive Conditional Heteroscedasticity) model (Bollerslev, 1986).  

Straddling the two are the exponentially weighted moving average (EWMA) methods 
popularised by J. P. Morgan’s RiskMetrics system. EWMA methods can be regarded as a 
variant of the practitioner’s idea of using only the recent past. The practitioners’ idea is 
essentially that of a simple moving average where the recent past gets a weight of one and 
data before that gets a weight of zero. The variation in EWMA is that the observations are 
given different weights with the most recent data getting the highest weight and the weights 
declining rapidly as one goes back. Effectively, therefore, EWMA is also based on the recent 
past. In fact, it is even more responsive than the simple moving average to sudden changes in 
volatility. EWMA can also be regarded as a special case of GARCH as shown below. 

The simple GARCH (1,1) model can be written as follows: 

σ ω βσ α

σ
t t t

t t

r
r N

2 2
1

2
1

2

0 1

= + +− −

/ ~ ( , ) or more generally iid with zero mean & unit variance
(1) 

where rt is the logarithmic return on day t (defined as ln(It /It-1) where It is the market index 
on day t), σt is the standard deviation of rt, α and β are parameters satisfying 0 ≤ α ≤ 1,  0 ≤  
β ≤ 1, α + β ≤ 1 and ω2/(1 - α - β) is the long run variance. This is the simplest GARCH 
model in that it contains only one lagged term each in σ and r and uses the normal 
distribution. More general models can be obtained by considering longer lag polynomials in 
σ and r and using non normal distributions. 

Essentially, the GARCH model accommodates different stock market regimes by allowing 
the volatility of the market to vary over time. It also postulates that a large change in the 
index (whether positive or negative) is likely to be followed by other large changes in 
subsequent days. This effect is captured by using the squared return to update the estimated 
variance for the next day. In fact the posterior variance σt

2 is a weighted average of three 
quantities: (i) the long run variance ω2/(1 - α - β) with weight (1 - α - β), (ii) the prior 
variance σt-1

2 with weight β and (iii) the squared return rt-1
2 with weight α. The restrictions 

on the parameters α and β ensure that the weights are positive and sum to unity.  

A special case of the GARCH model arises when α + β = 1 and ω = 0. In this case, it is 
common to use the symbol λ for β and Eq 1 takes the simpler form 
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σ λ σ λ
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The variance estimate can in this case be also interpreted as a weighted average of all past 
squared returns with the weights declining exponentially ([1-λ], [1-λ]2, [1-λ]3 ...) as we go 
further and further back. Eq. 2 is therefore the Exponentially Weighted Moving Average 
(EWMA) model.  

Initial estimation of both Eq 1 and Eq 2 using the normal distribution indicated significant 
non normality. They were therefore estimated using the Generalised Error Distribution 
(GED) which was popularised in financial econometrics by Nelson (1991). The GED with 
zero mean and unit variance and tail parameter ν (0 < ν) is defined by the density: 
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The normal distribution is the special case where ν = 2. Low values of ν imply fatter tails 
than the normal while higher values imply thinner tails. In the GARCH estimates, the tail 
parameter ν of the GED was about 1.46 (as against the value of 2 for the normal distribution) 
implying fatter tails than the normal distribution. 

Empirical Results 

Model Estimation 

GARCH-GED Model: Estimation of the GARCH model (Eq 1) with GED residuals produced 
estimates of α and β of 0.100 and 0.886 respectively implying α + β equal to 0.986 while ν 
was estimated to be 1.46. The estimate of ω2 was 6.14E-06 implying a long run standard 
deviation of daily market return of about 2.1% which is close to the historical value. The log 
likelihood for this model was 4735. The log likelihood ratio test rejected the hypothesis of 
normality (ν = 2) very strongly (χ2 with 1 df = 52.9, P < 0.001%). 

EWMA-GED Model: Since α + β was close to 1, the model was re-estimated after imposing 
the restriction that ω = 0 thereby collapsing the GARCH model to the EWMA model (Eq 2) 
with GED residuals. The estimate of α (or λ) was 0.923 and ν was estimated to be 1.46. The 
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log likelihood for this model was 4722. Therefore, the log likelihood ratio test rejected this 
model in favour of model 2 above (χ2 with 1 df = 25.8, P < 0.001%). In this model also, the 
log likelihood ratio test rejected the hypothesis of normality (ν = 2)  very strongly (χ2 with 1 
df = 61.5, P < 0.001%). 

EWMA-RM Model: Since the value of λ in the EWMA-GED model is fairly close to the 
value of 0.94 used in the RiskMetrics® methodology of J. P. Morgan, the log likelihood was 
computed for this model also and found to be 4720. The likelihood ratio test was unable to 
reject this model as against the EWMA-GED model (χ2 with 1 df = 3.28, P = 7%). In this 
model also, the log likelihood ratio test rejected the hypothesis of normality (ν = 2)  very 
strongly (χ2 with 1 df = 62.7, P < 0.001%). 

Goodness of fit 

The performance of the GARCH-GED and the EWMA-GED models can be measured by 
examining the distribution of the standardised residuals rt/σt. The table below compares the 
summary statistics of the distribution of the standardised residuals with those of the normal 
distribution and GED. Figure 2 plots the density (tails) of the Garch-GED residuals (Gaussian 
kernel estimate with a bandwidth of 0.20 standard deviations) and compares it with the tails 
of the normal and GED densities. Figure 3 provides similar plots for the EWMA-RM 
residuals. These plots show mild departures from the GED for the GARCH-GED model and 
slightly more pronounced departures for the EWMA-RM model (observe the small hump 
between 3 and 4 standard deviations). 

 

 Expected Value  
based on  

GARCH -
GED  

EWMA -
GED 

EWMA-RM 

 Normal GED  
(ν = 1.46) 

   

Standard Deviation 1.00 1.00 1.00 1.06 1.05 
Quartile Deviation 1.35 1.20 1.24 1.29 1.27 
Skewness 0.00 0.00 -0.01 0.01 0.03 
Excess Kurtosis 0.00 0.85 1.94 1.78 1.76 
Maximum   4.70 4.27 4.33 
Minimum   -5.90  -6.42 -6.32 
Number beyond ± 5 ≈ 0 0.10 2 2 2 
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Figure 2 

 

Figure 3 

The standardised residuals from both the EWMA-GED and the GARCH-GED models have 
somewhat thinner waists and fatter tails than the GED distribution with ν = 1.46. Apart from 
this however, all three models appear to provide reasonably good fits to the data in terms of 
the above broad parameters. 
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Value at risk 

Many risk management models emphasise the calculation of Value at Risk (VaR) which is 
defined in terms of the percentiles of the distribution of asset values.  Where the asset is an 
open position in index futures or in diversified stock portfolios, the VaR computation reduces 
to the calculation of the percentiles of the distribution of market returns. Most VaR 
computations are based on the 1st, 5th and 10th percentiles. The table below shows the 
performance of the EWMA-GED and GARCH-GED models at these risk levels (the 
performance of EWMA-RM is very similar to that of EWMA-GED). It is seen that the 
GARCH-GED model does well at all risk levels while the EWMA models do well at the 10% 
and 5% levels but break down at the 1% risk level. 

 10% level 
two sided 

5% level 
two sided 

1% level 
two sided 

Percentile as number of standard deviations3 
(using GED with ν = 1.46) 

1.65 2.04 2.85 

Expected number of violations of VaR limit 178 89 18 
EWMA-GED: Actual number of violations 183 100 31 
EWMA-GED: Actual percentile 10.31% 5.63% 1.75% 
EWMA-GED: Significance test of actual versus 
expected 

Not 
significant 

Not 
significant 

Significant 
(P ≈ 0.17%) 

GARCH-GED: Actual number of violations 161 72 20 
GARCH-GED: Actual percentile 9.07% 4.06% 1.13% 
GARCH-GED: Significance test of actual 
versus expected 

Not 
significant 

Mildly 
Significant 
(P ≈ 3.90%) 

Not 
significant 

 

At even lower risk levels like 0.50% and 0.25%, the GARCH-GED model continues to do 
well while the EWMA models fares poorly as shown below: 

                                                 
3 The cdf of the GED has to be calculated by numerical integration of the GED density. The percentile can then 
be obtained by a simple one dimensional search procedure or by Newton-Raphson iterations. 
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 0.50% level 
two sided 

0.25% level 
two sided 

Percentile as number of standard deviations 
(using GED with ν = 1.46) 

3.18 3.49 

Expected number of violations of VaR limit 9 4 
EWMA-GED: Actual number of violations 15 11 
EWMA-GED: Actual percentile 0.85% 0.62% 
EWMA-GED: Significance test of actual versus 
expected 

Mildly 
Significant 
(P = 1.95%) 

Significant 
(P = 0.20%) 

GARCH-GED: Actual number of violations 13 7 
GARCH-GED: Actual percentile 0.73% 0.39% 
GARCH-GED: Significance test of actual 
versus expected 

Not 
significant 

Not 
significant 

 

Salvaging EWMA Models 

The above results show that though the estimated GARCH model is rather close to the 
EWMA models, the difference is statistically highly significant. Moreover, the EWMA 
models are less successful than full-fledged GARCH models in value at risk assessments at 
low risk levels.  

Nevertheless, EWMA models have several major advantages which make them attractive for 
practical use: 

1. EWMA involves nothing more complicated than a moving average which all market 
participants are familiar with. Therefore the model has the advantage of simplicity and 
ease of understanding.  

2. EWMA models also have far greater tractability when extended to the multivariate case 
since the same exponential moving average technique can be applied as easily to 
correlations as to variances. Multivariate GARCH models by contrast are more complex 
and computationally more demanding. 

3. GARCH models involve an estimate of the long run volatility. When the market 
undergoes structural changes, this long run volatility can also change. Since EWMA 
models do not involve any notion of a long run volatility at all, they are more robust under 
regime shifts. 

It is therefore worthwhile to see whether it is possible to salvage the EWMA models by 
making some suitable adjustments. The starting point for any such adjustment is the 
distribution of the standardised residuals rt/σt which we have already examined earlier. The 
plots of the density of the standardised residuals showed only mild departures from the GED 
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for the GARCH-GED model (Figure 2). In case of the EWMA model (Figure 3) we observed 
a small hump in the density between 3 and 4 standard deviations. It turns out that for value at 
risk purposes at most common risk levels, the mild departures of the GARCH-GED residuals 
from the GED are unimportant. However, in case of the EWMA, the hump in the density 
becomes important at low risk levels.  

The clue to salvaging the EWMA models lies here. The hump in the density plot must be 
taken into account while using EWMA models for value at risk purposes. For example, while 
the GED suggests that 1% value at risk estimates can be obtained by using 2.85 standard 
deviations, the hump suggests that we must use a slightly higher value - say 3 standard 
deviations. In fact, use of 3 standard deviations is a normal rule of thumb for distributions 
with a moderate degree of non normality. 

Using the 3 standard deviations rule, we find that the 1% VAR limit was crossed 22 times as 
against the expected number of 18 violations. The hypothesis that the true probability of a 
violation is 1% cannot be rejected at even the 5% level of statistical significance though we 
have a sample size of over 1750. The actual number of violations is therefore well within the 
allowable limits of sampling error. In the terminology of the Bank for International 
Settlements4, these numbers are well within the “Green Zone” where the “test results are 
consistent with an accurate model, and the probability of accepting an inaccurate model is 
low”.  

Margins 

Based on a similar analysis, the author recommended5 that margins levied by the derivatives 
exchanges for the proposed index futures contracts should be based on the EWMA-RM 
model. Since the volatility estimates are for the logarithmic return, the ± 3 σ limits for a 99% 
VAR would specify the maximum/minimum limits on the logarithmic returns not the 
percentage returns. To convert these into percentage margins, the logarithmic returns would 
have to be converted into percentage price changes by reversing the logarithmic 
transformation. Therefore the percentage margin on short positions would be equal to 
100(exp(3σt)-1) and the percentage margin on long positions would be equal to 
100(1-exp(-3σt)). This implies slightly larger margins on short positions than on long 
positions, but the difference is not significant except during periods of high volatility where 
the difference merely reflects the fact that the downside is limited (prices can at most fall to 
zero) while the upside is unlimited. 

                                                 
4 Supervisory framework for the use of ‘backtesting’ in conjunction with the internal models approach to 
marker risk capital requirements, Basle Committee on Banking Supervision, January 1996 

5 Varma, J. R., Chairman (1999), Report of the Committee on Risk Containment in the Derivatives Markets, 
Securities and Exchange Board of India, Mumbai. 
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The market movements, margins and margin shortfalls based on this approach are shown 
graphically in Figure 4. The summary statistics about the actual margins on the sell side are 
tabulated below. 

 

Sell Side Margins 
Summary Frequency Distribution 
Average Max Min < 5% 5 - 10% 10 - 15% 15 - 20% > 20% 

5.49% 21.73% 2.04% 52.51% 41.75% 4.17% 1.35% 0.23% 

 

A Closer Look at VAR Violations 

Taking a closer look at the actual violations (See Figure 5), it is seen that most of the 
violations take place when the market move is large and the violation is typically a small 
fraction of the market move. This implies that in most cases, the model is able to correctly 
forecast that the markets are in a volatile period and step up the margins accordingly to 
protect market integrity.  

There are only two exceptions to this pattern. The first exception is March 31, 1997 when the 
sudden withdrawal of support to the then government by the major supporting party led to a 
sharp fall in the market. This is the kind of event risk which a statistical model cannot predict 
and against which the only protection can be a second line of defence (broker net worth). The 
second exception is October 28, 1997 when the global equity meltdown triggered by sharp 
falls in the Asian markets and in the US market drove the Indian market also down.  

It is conceivable, though by no means certain, that more sophisticated statistical models 
which can estimate volatility contagion across several financial markets could have provided 
better protection against the market drop of October 28, 1997. The development of 
multivariate models of volatility estimation that can account for such contagion is a topic for 
further research. Practical utility of such a model would however be contingent on the ability 
of the derivatives exchange / clearing corporation to make a margin call shortly before the 
market opens in Mumbai based on the market movement in New York (previous day close), 
Tokyo (same day close) and Hong Kong (same day morning session). 
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Nifty returns plotted against confidence limits of 3 standard deviations
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Figure 4 
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