
* Corresponding author e-mail: saralm@iimahd.ernet.in 1
1 e-mail: ac@iimcal.ac.in

Applying machine based decomposition in 2-machine Flow Shops

Saral Mukherjee* and A. K. Chatterjee1

Indian Institute of Management Ahmedabad, India,

Indian Institute of Management Calcutta, India

Abstract

The Shifting Bottleneck (SB) heuristic is among the most successful

approximation methods for solving the Job Shop problem. It is essentially a

machine based decomposition procedure where a series of One Machine

Sequencing Problems (OMSPs) are solved. However, such a procedure has

been reported to be highly ineffective for the Flow Shop problems (Jain and

Meeran 2002). In particular, we show that for the 2-machine Flow Shop

problem, the SB heurisitc will deliver the optimal solution in only a small

number of instances. We examine the reason behind the failure of the

machine based decomposition method for the Flow Shop. An optimal

machine based decomposition procedure is formulated for the 2-machine

Flow Shop, the time complexity of which is worse than that of the celebrated

Johnson’s Rule. The contribution of the present study lies in showing that the

same machine based decomposition procedures which are so successful in

solving complex Job Shops can also be suitably modified to optimally solve

the simpler Flow Shops.

Keywords: Shifting Bottleneck heuristic, Machine based decomposition,

Johnson’s Rule

1. Introduction

 A Job Shop is a manufacturing scenario where a number of general-purpose machines are

available for processing a variety of jobs. Each job consists of a number of operations,

2

which must be processed according to a predefined sequence. Each operation can be

processed on only one machine and the time required for processing is deterministic.

While there are precedence constraints among operations belonging to the same job, there

are no precedence constraints among operations belonging to different jobs. Preemption

of operations is not allowed. Each machine can process only one operation at a time and

at any instant no more than one operation of a particular job can be undergoing

processing. The problem is to find the schedule, which minimizes the maximum

completion time of all operations, also termed as makespan. The schedule can be either

defined in terms of an exhaustive list of start times of all operations, or can be

equivalently defined by the job sequence of each machine.

The Shifting Bottleneck heuristic proposed by Adams et al. (1988) has emerged as one of

the most successful approximation methods for solving the general Job Shop. It uses a

decomposition procedure that focuses on the machines, not the jobs. In contrast, a priority

dispatching rule-based system looks for the job/operation with the highest priority

(according to say SPT or FCFS rule etc.) among the jobs/operations available for

scheduling on a machine at a scheduling instant. Similarly, a schedule is characterised as

active, semi-active or non-delay based on particular characteristics of the operations. This

focus on jobs and operations is distinctly different from the machine based decomposition

procedure of the SB heuristic.

A Flow Shop can be viewed as a special case of a Job Shop where the processing

sequence is same for all jobs. Flow Shops arise in real life situations whenever there is a

material handling system like conveyor belt that feeds the machines, or in chemical

process industries where job passing is not allowed. Following Conway (1967), we

denote the n job 2 machine Flow Shop problem with minimisation of makespan objective

as the n/2/F/Cmax problem. In his seminal paper in 1954, Johnson dealt with the problem

of minimising makespan in the n/2/F/Cmax problem and the n/3/F/Cmax problem under

some special cases. The optimal procedure of Johnson can be seen as a job-based

procedure. Heuristics have been developed by several authors for the n/m/F/Cmax problem

along similar lines, the focus being on characteristics of jobs. Since a Flow Shop is a

particular case of the general Job Shop, it should be a natural candidate for the

3

application of SB heuristic. However, machine based decomposition procedures have not

yielded good results for the Flow Shop problem (Demirkol et. al 1997), (Jain and Meeran

2002). In particular, Jain and Meeran (2002) note that Shifting Bottleneck

implementations of Demirkol et. al (1997) “have difficulty solving F shop problems”. It

is interesting to note that a successful solution procedure for the more general Job Shop

problem is unable to provide good solutions to the more restricted Flow Shop problem.

This is the inspiration for the current work. Can a machine based decomposition

procedure obtain the known results for the “simplest” of the Flow Shop problems without

taking any help from the established literature on dominance conditions?

In the following sections we first show that the SB heuristic will fail to find optimal

results for a majority of problem instances for the n/2/F/Cmax problem and then provide

an optimal solution procedure for the same. Section 2 presents a brief survey of literature

followed by some preliminary results in section 3. In section 4, we present a modification

of the Schrage scheduling heuristic and illustrate the workings with the help of an

example. This modification is an essential part of the DSP algorithm, presented in section

5, for solving the n/2/F/Cmax problem. In section 6, we describe several characteristics of

the schedule returned by the DSP algorithm, which are helpful in proving the optimality

of the DSP algorithm in section 7. The convergence and complexity results for the DSP

algorithm are presented in section 8. Finally, we conclude with section 9.

2. Literature Review

 The solution approaches to Job Shop scheduling can be classified as either exact or

approximation methods. Branch and Bound (B&B) approaches have been the most

successful among exact methods, the other approaches which have been tried out with

limited success being Lagrangian relaxation based (Fisher et al. 1983). Prominent B&B

applications include those by Carlier and Pinson (1989) and Brucker et al. (1994).

 The most widely used approximation method has been the application of a huge number

of priority dispatching rules. The survey paper of Panwalkar and Iskander (1977)

describes 113 such rules. Perhaps the most well known approximation algorithm in

4

scheduling research has been the Shifting Bottleneck (SB) heuristic of Adams et al.

(1988). It sets up and solves a series of One Machine Sequencing Problems (OMSPs).

Carlier (1982) provided a very efficient branch and bound solution procedure for solving

the OMSP when all operations are independent. Dauzere-Peres and Lasserre (1993)

incorporated delayed precedence constraints while solving the OMSP heuristically.

Subsequently an optimal branch and bound procedure was provided by Balas et al.

(1995). Computational studies of several variants of the SB heuristic have been reported

by Holtsclaw and Uzsoy (1996) and Demirkol et al. (1997). The Generalised SB heuristic

of Ramudhin and Marier (1996) implemented SB based approaches in diverse production

scenarios. Other versions of this heuristic applied to different scheduling problems

include Demirkol and Uzsoy (1998) for re-entrant Flow Shops with sequence dependent

set up times, Pinedo and Singer (1996) for minimizing total weighted tardiness in Job

Shops and Sun and Noble (1999) for minimizing the weighted sum of squared tardiness

in a Job Shop with sequence dependent set up times.

A Flow Shop can be viewed as a special case of a Job Shop where the processing

sequence is same for all jobs. Apart from providing optimal methods for the n/2/F/Cmax

problem and certain special cases of the n/3/F/Cmax problem, Johnson (1954) showed that

it is sufficient to consider only permutation schedules for flow shop cases whenever there

are fewer than four machines. Subsequently, the research on Flow Shops concentrated on

finding various dominance conditions for the n/3/F/Cmax problem (Szwarc 1978).

Prominent solution methods for the n/m/F/Cmax problem include, among others, those by

Campbell et al. (1970), Nawaz et al. (1983), Hundal and Rajagopal (1988) and Osman

and Potts (1989). Compared to the amount of attention devoted to the permutation Flow

Shop, comparatively less attention has been paid to the non-permutation Flow Shop.

Since the SB heuristic has no in-built explicit mechanism to return permutation

sequences, it seems to be a natural candidate for solving the non-permutation Flow Shop.

Demirkol et al (1997) report the effect of different versions of the SB heuristic on Flow

Shops. However, the results are not encouraging and substantial improvements in

makespan are reported by the application of a multi level hybrid framework in Jain and

Meeran (2002).

5

3. Preliminary results

 The SB heuristic can be seen as a particular sequence of solving machine based

decompositions. Starting with an empty schedule (one where none of the machines is

sequenced), SB heuristic constructs a final schedule by fixing the sequence on each

machine, one at a time. At each iteration a bottleneck machine, Mk, among those not yet

sequenced, is identified and the sequence on this machine is fixed by the sequence Sk.

Identification of bottleneck machine Mk and the sequence Sk are achieved by solving a

certain one machine scheduling problem (OMSP). The OMSP is concerned with

scheduling a set of operations on a machine so that the maximum lateness of any

operation is minimized. Each operation Oik has a release time rik, a processing time pik

and a due date fik. Dauzere-Peres and Lasserre (1993) have shown that delayed

precedence constraints could exist between operations to be processed on a particular

machine in a Job Shop, when the OMSP is set up as part of the SB heuristic. We now

prove that such a situation cannot arise in a Flow Shop. Since, in a m-machine Flow

Shop, the sequence M1-M2-…-Mm of machines that a job needs for processing is fixed for

all jobs; we define a machine Mj to be a upstream (downstream) machine from Mi if i > j

(i < j). It is apparent from the disjunctive graph representation of the Flow Shop that a

conjunctive arc will always connect an operation on an upstream machine with another

operation on the immediate downstream machine.

Lemma 1: Delayed Precedence Constraints (DPCs) cannot arise in an OMSP

created for a machine in a Flow Shop

Proof: We denote by Oik the operation of job Ji to be processed on machine Mk. The

existence of DPCs would mean there exists at least two paths between operations Oik and

Ojk to be processed on the machine Mk. One path will consist entirely of disjunctive arcs

joining operations to be performed on machine Mk. All the other paths will include at

least one conjunctive arc. Hence, such a path will have an operation Orq to be performed

on a machine Mq which is both upstream (since Orq is a predecessor of Ojk) and

downstream (since Orq is a successor of Oik) from machine Mk. But a machine can not be

6

both upstream and downstream from another machine in a Flow Shop. Hence the

contradiction. ■

Lemma 1 implies that the procedure of Carlier (1982) is optimal for solving an OMSP

created in a Flow Shop. Carlier’s algorithm utilises the Schrage schedule to provide an

initial solution and then branches by identifying a critical job. We give below an outline

of the Schrage schedule created for the OMSP. The input to the Schrage schedule is an

OMSP where for each operation Oik of Job Ji to be scheduled on that machine Mk, the

release time rik, processing time pik and the “tail” qik are known.

Schrage schedule for machine Mk

Let U be the set of operations already scheduled and U' the set of operations yet to

be scheduled, t is the scheduling instant and Ik is the index set of all operations to

be scheduled on Mk.

1. Set t = Mini∈I rik; U = φ and U' = Ik.

2. At time t, schedule amongst the ready operations (i.e. operation Oik such

that rik ≤ t, i∈U'), the operation Ojk with greatest qjk (or any one in case of

ties).

3. Set U = U ∪ {j} and U' = U' \ {j}. Set t = Max (t +pjk; Mini∈U' rik,). If U' =

φ. STOP. Else go to 2.

Note that in the situation where release dates are same for all jobs, the Schrage schedule

results in the Earliest Due Date (EDD) sequence. However, for the case where all due

dates are same, the Schrage schedule is difficult to characterise as ordering of operations

is not uniquely defined when all operations have the same qjk values and hence would

depend on the actual implementation. In case the First Come First Served (FCFS) rule is

utilised for choosing the next operation in Step 2, the Schrage heuristic is equivalent to

scheduling the operations according to the non-decreasing order of their release times

(equivalently, the FCFS rule). It is further known (Pinedo 1995) that the EDD rule is

7

optimal for the OMSP when all release times are same. When all due dates are same, the

optimality of the Schrage schedule and equivalently that of the FCFS rule can be derived

from the branch and bound procedure of Carlier (1982).

The SB heuristic begins with none of the machines scheduled. At every step it sets up and

solves an OMSP with minimisation of Lmax objective for each unscheduled machine and

then fixes the sequence for the machine with the highest Lmax value. Since for the

n/2/F/Cmax problem there are only two machines, let the machine with the highest Lmax

value be identified as MHL and the other machine as MLL.

Lemma 2: If the SB heuristic chooses sequence S = (J1,J2,…Jn) on machine

MHL then the sequence for the machine MLL will also be S.

Proof: Without loss of generality, let machine M2 be the machine with the highest Lmax

value and the sequence S2 = O12-O22-…-On2 is set on machine M2. Since each job has

only one operation to be performed on M2, the sequence S2 can also be equivalently

represented by J1-J2-…-Jn. The disjunctive graph representation at this stage is shown in

Fig. 1.

Fig. 1

Let Cmax be the makespan value at this stage. We now consider the OMSP for machine

M1. The OMSP data is shown in Table 1.

S

O11 O12

O21 O22

T

On1 On1

8

Table 1: OMSP data for machine M1

ri1 pi1 qi1

O11 0 p11 p12+p22+…+pn2

O12 0 p21 p22+p32+…+pn2

… … … …

… … … …

On2 0 pn1 pn2

Since all release dates are same, the optimal schedule is given by the EDD rule. Since

processing times are nonnegative and the due date fik and qik values for operation Oik are

related by the equation fik = Cmax – qik, the optimum sequence for the OMSP is given by

S1 = J1-J2-…-Jn. Thus S1 = S2. A similar analysis can be done to show S1 = S2 when

machine M1 is the machine with highest Lmax value, noting that the optimal schedule for

M2 would be given by the FCFS rule and all processing times are non negative. Hence the

result follows. ■

Lemma 2 implies that once a sequence is set for any machine in a 2-machine Flow Shop,

this sequence dictates the sequence on the other machine. It follows then that the

reoptimisation step of the SB heuristic will fail to alter the sequence on any machine.

Thus the result of applying the SB heuristic to 2-machine Flow Shops is either a sequence

obtained by scheduling the operations on M1 according to EDD rule or a sequence

obtained by scheduling the operations on M2 according to the FCFS rule.

The next lemma (Pinedo 1995) provides a characterisation of the optimal schedule.

Partition the set of jobs J into two sets S1 and S2 such that S1 contains all jobs with pi1 <

pi2, where pij represents the processing time of operation Oij of Job Ji performed on

machine Mj. Similarly, S2 contains all jobs with pi1 > pi2. The jobs with pi1 = pi2 may be

in either set. We denote by SPT1(S1)-LPT2(S2) a schedule formed by arranging the jobs in

S1 according to the Shortest Processing Time (SPT) rule applied on pi1, i∈S1 and then the

jobs in S2 according to the Longest Processing Time (LPT) rule applied on pi2, i∈S2.

9

Lemma 3: Any SPT1(S1)-LPT2(S2) schedule is optimal for n/2/F/Cmax

problem. (Pinedo 1995)

Let SPT1(J) denote the schedule obtained by ordering all jobs in set J according to the

shortest processing times on machine M1. LPT2(J) is similarly defined. For the next

theorem, we consider that the implementation of the SB heuristic incorporates the FCFS

rule while choosing among ready operations in Step 2 of the Schrage heuristic.

Theorem 1: The SB heuristic will deliver the optimal schedule for the

n/2/F/Cmax problem only if any one of the following conditions

hold: (i) S1 = φ and MHL = M1 (ii) S2 = φ and MHL = M2 (iii)

SPT1(S2) = LPT2(S2) and pi1 > pj1 ∀i∈S2 and ∀j∈S1 and MHL = M2

and (iv) LPT2(S1) = SPT1(S1) and pi2 > pj2 ∀i∈S1 and ∀j∈S2 and

MHL = M1.

Proof: Let S be the sequence selected for the bottleneck machine in first step. Then using

Lemma 2, the same sequence S will be selected for the other machine and there would be

no further changes in the sequence on either machine during the subsequent steps of the

SB heuristic. It is well known (Pinedo 1995) that the optimal sequence S for an OMSP

with same release time for all jobs is given by the EDD rule. Since at this scheduling

instant all machines are unscheduled, qi1 = pi2 and fi1 = Cmax – qi1 for any operation Oi1 to

be performed on M1. Thus sequencing of operations on M1 according to EDD rule is

equivalent to sequencing the operations according the LPT2(J) rule. Hence if the first

bottleneck machine is M1 then S is according to LPT2(J). Similarly, if the first bottleneck

machine is M2 then S is according to non-decreasing release times of operations on M2,

which is equivalent to applying the SPT1(J) rule. Hence the SB heuristic will result in

either a SPT1(J) or an LPT2(J) schedule, depending on the machine identified as the

bottleneck in the first step. However, as pointed out in Lemma 3, the optimum sequence

for the n/2/F/Cmax problem has the structure SPT1(S1)-LPT2(S2). Hence the SB heuristic

will result in an optimal solution only when any one of the following conditions hold: (i)

S1 = φ and MHL = M1 (ii) S2 = φ and MHL = M2 (iii) SPT1(S2) = LPT2(S2) and pi1 > pj1

10

∀i∈S2 and ∀j∈S1 and MHL = M2 and (iv) LPT2(S1) = SPT1(S1) and pi2 > pj2 ∀i∈S1 and

∀j∈S2 and MHL = M1. ■

Let the processing time of an operation be chosen as one of {1, 2,…, N}. Then the total

number of ways in which two numbers pi1 and pi2 can be chosen such that pi1 ≥ pi2 is

given by T = 1+…+N = N(N+1)/2. Hence the probability that pi1 ≥ pi2, ∀i∈ J is

(N(N+1)/2N2}n = ((N+1)/2N)n ≅(1/2)n for large N. Hence the probability that S1 = φ is

given by (1/2)n. For large n, this probability is negligible. It can be shown similarly that

the probability of S2 = φ and hence that of occurrence of the second condition is

negligible for large n.

For calculating the probability of occurrence of the third condition, let u = card(S1) and v

= card(S2) be the cardinality of S1 and S2 respectively. We consider the case where, given

the set S1, the processing times {p11, p12, p21, p22, p31, p32 … pv1, pv2} of jobs belonging to

S2 are chosen such that (i) p11 > p12, p21 > p22, …, pv1 > pv2 and (ii) p12 ≥ p22 ≥ p32 … ≥ pv2

and (iii) p11 ≤ p21 ≤ p31 … ≤ pv1. Furthermore, let 1imax pk
1Si∈= . Thus the probability of

occurrence of SPT1(S2) = LPT2(S2) and pi1 > pj1 ∀i∈S2 and ∀j∈S1 is given by

[Prob(card(S1) = u)]*[Prob(p11 > p12)*Prob(p11 > k)]*[Prob(p21 > p11)*Prob(p22 ≤

p12)]*…*[Prob(pv1 > p(v-1)1)*Prob(pv2 ≤ p(v-1)2)]

][][][)])
2
1[(])

2
1[(1)2(v-1)1(v-22211211

N
p

N
p-N

.....
N
p

N
pN

N
p

N
pN

N
kNu ××××

−
××

−
×

−
××=

][....][][])
2
1[(])

2
1[(121)1(v-121)1(v-121)1(v-1)1(v

N
p

N
p-N

N
p

N
pN

N
p

N
pN

N
pNu ××××

−
××

−
×

−
××≤ −

1vv1u

N
p

N
pN

−−+ ×
−

×=)()()
2
1(121)1(v

1vv1u

N
p

N
pN −+ ×

−
×≤)()()

2
1(1212

11

1v1u Y)
N

pN −+ ×
−

×= 12()
2
1(where

N
p

N
pN

Y 1212 ×
−

= .

1v1u Y −+ ×≅)
2
1(for large N.

1-vn+≤)
2
1(since Y is maximised when p12 = N/2.

Hence for large n, the probability of occurrence of SPT1(S2) = LPT2(S2) and pi1 > pj1

∀i∈S2 and ∀j∈S1 is negligible. A similar analysis can be done to show that the

probability of occurrence of the fourth condition is also negligible. Thus the SB heuristic

will fail to deliver the optimal solution in most instances of the n/2/F/Cmax problem.

We will now show that a slight modification of the SB heuristic will solve the n/2/F/Cmax

problem optimally. For this we need to take advantage of the structural nature of the flow

shop. We adapt Schrage schedule to this environment and propose a completely different

branching scheme.

4. Modifications to the Schrage schedule

We use some structural properties of the Flow Shop to modify the Schrage scheduling

heuristic. It is well known that for the n/2/F/Cmax problem it is sufficient to consider

permutation sequences for optimality (Johnson 1954). Suppose we are interested in

solving an OMSP for machine M2. Lemma 2 indicates that fixing the operation sequence

for M2 automatically fixes the same sequence for M1. Hence at any scheduling instant of

the Schrage algorithm, we can take help of this additional information and dynamically

update the release time data for the operations on M2. This is primary inspiration for

modifying the Schrage algorithm for the n/2/F/Cmax problem. We call this modified

approach as the Dynamic Schrage heuristic. We select the operation Oi2 with largest

processing time pi2 in case of a tie.

For solving the n/2/F/Cmax problem, the steps involve setting up an OMSP for machine

M2 and then applying the Dynamic Schrage heuristic to schedule it. We could have as

12

well chosen machine M1, which would have necessitated defining a Dynamic Schrage

heuristic for machine M1, where instead of dynamically updating the release times, we

would have dynamically updated the q values.

Dynamic Schrage heuristic for M2 in n/2/F/Cmax problem

Let U be the set of operations already scheduled on machine M2 and U' the set of

operations yet to be scheduled, t is the scheduling instant and I2 is the index set of

all operations.

1. Set t = Mini∈I ri2; U = φ and U' = I2.

2. At time t schedule amongst the ready operations (i.e. operation Oi2 such

that ri2 ≤ t, i∈U' and all predecessors of Oi2 have been scheduled), the

operation Oj2 with greatest qj2 (or the operation with the greatest pj2 in case

of ties).

3. Set U = U ∪ {j} and U' = U' \ {j}. Update release dates of all unscheduled

operations i.e. set ri2 = ri2 + pj1; ∀i∈U'. Set t = Max (t +pj2; Mini∈U' ri2). If

U' = φ, set the sequence returned on both the machines. STOP. Else go to

2.

Corresponding to the operation sequence returned by the Dynamic Schrage heuristic for

M2, the equivalent job sequence is identified and implemented on M1 to obtain a complete

schedule for the n/2/F/Cmax problem. As noted in Lemma 1, DPCs do not exist in Flow

Shops. Still, we explicitly check for any predecessor operation in Step 2 as the DSP

algorithm, which we propose in section 5, may constrain some jobs to succeed some

other jobs.

Example 1: Consider a 4 job 2 machine flow shop problem with processing time data as

given in Table 2. The OMSP data for machine M2 is given in Table 3.

13

Table 2: Processing times for a 4 job 2 machine Flow Shop

M1 M2

J1 6 3

J2 5 9

J3 4 3

J4 1 3

Table 3: OMSP data for machine M2

ri2 pi2 qi2

O12 6 3 0

O22 5 4 0

O32 4 9 0

O42 1 3 0

Initialisation Step: U = φ and U' = {O12, O22, O32, O42} with t = 1. At time t = 1, only

operation O42 is available for scheduling. Hence operation i42 is scheduled. Set U = {O42}

and U' = {O12, O22, O32}. The release times of jobs O12, O22 and O32 are updated to 7,6

and 5 respectively. Scheduling instant t is updated to 5. At time t = 5, only operation O32

is available for scheduling. Hence operation O32 is scheduled. Set U = {O42, O32} and U'

= {O12, O22}. The release times of operations O12 and O22 are updated to 11 and 10

respectively. Scheduling instant t is updated to 14. At time t = 14, both operations O12

and O22 are available for scheduling. Both these operations have qij = 0 but operation O22

has a higher processing time. Hence operation O22 is scheduled. Set U = {O42, O32, O22}

and U' = {O12}. The release times of operation O12 is updated to 16. Scheduling instant t

is updated to 18. At time t = 18, only operation O12 is available for scheduling. Hence

operation O12 is scheduled. Set U = {O42, O32, O22, O12} and U' = {φ}. STOP. The job

sequence returned by the Dynamic Schrage heuristic is J4-J3-J2-J1. This sequence is

implemented on both the machines, i.e. sequence S1 = O41-O31-O21-O11 on M1 and S2 =

O42-O32-O22-O12 on M1.

14

In general the sequence returned by the Dynamic Schrage heuristic need not be the

optimal schedule. We would be presenting in the next section an algorithm that will

always return an optimal schedule for the n/2/F/Cmax problem. This algorithm will use the

Dynamic Schrage heuristic as its core. Before we describe that algorithm we need to

define certain terminology. Let the same sequence S' be implemented on both machines

of an n job 2 machine Flow Shop. The resulting critical path(s) (CPs) will have one of the

three possible structures shown in Fig. 2, Fig. 3 and Fig. 4.

Fig. 2: Structure RD…D

Fig. 3: Structure D…DR

Fig. 4: Structure D…DRD…D

15

In each of these figures, the critical path is shown by bold lines. The names of the

structures are a description of the path by which one can move from the start node to the

finish node along the critical path. Here D stands for a downward movement and R stands

for moving right. We next define a pivot job as follows.

Pivot Job: For the n job 2 machine Flow Shop with the sequence S = (J1, J2, …, Jn)

implemented on both the machines, the pivot job is identified as the job through whose

conjunctive arc the critical path passes from machine M1 to M2. In case of the existence of

multiple critical paths, the pivot job is the first job in the sequence through whose

conjunctive arc the critical path passes from machine M1 to M2.

Thus the pivot job is the job with both of its operations on the critical path. Note that at

least one pivot job will exist for any feasible solution to the n job 2 machine flow shop.

Multiple pivot jobs can exist if the schedule gives rise to multiple critical paths in the

resulting digraph.

5. Proposed optimal method for solving the n/2/F/Cmax problem

We first present the optimal method and then provide two examples. The first example

shows that the optimal schedule returned by this procedure can result in a sequence

different from that provided by Johnson’s Rule. The second example is included to

illustrate the steps involved.

Dynamic Schrage with pivoting (DSP)

Step 1. Apply Dynamic Schrage on M2.

Step 2 If S is the sequence obtained, apply S on both the machines. Identify the critical

paths in the resulting digraph. If any CP structure is RD...D, the schedule is

optimal. STOP. Else identify the pivot job Jk. Among the jobs that precede Jk in

the CP, find job Jj such that (1) pj2 < pj1 and (2) pj2 < pk2. If Jj does not exist, the

16

current sequence is optimal. STOP. Else, constrain all such jobs to be processed

after Jk in all subsequent iterations. Go to Step 1.

Example 2: The processing times for 7 jobs on 2 machines is given in Table 4.

Table 4: Processing times for a 7 job 2 machine Flow Shop

M1 M2

J1 6 3

J2 2 9

J3 4 3

J4 1 8

J5 7 1

J6 4 5

J7 7 6

Johnson's Rule gives the optimum sequence as J4-J2-J6-J7-J1-J3-J5 or J4-J2-J6-J7-J3-J1-J5

with Cmax = 36. Dynamic Schrage for machine M2 returns the solution J4-J2-J7-J6-J1-J3-J5.

By implementing this sequence for both machines we see that the CP structure is RD…D.

Hence this sequence is optimal. Indeed, this solution gives Cmax = 36. Note that in this

example an optimal solution is found out which is different from those identified by

Johnson's Rule.

Example 3: The processing times for 5 jobs on 3 machines is provided in Table 5.

Table 5: Processing times for a 5 job 2 machine Flow Shop

M1 M2

J1 1 2

J2 4 3

J3 8 4

J4 9 5

J5 13 6

17

Johnson's Rule gives the optimum sequence as J1-J5-J4-J3-J2 with Cmax = 38. Dynamic

Schrage for machine M2 returns the solution J1-J2-J3-J4-J5. The structure of CP is

D…DR. The pivot job is J5. Jobs J2, J3, J4 are constrained to occur after J5. Dynamic

Schrage on M2 now gives J1-J5-J2-J3-J4. The structure of CP is D…DRD…D. The pivot

job is J3. Job J2 is constrained to occur after J3. Dynamic Schrage on M2 now gives J1-J5-

J3-J2-J4. The structure of CP is D…DR. The pivot job is J4. Job J3 is constrained to occur

after J4. Dynamic Schrage on M2 now gives J1-J5-J4-J3-J2. The structure of CP is both

D…DR and D…DRD…D. The pivot job is J3. No job to select. Hence this sequence is

optimal.

6. Characteristics of the schedule returned by the DSP algorithm

In this section we describe several characteristics of the schedule returned by the DSP

algorithm. Let Jk be the pivot job in the schedule returned by the proposed method and let

set JS1 contain the jobs preceding the pivot job and JS2 contain the jobs succeeding the

pivot job. Hence if J denotes the set of jobs to be processed, then J = JS1∪JS2∪{Jk}. The

set JS2 comprises of two types of jobs – jobs that were scheduled after Jk because they

were constrained to occur after Jk in an earlier iteration and jobs for which no such

constraint existed. Let JSC denote the set of jobs, which were constrained to occur after Jk

in the final schedule and let JSD denotes all other jobs. Then, JS2 = JSC∪JSD.

Lemma 4 In the schedule returned by the DSP algorithm, (i) pi1 ≤ pk1, ∀i ∈JS1 and

(ii) pi1 ≥ pk1, ∀i ∈JSD.

Proof: Let the operation Oj2 immediately precede the operation Ok2 in the final schedule.

Let t' and t'' be the scheduling instants when the operations Oj2 and Ok2 were scheduled

on M2. We note that according to Step 3 of the Dynamic Schrage heuristic, the scheduling

instant is updated setting t'' = max (t' +pj2; mini ∈ U' ri2,) and in Step 2 of the next iteration,

the next operation to be scheduled is selected from the ready operations (i.e. operation Oi2

18

such that ri2 ≤ t'', i∈U'). Since the critical path passes through conjunctive arc Ok1-Ok2, t''

> t' +pj2 and the machine M2 was idle at time t''-1.

Part (i): Let there exist, in the final schedule, a job Jm preceding pivot job Jk, such that

pm1 > pk1. Let t''' be the scheduling instant when Om2 was scheduled on M2 by the

Dynamic Schrage heuristic and since all processing times are strictly positive, t''' < t''.

Since pk1 < pm1, the job Jk was a ready job at scheduling instant t'''. Hence the job Jk was

available for scheduling at scheduling instant t''-1, which is a contradiction.

Part (ii): Since at time t'', the set of ready jobs consisted of all jobs i for which pi1 =

minm∈J\U' pm1; we have as a result pi1 ≥ pk1, ∀i ∈JSD. ■

Lemma 5 For the scheduled returned by the DSP algorithm, if pk1 ≤ pk2, then pi1 ≤

pi2; ∀i ∈JS1.

Proof: Let there exist i ∈JS1 for which pi2 < pi1. Then, pi2 < pi1 ≤ pk1 ≤ pk2 using Lemma

4. Then, (i) pi2 < pi1 and (ii) pi2 < pk2 would imply that another iteration of the DSP

algorithm should have been carried out where job Ji would have been constrained to

occur after Jk, which is a contradiction. Hence pi1 ≤ pi2; ∀i ∈JS1. ■

Lemma 6 For the scheduled returned by the DSP algorithm, if pk1 ≤ pk2, then pi1 >

pi2; ∀i ∈Q, where Q = {i: i ∈ JS2 and pi* < pk*}.

Proof: Since JS2 = JSC∪JSD, and Q is a subset of JS2, either i ∈JSC or i ∈JSD, ∀i∈Q. If i

∈ JSC, pi1 > pi2; ∀i ∈ Q since pi1 > pi2; ∀i ∈ JSC by construction. Else if i ∈JSD, then pi1 ≥

pk1, ∀i ∈JSD using Lemma 7.4. Additionally pi* < pk1 ∀i ∈ Q, since pk1 ≤ pk2. But since

pi1 ≥ pk1, ∀i ∈ JSD, pi2 < pi1; ∀i ∈ Q. ■

Lemma 7 For the scheduled returned by the DSP algorithm, if pk1 ≥ pk2, then pi1 <

pi2; ∀i ∈Q, where Q = {i: i ∈JS1 and pi* < pk*}.

19

Proof: Let there exist i ∈ Q for which pi1 > pi2. Hence pi* = pi2 and pk* = pk2 since pk1 ≥

pk2. Then, (i) pi2 < pi1 and (ii) pi* < pk* would imply that another iteration of the DSP

algorithm should have been carried out where job Ji would have been constrained to

occur after Jk, which is a contradiction. Hence pi1 ≤ pi2; ∀i ∈ Q. ■

Lemma 8 For the scheduled returned by the DSP algorithm, if pk1 ≥ pk2, then (i) JSD

= φ, (ii) pi2 < pi1; ∀i ∈ JS2 and (iii) pi2 < pk2; ∀i ∈ JS2

Proof: Let job Jm immediately succeed pivot job Jk and job Jn immediately succeed job

Jm. Since the critical path passes through the conjunctive arc Ok1-Ok2, the length of the

path from Ok1 to Om2 via Om1 is smaller than the path from Ok1 to Om2 via Ok2.

⇒ pk1 + pm1 < pk1 + pk2

⇒ pm1 < pk2

⇒ pm1 < pk1 since pk2 ≤ pk1

Hence m ∈ JSC, as otherwise, if m ∈ JSD then using Lemma 4 pm1 ≥ pk1, which is a

contradiction.

Again, since the critical path passes through the conjunctive arc Ok1-Ok2, the length of the

path from Ok1 to On2 via On1 is smaller than the path from Ok1 to On2 via Ok2.

⇒ pk1 + pm1 + pn1 < pk1 + pk2 + pm2

⇒ pn1 + (pm1 – pm2) < pk2

⇒ pn1 < pk2 since m ∈ JSC and pr2 < pr1, ∀r ∈ JSC by construction.

⇒n ∈ JSC using similar arguments as earlier.

A similar recursive analysis for all jobs succeding job Jm can be carried out to show that

i∈JSC; ∀i ∈ JS2. Since JS2 = JSC∪JSD, JSD = φ. The results then follow noting that pi2 <

pi1; ∀i ∈ JSC by construction. ■

20

Lemma 9 For the scheduled returned by the DSP algorithm, there exists no job Jq

such that (i) q∈JS2; (ii) pq1 < pq2 and (iii) pq1 < pk1.

Proof: Let there exist job Jq for which conditions (i), (ii) and (iii) hold. Since JS2 =

JSC∪JSD, and q∈JS2, either q ∈ JSC or q ∈ JSD. If q ∈ JSC, pq1 > pq2; since pi1 > pi2; ∀i ∈

JSC by construction. This contradicts condition (ii). Else if q ∈ JSD, then pq1 ≥ pk1, ∀i ∈

JSD using Lemma 4. This contradicts condition (iii). Hence the result follows. ■

7. Proof of optimality of the DSP algorithm

We first state and prove a lower bound for the n/2/F/Cmax problem. Then we show that

the schedule returned by the proposed method actually equals this lower bound.

Lower Bound for n/2/F/Cmax problem

Let J(n) denote the set of n jobs to be processed. Then)(
1

nJLB = ∑i∈J(n) pi1 + mini∈J(n) pi2

and)(
2

nJLB = mini∈J(n) pi1 + ∑i∈J(n) pi2 are two lower bounds for the n/2/F/Cmax problem

and so is LBJ(n) = max {)(
1

nJLB ,)(
2

nJLB }.

We can tighten this lower bound further. Let pj* = min {pj1, pj2}, then dn = minj∈J(n) pj*,

denotes the smallest processing time for J(n). Let this smallest processing time belong to

job Jj. We delete this job Jj to obtain the n-1 job 2 machine flow shop J(n-1).

Lemma 10 LBrecursive = max {{dn+1 + LBJ(n)},{dn + LBJ(n-1)}, { dn + dn-1 + LBJ(n-

2)},…,{dn+dn-1,..,d1 + LBJ(0)}} is a lower bound for the n/2/F/Cmax

problem with dn+1 = 0 and LBJ(0) = 0.

Proof: While the lower bound LBrecursive has been defined by recursively deleting jobs,

while proving the Lemma 10 we will generate the lower bound by recursively adding

jobs. It is trivial to note that Lemma 10 holds for a 1 job 2 machine Flow Shop. Let LBJ(k)

denote the lower bound for a k job 2 machine Flow Shop, where k is an integer, k ≥ 1.

21

Suppose we add a job Jq with processing times pq1 and pq2 on M1 and M2 such that pq* =

min{pq1, pq2} is smaller than all processing times for the k job 2 machine Flow Shop.

Then for the k+1 job 2 machine problem J(k+1) where the k+1th job is Jq,

LBJ(k+1) = max {)1(
1

+kJLB ,)1(
2

+kJLB }

⇒ LBJ(k+1) = max {min (p11,..., pk1, pq1) + ∑i=1,...,k+1 pi2 ; ∑i=1,...,k+1 pi1 + min(p12,..., pk2,

pq2)}

Case I: pq1 = min (p11,..., pk1, pq1)

⇒ LBJ(k+1) = max {pq1 + ∑i=1,...,k+1 pi2 ; ∑i=1,...,k+1 pi1 + min(p12,..., pk2, pq2)},

Case IA: pq2 ≠ min(p12,..., pk2, pq2)

⇒ LBJ(k+1) = max {pq1 + ∑i=1,...,k+1 pi2 ; pq1 + ∑i=1,...,k pi1 + mini=1,...,k (pi2)}

⇒ LBJ(k+1) = max {)1(
2

+kJLB ; pq1 +)(
1

kJLB }

Case IB: pq2 = min(p12,..., pk2, pq2)

⇒ LBJ(k+1) = max {pq1 + ∑i=1,...,k+1 pi2 ; ∑i=1,...,k+1 pi1 + pq2)}

⇒ LBJ(k+1) = max {)1(
2

+kJLB ;)1(
1

+kJLB }

Combining Case IA and Case IB,

LBJ(k+1) = max {)1(
1

+kJLB ;)1(
2

+kJLB ; pq1 +)(
1

kJLB }, (1)

Similarly for Case II, pq2 = min (p12,..., pk2, pq2) and we can show that

22

LBJ(k+1) = max {)1(
1

+kJLB ;)1(
2

+kJLB ; pq2 +)(
2

kJLB }, (2)

Combining equations (1) and (2), for any dk+1 defined earlier,

LBJ(k+1) = max {)1(
1

+kJLB ;)1(
2

+kJLB ; min{ pq1, pq2} + LBJ(k)}

⇒ LBJ(k+1) = max {)1(
1

+kJLB ;)1(
2

+kJLB ; pq* + LBJ(k)}

⇒ LBJ(k+1) = max {)1(
1

+kJLB ;)1(
2

+kJLB ; dk+1 + LBJ(k)}

Hence the result follows by recursion. ■

The following example shows that this new LBrecursive is a tighter bound than LBJ(n).

Example 4: The processing time data for a 5 job 2 machine Flow Shop is presented in

Table 6.

Table 6: Processing times for a 5 job 2 machine Flow Shop

M1 M2

J1 3 10

J2 7 6

J3 8 4

J4 1 2

J5 9 7

For this 5/2/F/Cmax problem, we have the following lower bounds.

LBJ(5) = max {)5(
1
JLB ,)5(

2
JLB }

= max {30, 30 }

= 30

23

LBrecursive = max {{LBJ(5)},{d5 + LBJ(4)}, {d5 + d4 + LBJ(3)}, {d5 + d4 + d3 + LBJ(2)} , {d5 +

d4 + d3 + d2 + LBJ(1)}, {d5 + d4 + d3 + d2 + d1}}

= max{{30},{1+31}{1+3+28},{1+3+4+22},{1+3+4+6+16},{1+3+4+6+7}}

= 32

Theorem 2: The schedule generated by the DSP algorithm equals LBrecursive

Proof: The critical path CP for the solution returned by the Dynamic Schrage heuristic

can be one of 3 types – RD…D, D…DR and D…DRD…D. We take up each case

separately. Let l(CP) denote the sum of processing times of the operations constituting

the critical path CP.

Case 1: CP is RD…D

Here the pivot job Jk is the first job on the critical path and l(CP) = pk1 + ∑i∈J pi2. Since

pk1 = mini∈J {pi1}; CP =)(
2

nJLB . The claim follows since the length of the critical path

equals a lower bound for the n/2/F/Cmax problem.

Case2: CP is D…DR or D…DRD…D

Here the pivot job Jk is an intermediate job on the critical path. Then l(CP) = ∑∈ 1
1JSi ip +

pk1 + pk2 + ∑ ∈ 2
2JSj jp . Note that if CP is D…DR, then JS2 = φ.

Case 2A: pk1 < pk2

Construct set Q such that q ∈ Q, if pq* < pk* and Jq is scheduled after Jk. Let set R contain

all other jobs occurring after pivot job i.e. R = JS2 \ Q. Then pk1 = minu∈R∪{k} {pu1}, by

construction. If JS2 = φ, then Q = φ and R = φ. Hence

l(CP) = ∑∈ 1JSi
p 1i + pk1 + pk2 + ∑ ∈Ru

pu2 + ∑ ∈Qq
pq2

24

⇒ l(CP) = ∑∈ 1
1JSi ip + minu∈R∪{k} {pu1} + ∑ ∪∈ {k}Ru

pu2 + ∑ ∈Qq
pq2

⇒ l(CP) = ∑∈ 1
1JSi ip + {k}R∪

2LB + ∑ ∈Qq
pq2

Using Lemma 5, pi1 ≤ pi2; ∀i ∈JS1; and pq2 < pq1; ∀q ∈ Q using Lemma 6.

⇒pi1 = pi*; ∀i ∈ JS1 and pq2 = pq*; ∀q ∈ Q.

⇒ l(CP) = ∑∈ 1
*JSi ip + {k}R∪

2LB + ∑ ∈Qq
p *q

⇒ l(CP) = ∑ ∪∈ QJSi ip
1

* + {k}R∪
2LB

⇒ l(CP) = ∑i∈J\{R∪{k}} pi* + {k}R∪
2LB

Additionally, using Lemma 4, pi1 ≤ pk1; ∀i ∈ JS1. The construction of set Q implies that

pk1 is the smallest processing time for R∪{k}. Hence pi* is smaller than all processing

times in R∪{k}, ∀i ∈ JS1. Similarly, it is apparent that pq* is smaller than all processing

times in R∪{k} because (i) pk1 is the smallest processing time for R∪{k} and (ii) pq* < pk*

∀q∈Q by construction. Thus pi*; ∀i ∈ J\{R∪{k}} is smaller than pj1, pj2; ∀j ∈R∪{k}.

⇒ l(CP) = LBrecursive

Case 2B: pk1 > pk2

Construct set Q such that job q ∈ Q, if pq* < pk* and Jq comes before Jk on the critical

path. Let set R contain all other jobs occurring before pivot job i.e. R = JS1 \ Q. Then pk2

= minu∈R∪{k} {pu2}, by construction. Hence

l(CP) = ∑ ∈Qq
pq1 + ∑ ∈Ru

pu1 + pk1 + pk2 + ∑∈ 2
2JSi ip

⇒ l(CP) = ∑ ∈Qq
pq1 + ∑ ∪∈ {k}Ru

pu1 + minu∈R∪{k} {pu2} + ∑∈ 2
2JSi ip

25

⇒ l(CP) = ∑ ∈Qq
pq1 + {k}R

1
∪LB + ∑∈ 2

2JSi ip

Using Lemma 7, pq1 ≤ pq2; ∀q ∈Q; and pi2 < pi1; ∀i ∈ JS2 using Lemma 8.

⇒pq1 = pq*; ∀q ∈ Q and pi2 = pi*; ∀i ∈ JS2.

⇒ l(CP) = ∑ ∈Qq
p *q + {k}R

1
∪LB + ∑∈ 2

*JSi ip

⇒ l(CP) = ∑ ∪∈ QJSi 2
p *i + {k}R

1
∪LB

⇒ l(CP) = ∑ ∪∈ {k}}{R\Ji
p *i + {k}R

1
∪LB

Additionally, using Lemma 8, pi2 < pk2; ∀i ∈ JS2. The construction of set Q implies that

pk2 is the smallest processing time for R∪{k}. Hence pi* is smaller than all processing

times in R∪{k}, ∀i∈JS2. Similarly, it is apparent that pq* is smaller than all processing

times in R∪{k} ∀q∈Q because (i) pk2 is the smallest processing time for R∪{k} and (ii)

pq* < pk* ∀q∈Q by construction. Thus pi*; ∀i ∈ J\{R∪{k}} is smaller than pj1, pj2; ∀j

∈R∪{k}.

⇒ l(CP) = LBrecursive

Case 2C: pk1 = pk2

l(CP) = ∑∈ 1
1iJSi

p + pk1 + pk2 + ∑ ∈ 2JSj
p 2j

⇒ l(CP) = ∑∈ 1JSi
p 1i + LBk + ∑ ∈ 2JSj

p 2j

Using Lemma 5, pi1 ≤ pi2; ∀i ∈JS1; and pi2 < pi1; ∀i ∈ JS2 using Lemma 8.

⇒pi1 = pi*; ∀i ∈JS1 and pi2 = pi*; ∀i ∈ JS2.

⇒ l(CP) = ∑∈ 1JSi
pi* + LBk+ ∑ ∈ 2JSj

p j*

⇒ l(CP) = ∑ ∪∈ 21 JSJSi
pi* + LBk

⇒ l(CP) = ∑∈ {k}\Ji
pi* + LBk

26

Additionally, using Lemma 4, pi1 ≤ pk1; ∀i ∈ JS1 and using Lemma 8, pi2 < pk2; ∀i ∈ JS2.

Thus pi*; ∀i ∈ J\{k} is smaller than pk*.

⇒ l(CP) = LBrecursive ■

8. Convergence and complexity results

In this section we show that the DSP algorithm converges within finite number of steps.

At each stage of the algorithm, a pivot job Jk is identified along with the set CJS such that

pj2 < pj1 and pj2 < pk2; ∀j ∈CJS. We call CJS the candidate job set and each member of

CJS a candidate job. At each iteration i, let i
kJ be the pivot job and the set CJSi the

corresponding candidate job set. Similarly, iJS1 , iJS2 , i
DJS are defined for each iteration

paralleling the definition of JS1, JS2, JSD in section 6. We now focus on the sequence of

pivot jobs identified through the iteration process. Either, there is no repetition within this

sequence, and hence the number of iterations is less than n+1. Or, let r be the iteration at

which a pivot is repeated.

Lemma 11: CJSr = φ

Proof: If possible, let CJSr ≠ φ, and job Jp be a candidate job at the rth iteration with job

Jk as the pivot job. Let q be the iteration, q < r, when job Jk was also the pivot job. Then

either of two possibilities exists.

Case 1: p ∈ q
1JS

Two possibilities exist. If p∈CJSq, then the job Jp would have been constrained to occur

after Jk in the (q+1)th iteration. Hence, Jp cannot be scheduled before Jk in the rth

iteration, which is a contradiction. Or, if p∉CJSq, then since the pivot jobs are the same

for the two iterations, p∉CJSr, which is a contradiction.

27

Case 2: p ∈ q
2JS

Since job Jp occurs after Jk in the qth iteration and before Jk in the rth iteration, two

possibilities exist. Either job Jk was constrained to occur after Jp in an intermediate

iteration, in which case pk2 < pj2, which is a contradiction. Or job Jk was scheduled after

Jp by the Dynamic Schrage heuristic in the rth iteration and not due to the enforcement of

any precedence between the two jobs. But, since pj2 < pk2 and pj1 ≥ pk1 (using Lemma 4 at

the qth iteration, noting that j ∈ q
DJS), job Jp would always be scheduled after Jk by the

Dynamic Schrage heuristic, which is a contradiction. ■

Lemma 12: (n+1) is an upper bound on the number of iterations.

Proof: If there is no repetition of pivot jobs, there can be n iterations in the worst case.

Else if there is a repetition at the rth iteration, Lemma 11 indicates that the DSP algorithm

would stop at that iteration. Since a repetition is guaranteed if the number of iterations

exceeds n, the result follows. ■

We now consider the complexity status of both the procedure for calculating the lower

bound and the DSP algorithm.

Lemma 13: The lower bound LBrecursive can be computed in O(n2) time.

Proof: The procedure for calculating LBrecursive can be divided into 3 steps. In Step 1, a

sorting is done on the jobs according to their pi* value in O(nlogn) time. In Step 2, {dn+1 +

LBJ(n)},{dn + LBJ(n-1)}, {dn + dn-1 + LBJ(n-2)},…,{dn + dn-1 +,.., + d1 + LBJ(0)} values are

calculated, each taking O(n) time. Hence Step 2 can be completed in O(n2) time.

Calculation of the maximum of these values can be done in O(n) time in Step 3. Hence,

the lower bound can be calculated in O(n2) time. ■

Lemma 14: The worst case complexity of the DSP algorithm is O(n3).

28

Proof: The Schrage heuristic is essentially a sort and hence can be done in O(nlogn) time

as shown in Carlier (1982). The Dynamic Schrage heuristic differs from the Schrage

heuristic in the additional task of updation of release times for all unscheduled jobs,

which needs O(n2) time on the whole. Hence the complexity of the Dynamic Schrage

heuristic is O(n2). Lemma 12 suggests that in the worst case (n+1) iterations of the

Dynamic Schrage heuristic would be needed. Hence the result follows. ■

9. Concluding Remarks

We have examined the apparent failure of the SB heuristic in providing optimal solutions

to Flow Shop problems. An alternative optimal machine based decomposition procedure

has been provided for the n/2/F/Cmax problem along with complexity results. The

contribution of the present study lies in showing that the same machine based

decomposition procedures which are so successful in solving complex Job Shops can also

be suitably modified to optimally solve the simpler Flow Shops. It is hoped that this

paper will stimulate research in the application of machine based decomposition

procedures for the general n/m/F/Cmax problem.

References

Adams, J., Balas, E., and Zawack, D. “The Shifting Bottleneck Procedure for Job Shop

Scheduling,” Management Science, 34,3(1988), 391-401.

Balas, E., Lenstra, J.K., and Vazacopoulos, A. “The One Machine Sequencing Problem

with Delayed Precedence Constraints and its Use in Job Shop Scheduling,” Management

Science, 41 (1995), 94-109.

Brucker, P., Jurisch, B., and Sievers, B. “A branch and bound algorithm for the job-shop

scheduling problem”, Discrete Applied Mathematics, 49 (1994), 107-127.

29

Campbell, H.G., Dudek, R.A., and Smith, M.L. “A heuristic algorithm for the n job m

machine sequencing problem,” Management Science, 16, 630-637.

Carlier, J. “The One Machine Sequencing Problem,” European Journal of Operational

Research, 11 (1982) 42-47.

Carlier, J., and Pinson, E. “An Algorithm for Solving the Job Shop Problem”,

Management Science, 35 (1989), 164-176.

Conway, R.N., Maxwell, W. L., and Miller, L. W. Theory of Scheduling, Addison-

Wesley, Reading, MA, 1967.

Dauzere-Peres, S., and Lasserre, J.B. “A modified shifting bottleneck procedure for job-

shop scheduling”, International Journal of Production Research, 31 (1993), 923-932.

Demirkol, E., and Uzsoy, R. “Decomposition methods for scheduling re-entrant flow

shops with sequence dependent set up times”, Research Report, School of Industrial

Engineering, Purdue University, 1998.

Demirkol, E., Mehta, S.V., and Uzsoy, R. “A computational study of shifting bottleneck

procedures for shop scheduling problems”, Journal of Heuristics, 3 (1997), 111-137.

Fisher, M.L., Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G. “Surrogate duality

relaxation for job shop scheduling”, Discrete Applied Mathematics, 5 (1983), 65-75.

Holtsclaw, H.H., and Uzsoy, R. “Machine criticality measures and subproblem solution

procedures in shifting bottleneck methods: a computational study”, Journal of the

Operational Research Society, 47 (1996), 666-677.

Hundal, T.S., and Rajgopal, J. “An extension of Palmer heuristic for the flow-shop

scheduling problem”, International Journal of Production Research, 26 (1988), 1119-

1124.

30

Jain, A.S., and Meeran, S. “A multi-level hybrid framework applied to the general flow-

shop scheduling problem”, Computers and Operations Research, 29 (2002), 1873-1901.

Johnson, S.M. “Optimal two- and three-stage production schedules with set up times

included”, Naval Research Logistics Quarterly, 1 (1954), 61-68.

Nawaz, M., Enscore, E.E., and Ham, I. “A heuristic algorithm for the m-machine n-job

flow shop sequencing problem”, Omega, 11 (1983), 91-95.

Osman, I.H., and Potts, C.N. “Simulated annealing for permutation flow shop

scheduling”, Omega, 17 (1989), 551-557.

Panwalker, S.S. and Iskander, W. “A survey of scheduling rules”, Operations Research,

25 (1977), 45-61.

Pinedo, M. Scheduling : Theory, Algorithms and Systems, Prentice-Hall, Englewood

Cliffs, NJ, 1995.

Pinedo, M., and Singer, M. “A shifting bottleneck heuristic for minimizing the total

weighted tardiness in a job shop”, Research Report, Department of Industrial Engineering

and Operations Research, Columbia University, 1996.

Ramudhin, A., and Marier, P. “The generalized shifting bottleneck procedure”, European

Journal of Operational Research, 93 (1996), 34-48.

Sun, X., and Noble, J.S. “An approach to job shop scheduling with sequence-dependent

setups”, Journal of Manufacturing Systems, 18, 6 (1999), 416-430.

Szwarc, W. “Dominance conditions for the three-machine flow shop problem”,

Operations Research, 26 (1978), 203-206

