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Abstract 

This paper presents the formulation and a hierarchical solution procedure of multiple 

products, multiple constraints, single period inventory problem. The hierarchical 

procedure decomposes the problem into a number of sub-problems equal to the number 

of constraints sets. Each sub-problem is solved optimally by applying Lagrange 

multipliers and satisfying Kuhn-Tucker conditions. The experimental results show that 

the hierarchical procedure performs well even when there are large a number of 

products and constraints. 

 

Keywords: Newsboy problem, Single-period inventory problem 

 

*Corresponding author: Email: satya@iimahd.ernet.in 

The authors’ name is in alphabetical order of last name. 



 

 

 

 

2

1. Introduction 

Single period inventory model, also popularly known as the Newsboy or 

Christmas tree problem, is to obtain a products’ decision quantity that maximizes / 

minimizes the expected profit / loss under stochastic demand. One of the earliest works in 

this area was that by Hadley and Whittin (1963), and Hodges and Moore (1970). The 

later authors solved the product-mix problem with stochastic demand competing for a 

number of limited resources. Many of the earlier research papers dealt with the objective 

of maximizing the probability of achieving a target profit [Kabak and Schiff (1978), Shih 

(1979), Lau (1980), etc.].  

There has been much extension to the classical single period inventory problems 

registered after 80’s. One major extension area is to use optimization techniques to solve 

multi-product, multi-constraint single period inventory problem. Khouja (1999) in his 

review paper has classified the extension in eleven categories. One more extension area 

in addition to the eleven categories may be applying different techniques to solve the 

problem; like marginal analysis [Hodges and Moore (1970)], Lagrange multiplier 

[Karmarkar (1981), and Lau and Lau (1995), Lau and Lau (1997), etc.], heuristic method 

[Nahmias and Schmidt (1984), etc.], analytical solution procedure [Ben-Daya and Raouf 

(1993), etc.].  

Much of the interest in single period inventory problem started with the 

introduction of multi-period, multi-constraint problem. Several authors including [Hadley 

and Whittin (1963), Nahmias and Schmidt (1984), Lau and Lau (1995), Lau and Lau 

(1996), and Vairaktarakis (2000), etc.] solved the single-period multi-product constrained 

inventory models. The constraint sets often considered by these authors are mainly 

storage space, production capacity, and budget. The methodologies used to solve these 

problems are quite different. Hadley and Whittin (1963) have solved a single constraint 

set problem by Lagrangian multiplier and the solution procedure was suitable for large 

quantities. They have adopted marginal analysis approach to solve for small quantities. 

Nahmias and Schmidt (1984) pointed out that Lagrangian method may require higher 
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computation. They have developed four different heuristics to solve single constraint 

problem. Lau and Lau (1996) have solved multiple constraint problems. They converted 

N-variable ‘primal problem’ to ‘M’ variable ‘dual problem’ and developed ‘active set 

methods’ to solve the problem. The solution procedure developed by Lau and Lau (1996) 

will perform well only with low number of dual variables i.e. constraints. But, there are 

many situations where the number of constraints is large and active set method may fail 

to provide an efficient solution. 

 In this research paper, we have attempted to develop a hierarchical method of 

solving single-period multiple product inventory problem with a large number of 

constraints. Section 2 and 3 describes the problem formulation and solution methodology 

respectively. Section 4 deals with the hierarchical solution procedure with a detailed 

example of convergence. Section 5 provides computational experiments for convergence. 

Section 6 deals with the extension of the solution procedure to three constraint sets and 

section 7 summarizes our paper. 

 

2. Problem formulation 

We came across a practical multi-product, multi-constraint problem while dealing 

with a dairy in a large city. The dairy offers four different kind of milk and sells it 

through more than 100 retail outlets in the city. All these retail outlets face stochastic 

demand of different types of milk. These outlets meet the demand from their stock, which 

is replenished once in a day. In addition, the outlets have storage space constraint. The 

retail outlets generally face stock-out and excess inventory situation. Both stock-out and 

inventory have associated understocking and overstocking cost per unit shortage and 

excess inventory. In addition, there is limited available supply of each type of milk at the 

dairy.  
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2.1 Notation 

The notation used in the model formulation is as follows: 

 r:   Set of retailers  (1 to R) 

 p:   Set of products (1 to P) 

 x:   A random variable representing the demand 

 frp(x): Probability density-function of demand of product ‘p’ at retail outlet ‘r’ 

 USp: Understocking cost of product 'p' (Rs. per unit) 

 OSp: Overstocking cost of product 'p' (Rs. per unit) 

 Capr: Storage capacity at retail outlet 'r' (units) 

 Supp: Available supply of product 'p' (units) 

 Erp:  Expected cost of product 'p' at retail outlet 'r' when supply quantity is Qrp. 

 µrp:  Mean demand of product ‘p’ at retailer ‘r’. 

 σrp:  Standard deviation of product ‘p’ at retailer ‘r’. 

 zrp(): Standard normal deviation of product ‘p’ at retailer ‘r’. 

 Φrp(): Cumulative density function of product ‘p’ at retailer ‘r’. 

 φrp(): Probability density function of product ‘p’ at retailer ‘r’. 

The planning horizon is a day. Therefore, the parameter units viz. demand, supply is 

for a day. Also, we have taken the demand as normal distributed.  

 

2.2 Objective function 

The objective is to minimize the total expected understocking and overstocking 

cost for all products at all retail outlets. 
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Z1: Minimize (Qrp) 
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2.3 Constraint sets 

r

p

rp CapQ ≤∑      r ∈  {1…R}     ..2 

p
r

rp SupQ ≤∑       p ∈  {1…P}    ..3 

0≥rpQ      r ∈  {1…R}, p ∈  {1…P}  ..4 

 

Constraint 2 deals with the storage capacity constraint of the retail outlets. The 

storage space constraint is the physical / refrigerator space constraint at the retail outlets. 

Constraint 3 ensures that the delivery does not exceed available supply of the product, 

and constraint 4 is a non-negativity constraint. 

 

3. Solution methodology 

The above-mentioned problem has a convex objective function [Federgruen and 

Zipkin (1984)] with linear constraint. Thus, both the objective function and the constraint 

sets are differentiable functions. The objective function is differentiable as equating the 

partial differential of equation 1 with respect to Qrp to zero gives us Qrp = Frp
-1[USp / (USp 

+ OSp)]. We can solve this problem optimally by relaxing the constraints by Lagrange 

multipliers and then applying the Kuhn-Tucker conditions [Shapiro (1979)]. We take λr, 

δp and ηrp as Lagrange multipliers for the constraints 2, 3 and 4 respectively. The relaxed 

objective function is given by equation 5. 
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L (λ, δ, η) = Minimize (Qrp) 
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Where: λr ≥ 0, δp ≥ 0 and ηrp ≥ 0. 

 

From global optimality conditions [Shapiro (1979)], we have for any (λr, δp, ηrp) ≥ 

0, L (λ, δ, η) ≤ Z1. Thus, all the objective function and the variables are at their optimal 

values when L (λ, δ, η) = Z1. The corresponding optimal values of dual variables λr, δp, 

and ηrp can be found by using Kuhn-Tucker conditions.  

 

3.1 Simultaneous equations by Kuhn-Tucker conditions 

The sets of simultaneous equations derived from Kuhn-Tucker conditions to solve the 

primal problem are as follows: 

( ) ( )[ ]pprpprprprp
OSUSUSFQ ++−−= − /1 ηδλ   r ∈  {1…R}, p ∈  {1…P} ..6 

( ) ( )[ ] 0/* 1 =







−++−−∑ −

p
rpprpprprpr CapOSUSUSF ηδλλ  r ∈  {1…R}  ..7  

( ) ( )[ ] 0/1 ≤−++−−∑ −
rpppprp

p
rp CapOSUSrUSF ηδλ   r ∈  {1…R}  ..8 

( ) ( )[ ] 0/* 1 =




 −++−−∑ −

r
ppprpprprpp SupOSUSUSF ηδλδ  p ∈  {1…P}  ..9 

( ) ( )[ ] 0/1 ≤−++−−∑ −
ppprpprp

r
rp SupOSUSUSF ηδλ   p ∈  {1…P}  ..10 

( ) ( )[ ][ ] 0/* 1 =++−−−
pprpprprprp OSUSUSF ηδλη  r ∈  {1…R}, p ∈  {1…P} ..11 
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( ) ( )[ ] 0/1 ≥++−−−
pprpprprp OSUSUSF ηδλ   r ∈  {1…R}, p ∈  {1…P} ..12 

0≥rλ         r ∈  {1…R}  ..13 

0≥pδ         p ∈{1…P}  ..14 

0≥rpη        r ∈  {1…R}, p ∈  {1…P} ..15 

 

Simplifying the above sets of simultaneous equations and inequalities of Kuhn-

Tucker conditions, we have to only solve for minimum positive values of λr, δp, and ηrp, 

which are given by equations 17, 18 and 19. Whenever there is slack in the constraint, the 

corresponding dual value is equal to zero. Thus, whenever the minimum positive values 

of λr, δp and ηrp satisfies equations 17, 18 and 19 respectively, the values of λr, δp and ηrp 

are optimal. These optimal values of λr, δp and ηrp provides optimal Qrp by putting the 

values in equation 16, which is obtained by partially differentiating equation 5 with 

respect to Qrp and is a function of λr, δp and ηrp. The role of ηrp is to restrict the value of 

(USp - λr - δp + ηrp) to be non-negative. 

 

( ) ( )[ ]pprpprprprp
OSUSUSFQ ++−−= − /1 ηδλ   r ∈  {1…R}, p ∈  {1…P} ..16  

( ) ( )[ ] 0/1 =−++−−∑ −
rpprpprp

p
rp CapOSUSUSF ηδλ   r ∈  {1…R}  ..17 

( ) ( )[ ] 0/1 =−++−−∑ −
ppprpprp

r
rp SupOSUSUSF ηδλ   p ∈  {1…P}  ..18 

( ) ( )[ ] 0/1 =++−−−
pprpprprp OSUSUSF ηδλ   r ∈  {1…R}, p ∈  {1…P} ..19 

 

The above multiple constrained problems can be optimally solved by the sub-

gradient optimization technique [Shapiro (1979)]. However, using this technique to find 
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the values of (R+P) vectors is computationally difficult. Therefore, we have adopted a 

hierarchical method to solve the problem.  

 

4. Hierarchical solution procedure 

In this method, we have broken the problem into two sub-problems. Each sub-

problem deals with a single set of constraints. The single constraint problem can be 

optimally solved by binary search method. The first sub-problem (20 to 22) is to solve for 

λr for a given value of δp. The expression for Qrp is given by equation 20. For a given 

values of δp, the minimum values of λr satisfying equation 21 can be found by the binary 

search method. Whenever the sum of the values of λr and δp exceeds USp, ηrp takes the 

minimum value to make the numerator non-negative and to satisfy equation 22. Thus, the 

corresponding quantity Qrp is considered to be equal to zero. Else, we can obtain the 

value of Qrp by putting the values of λr and δp in equation 20. 

 

( ) ( )[ ]pprpprprprp
OSUSUSFQ ++−−= − /1 ηδλ   r ∈  {1…R}, p ∈  {1…P} ..20 

( ) ( )[ ] 0/1 =−++−−∑ −
rpprpprp

p
rp CapOSUSUSF ηδλ   r ∈  {1…R}  ..21 

( ) ( )[ ] 0/1 =++−−−
pprpprprp OSUSUSF ηδλ   r ∈  {1…R}, p ∈  {1…P} ..22 

 

The second sub-problem (23 to 25) is to solve for δp for given value of λr. The 

expression for replenishment quantities is given by 23. For a given values of λr, the 

minimum values of δp satisfying equation 24 can be found by binary search method. As 

discussed in sub-problem 1, whenever the sum of the values of λr and δp exceeds USp, ηrp 

takes the value to make the numerator non-negative and satisfy equation 25. Thus, the 
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corresponding quantity Qrp is considered to be equal to zero. Else, we can obtain the 

value of Qrp by putting the values of λr and δp in equation 23. 

 

( ) ( )[ ]pprpprprprp
OSUSUSFQ ++−−= − /1 ηδλ   r ∈  {1…R}, p ∈  {1…P} ..23 

( ) ( )[ ] 0/1 =−++−−∑ −
ppprpprp

r
rp SupOSUSUSF ηδλ   p ∈  {1…P}  ..24 

( ) ( )[ ] 0/1 =++−−−
pprpprprp OSUSUSF ηδλ   r ∈  {1…R}, p ∈  {1…P} ..25 

 

The two sub-problems are solved one after the other iteratively and updating of 

the values of λr and δp. The procedure of the iterative approach is discussed in the 

following sub-section. 

 

4.1 Iterative procedure for solving the problem  

We will solve for λr keeping δp value zero using equations 20, 21, and 22. We will 

again solve for δp keeping λr value zero using equations 23, 24, and 25. We will calculate 

the quantities and the respective expected cost and then compare the total expected cost 

for the two sub-problems. The expected cost associated with any product and any retail 

outlet can be calculated by equation 26 [refer Lau (1997) for derivation]. The expected 

cost function can be given by: 

( ) ( ) 
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Solving, we have 
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The sub-problem having higher value of total expected cost will be called first so 

as to start with the tighter lower bound. Suppose the total expected cost with δp is high, 

then we will follow: 

 

 

 

 

In this method, the first sub-problem will provide the lower bound solution and 

the second sub-problem will provide the upper bound solution. Since, it is a convex 

problem and has a unique solution, the lower bound will monotonically increase and 

upper bound will monotonically decrease and finally both will converge to the optimal 

Given λr, solve for δp, and obtain 
Qrp. Compute expected cost and 
the sum of expected costs is the 

lower bound solution

Given δp, solve for λr, and obtain 
Qrp. Compute expected cost and 
the sum of expected costs is the 

upper bound solution

Figure 1: Hierarchical method for solving two constraints set problem 
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solution. After each iteration, the dual variable values (either δp or λr) of first sub-problem 

will decrease and dual variable values of second sub-problem will increase. The dual 

variables and the quantities will attain the optimal value when the lower bound and upper 

bound solution converges.  

 

4.2 Explanation 

Lemma: 

After each iteration, the Lagrange multiplier value / dual variable values (λr or δp) 

of first sub-problem will decrease and that of second sub-problem will increase. 

 

Proof: 

Suppose the first sub-problem deals with capacity constraint (λr) and second sub-

problem deals with supply constraint (δp). In the first iteration, δp = 0 and λr will take 

minimum non-negative value to satisfy capacity constraint. Based on the obtained λr 

value, δp will take a non-negative value to satisfy the supply constraint. Now, in the 

second iteration δp will have non-negative value and thus a lower value of λr may satisfy 

the capacity constraints. The lower value of λr will lead to a higher value of δp to satisfy 

the supply constraint. Thus, after each iteration the values of λr will decrease and the 

values of δp will increase. 

It is evident from the above explanation that the dual variable values 

monotonically leads towards the optimal values. Also, we know that the convex problems 

have a unique optimal solution. From these two statements we can state that the lower 

bound solution will monotonically increase and the upper bound solution will 

monotonically decrease and will finally converge. 
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4.3 Example  

We have taken an example of two retail outlet and two products. The parameters 

are provided in the following table. 

 

Table 1: Parameter values for example problem 

  R1-P1 R1-P2 R2-P1 R2-P2 
Mean demand 20 25 25 20 

Standard deviation 2 4 3 5 
Overstocking cost 1 2 1 2 
Understocking cost 4 5 4 5 

 

The storage capacities at retailer-1 and retailer-2 are 40 and 45 respectively. The 

supplies of product-1 and product-2 are 40 and 45 respectively. We will consider Qrp as 

the optimal quantity of product ‘p’ at retailer ‘r’, λr as the dual variable value of retailer 

‘r’, and δp as the dual variable value of supply ‘p’.  

The total expected cost with capacity constraint is more than the total expected 

cost with supply constraint. Therefore, we will first call sub-problem solving capacity 

constraint and then call the sub-problem solving supply constraint.  

 

4.4 Iterative steps 

• For the given value of δp equal to zero, we solved for λr values and the values of 

λ1 and λ2 satisfying equation A4.11 are 3.3189 and 1.5000 respectively. 

• Putting the values of dual values in equation A4.10, we obtained the quantity 

values. We have calculated the expected cost by putting the quantity value in 

equation 5.19. The sum of the expected cost is 24.63, which is the lower bound. 
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• For the given value of λ1 and λ2 equal to 3.3189 and 1.5000 respectively, we 

solved for δp values and the values of δ1 and δ2 satisfying equation A4.14 are 

0.5860 and 0.0000 respectively. 

• Putting the values of dual values in equation A4.13, we obtained the quantity 

values. The values of Q11, Q12, Q21, and Q22 are 15.89, 22.19, 24.11 and 20.00 

respectively. We have calculated the expected cost and the sum of the expected 

cost is 34.33, which is the upper bound. This completes Iteration 1. 

• For the given value of δ1 and δ2 equal to 0.5860 and 0.0000 respectively, we 

solved for λr values and the values of λ1 and λ2 satisfying equation A4.11 are 

2.9915 and 1.2321 respectively. 

• Putting the values of dual values in equation A4.10, we obtained the quantity 

values. We have calculated the expected cost and the sum of the expected cost is 

24.76, which is the lower bound. 

• For the given value of λ1 and λ2 equal to 2.9915 and 1.2321 respectively, we solve 

for δp and the values of δ1 and δ2 satisfying equation A4.14 are 0.8993 and 0.0000 

respectively. 

• Putting the values of dual values in equation A4.13, we got the quantity values. 

The values of Q11, Q12, Q21, and Q22 are 15.97, 22.75, 24.03 and 20.48 

respectively. We have calculated the expected cost and the sum of the expected 

cost is 31.21, which is the upper bound. This completes Iteration 2. 

 

The following table presents the quantities, Lagrange multiple, lower bound and 

upper bound values after each iteration. The values against iteration 1 shows after both 

the sub-problems are solved. 
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Table 2: Iterative values of convergence test 

Iteration Q11 Q12 Q21 Q22 λ1 λ2 δ1 δ2 LB UB 

1 15.89 22.19 24.11 20.00 3.3139 1.5000 0.5860 0.0000 24.63 34.33 

2 15.97 22.75 24.03 20.48 2.9915 1.2321 0.8993 0.0000 24.76 31.21 

3 16.04 23.08 23.96 20.74 2.7915 1.0880 1.0894 0.0000 25.19 29.60 

4 16.10 23.29 23.90 20.90 2.6601 1.0003 1.2125 0.0000 25.58 28.66 

5 16.14 23.43 23.86 21.00 2.5708 0.9430 1.2955 0.0000 25.89 28.06 

6 16.17 23.52 23.83 21.07 2.5089 0.9042 1.3528 0.0000 26.13 27.68 

7 16.19 23.59 23.81 21.12 2.4653 0.8775 1.3929 0.0000 26.31 27.41 

8 16.20 23.64 23.80 21.16 2.4344 0.8587 1.4212 0.0000 26.44 27.23 

9 16.22 23.67 23.78 21.18 2.4122 0.8454 1.4415 0.0000 26.53 27.10 

10 16.22 23.69 23.78 21.20 2.3964 0.8359 1.4559 0.0000 26.60 27.01 

11 16.23 23.71 23.77 21.21 2.3851 0.8291 1.4662 0.0000 26.65 26.95 

12 16.23 23.72 23.77 21.22 2.3770 0.8243 1.4736 0.0000 26.69 26.90 

13 16.24 23.73 23.76 21.23 2.3712 0.8208 1.4789 0.0000 26.71 26.87 

14 16.24 23.74 23.76 21.23 2.3669 0.8183 1.4828 0.0000 26.73 26.84 

15 16.24 23.74 23.76 21.24 2.3637 0.8165 1.4857 0.0000 26.74 26.83 

16 16.24 23.75 23.76 21.24 2.3615 0.8151 1.4878 0.0000 26.75 26.81 

17 16.24 23.75 23.76 21.24 2.3598 0.8141 1.4893 0.0000 26.76 26.81 

18 16.24 23.75 23.76 21.24 2.3586 0.8134 1.4904 0.0000 26.77 26.80 

19 16.24 23.75 23.76 21.24 2.3578 0.8129 1.4912 0.0000 26.77 26.79 

20 16.24 23.75 23.76 21.24 2.3572 0.8126 1.4918 0.0000 26.78 26.78 

 

The table shows that the lower bound is monotonically increasing and the upper 

bound is monotonically decreasing. After 20 iterations the lower bound and the upper 

bound converge and provide the optimal solution. The graph showing the convergence of 

lower bound and upper bound is as follows: 

 

 



 

 

 

 

15

Lower Bound - Upper Bound Convergence 

21.00 

23.00 

25.00 

27.00 

29.00 

31.00 

33.00 

35.00 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Iteration

LB
 / 

U
B

 V
al

ue
s 

LB
UB

 

 

Figure 2: Graph showing iterative results and convergence 

 

5. Experiments 

We have implemented the hierarchical solution procedure in Visual Basic 6.0 

with Excel interface. We have designed many experiments to test the quality of the 

solution. The objective of the experiments is to computationally verify the convergence 

of lower bound and the upper bound of the problem. The parameters to measure the 

performance of the hierarchical method are as follows: 

• Percentage of instances converged. 

• Average number of iterations required for convergence. 

• Average percentage deviation between lower bound and upper bound. 
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• Average time required for convergence. 

 

5.1 Experiment-1 

In this experiment, we have considered 

• 50 retailers and 4 products. 

• Overstocking cost is considered 1 for all products. Understocking cost is 

considered as 2.0, 2.5, 2.5 and 3.0 for four different products. 

• Mean demand is randomly generated between 10 and 40 for every (r, p) 

combination.  

• 2 different scenarios of coefficient of variation, which is randomly generated 

between 0.1 and 0.25, and 0.1 and 0.4 for every (r, p) combination. 

• 2 different scenarios of storage space capacity, which is randomly generated 

between 100 to 150 and 75 to 100 for every retailer.  

• 2 different scenarios of supply, which is randomly generated between 1000 to 

1500 and 500 to 800 for every product. 

 

Thus, we have generated 8 test problems and for each test problem we have run 

25 instances. We have also considered 100 as the maximum number of iteration. The 

results of these test problems are discussed in the following table: 
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Table 3: Convergence test results for Experiment-1 

Test Coeff.  of 
variation 

Storage 
capacity Supply Instances 

converged 
Av no. of 
iterations 

% 
deviation 

Average time  
(seconds) 

1 0.1 -  0.25 100 – 150 1000-1500 25 1.2 0.0% 0.20 
2 0.1 -  0.25 100 – 150 500-800 25 5.8 0.0% 10.52 
3 0.1 -  0.25 75 – 100 1000-1500 25 1.0 0.0% 2.44 
4 0.1 -  0.25 75 – 100 500-800 24 13.5 0.5% 9.00 
5 0.1 – 0.4 100 – 150 1000-1500 25 1.2 0.0% 0.12 
6 0.1 – 0.4 100 – 150 500-800 25 18.8 0.0% 15.08 
7 0.1 – 0.4 75 – 100 1000-1500 25 1.0 0.0% 1.28 
8 0.1 – 0.4 75 – 100 500-800 23 46.7 0.76% 65.48 

 

In this experiment, 197 out of 200 instances have converged. The maximum 

average deviation is 0.76%. The average number of iterations to converge is less than 20. 

The average time to solve the problem is less than 15 seconds. The average time in some 

tests is high as compared to the other tests because the constraints are very tight and thus 

the value of cumulative density function is even less than 0.1. For these low values of 

cumulative density function, we have calculated the respective normal value by Microsoft 

Excel (instead of using inverse CDF conversion table), which has taken more time. 

 

5.2 Experiment-2 

This experiment has been designed to capture identical retailers facing random 

demand with very low standard deviation. In this experiment, we have considered 

• 50 retailers and 4 products 

• Overstocking cost is considered 1 for all products. Understocking cost is 

randomly allocated (either of 3 values 1.0 / 1.5 / 2.0) for every instance. 
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• Mean demand is randomly generated between 10 to 30 for every (r, p) 

combination. Standard deviation of demand is randomly generated between 1 to 3 

for every (r, p) combination. 

• 4 different scenarios of storage space capacity are considered and are equal to 100 

/ 80 / 60 / 40 for all retailers. 4 different scenarios of supply are considered and 

are equal to 1000 / 800 / 600 / 400 for all products. 

 

All other parameters are similar to the previous experiment. The results of these 

test problems are discussed in the following table: 

 

Table 4: Convergence test results for Experiment-2 

Test Storage 
capacity Supply Instances 

converged 
Average number 

of iteration % deviation Average time  
(seconds) 

1 100 1000 25 1.00 0.0% 0.36 
2 80 1000 25 1.00 0.0% 1.24 
3 60 1000 25 1.00 0.0% 1.52 
4 40 1000 25 1.00 0.0% 3.12 
5 100 800 25 1.12 0.0% 0.76 
6 80 800 25 1.92 0.0% 1.40 
7 60 800 25 1.96 0.0% 4.68 
8 40 800 25 1.40 0.0% 4.08 
9 100 600 25 1.00 0.0% 3.08 

10 80 600 25 1.00 0.0% 3.20 
11 60 600 25 1.64 0.0% 4.24 
12 40 600 25 1.00 0.0% 7.68 
13 100 400 25 1.00 0.0% 6.36 
14 80 400 25 1.00 0.0% 6.44 
15 60 400 25 1.00 0.0% 6.76 
16 40 400 23 6.72 3.7% 8.95 
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In this experiment, 398 out of 400 instances have been converged. The average 

number of iterations to converge is less than 2. The average time to solve the problem is 

less than 6 seconds. The average deviation of instances that did not converge is 3.7%. 

 

5.3 Summary of the experimental results 

The summary of the experimental results of the problem is as follows: 

• The percentage of convergence is more than 99%. If it does not convergence, the 

maximum deviation from the lower bound is less than 4%. 

• The number of iterations and time required for solving the problem increases with 

constraint tightness. All the non-converged instances were very tight in terms of 

constraint values. 

• Increasing the number of iterations of non-convergence instances to very high 

values (typically 500-1000) may lead to convergence.  

 

5.4 Worst-case Analysis 

The performance of the hierarchical method deteriorates with the tightness of the 

constraints. This procedure will perform worst when the constraints value is less than 

20% of the sum of unconstrained optimal quantity competing for the resource. The 

decrease in the constraint values leads to following: 

• Increase in the number of iterations for convergence 

• More time for convergence 

• Higher probability that the problem will not converge 

• Higher percentage deviation in lower bound and upper bound 
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However, most of the real-world constrained problems have resources at least 

50% of the unconstrained optimal requirement. With resources above 50% of optimal 

requirement, our hierarchical method provides efficient solution [almost 100% 

convergence with average number of iterations less than 5 and average time required to 

solve being less than 5 seconds].   

 

6. Three constraint set problem 

In continuation of the earlier two constraints set problem, we will consider the 

case of three constraints set. In our situation let us consider that the retail outlets are 

divided into several zones and each zone is being serviced by a vehicle. The sum of the 

supplies to the retail outlets in each zone is constrained by the vehicle load capacity. We 

have taken ζv as the Lagrange multiplier for the vehicle load constraints and adopted the 

similar procedure as per figure 3.  

 

Given λr and ζv , solve for δp, and 
obtain Qrp. Compute expected 
cost and the sum of expected 

costs is the lower bound solution 

Given δp, and ζv , solve for λr, and 
obtain Qrp. Compute expected 
cost and the sum of expected 

costs is the upper bound solution 

δp 

λr 

Figure 3: Hierarchical method for solving three constraints set problem 

Given λr and δp,, solve for ζv 

ζv 
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7. Conclusion 

We have discussed the formulations and solution procedure for a multi-product multi-

constraint single period inventory problem with two or more constraint sets. The 

proposed hierarchical solution procedure has provided efficient results for problems with 

large number of products and constraints. We have taken the product demand distribution 

as normal distribution, but the solution procedure can be used for any demand 

distribution. 
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