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ABSTRACT

Artificial Neural Network (ANN) has been shown to be an efficient tool for non-parametric
modeling of data in a variety of different contexts where the output is a non-linear function of
the inputs. These include business forecasting, credit scoring, bond rating, business failure
prediction, medicine, pattern recognition, and image processing. A large number of studies
have been reported in the literature with reference to use of ANN in modeling stock prices in
the western countries. However, not much work along these lines has been reported in the

Indian context.

In this paper we discuss modeling of Indian stock market (price index) data using ANN. We
study the efficacy of ANN in modeling the Bombay Stock Exchange (BSE) SENSEX weekly
closing values. We develop two networks with three hidden layers for the purpose of this
study which are denoted as ANN1 and ANN2. ANN1 takes as its inputs the weekly closing
value, 52-week Moving Average of the weekly closing SENSEX values, 5-week Moving
Average of the same, and the 10-week Oscillator for the past 200 weeks. ANN2 takes as its
inputs the weekly closing value, 52-week Moving Average of the weekly closing SENSEX
values, 5-week Moving Average of the same, and the 5-week volatility for the past 200 weeks.

Both the neural networks are trained using data for 250 weeks starting January, 1997.

To assess the performance of the networks we used them to predict the weekly closing
SENSEX values for the two year period beginning January, 2002. The root mean square error
(RMSE) and mean absolute error (MAE) are chosen as indicators of performance of the
networks. ANN1 achieved an RMSE of 4.82% and MAE of 3.93% while ANN2 achieved an
RMSE of 6.87% and MAE of 5.52%.
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1. Introduction

This paper is an attempt to explore the emerging field of applying Atrtificial
Neural Network (ANN) to the complex task of modeling security prices in the
Indian context. There have been number of attempts to apply ANN to the task
of modeling security prices (see for example - Lam (2004), Nygren (2004),
Kaastra and Boyd (1995), Cao et. al. (2005), Jasic and Wood(2004)). When it
comes to performing a predictive analysis of the security prices, it is very
difficult to build one general model that will fit every market and every security.
Experience has shown that such models tend to be specific to markets and
asset classes and a general model may not be applicable across markets and
asset classes. Similarly, there may be some temporal changes as well which
means that the models may need to be modified over time in order to
preserve their effectiveness. One of the major problems faced in modeling
financial market movements is the fact that information comes in from very
large number of sources, and at least some of the price movements are a
direct result of the expectation by market participants of that very movement
(Soros, 1987). It has been observed that financial markets get affected by
virtually anything that has a bearing on the economy. Thus, economic
indicators (Andersen, 2004), political developments (Beaulieu et. al., 2006,
McGillivray, 2003), terrorist attacks (Maillet and Michel, 2005), etc., apart from

factors relevant to individual securities, have a bearing on market movements.

The paper is organized as follows : in section 2, we briefly discuss the

fundamental concepts of ANN and its applications in various fields; in section



3, we discuss construction of ANNs for modeling BSE SENSEX data; in
section 4, we discuss the performance of the constructed ANNs; and in

section 5 we conclude.

2. Artificial Neural Networks

In recent years some work has been reported on the use of ANNs for analysis
of financial markets. In what follows we provide a very brief introduction to
ANNSs following Stern(1996). The three essential features of an ANN are basic
computing elements referred to as neurons, the network architecture
describing the connections between the neurons, and the training algorithm
used to find values of the network parameters for performing a particular task.
Each neuron performs a simple calculation, a scalar function of a scalar input.
Suppose we label the neurons with positive integers and denote the input to
the k™ neuron as ix and the output from the k™ neuron as ox. Then ok = fi(ix)
where f(.) is a specified function that is typically monotone but otherwise
arbitrary. The neurons are connected to each other in the sense that the
output from one unit can serve as part of the input to another. There is a
weight associated with each connection; the weight from unit j to unit k is

denoted as wj. Let N(k) denote the set of units that are connected to unit k.

The input to unit k is then i, = ijkoj. Network architecture refers to the
JeN ()

organization of the neurons and the types of connections permitted. In the
multilayer feedforward network, the type used in this paper, neurons are
organized in a series of layers. Information flows only in one direction; units

receive information only from units in higher layers of the network. A



multilayer feedforward network with one hidden layer for the non-linear XOR
function — x4 XOR x; = 1 if exactly one of x4 and x, is 1 and = 0 otherwise; x4

and x, can take only two values 0 or 1 - is given in Figure 1 below:
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Figure 1 : Multilayer Feedforward Network for XOR function

The ANN can be “trained” to perform a specific task by adjusting these
weights. The weights are continually adjusted by comparing the output of the
network with the target until the output of the network “matches” the target in
the sense that the error function measuring the difference between the target
and the output is minimised. Many pairs of input and output are used to train
the network and this mode of adjustment is called “supervised” learning.

Figure 2 below summarizes the methodology:
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Figure 2: Methodology of Supervised Learning

There are several approaches for minimization of the error function including
standard optimization techniques like conjugate gradient and Newton-type
methods. However the most popular algorithm in this context is the
backpropagation algorithm of Rumelhart, Hinton and Williams (1986). The

algorithm is extremely simple to program but tends to converge slowly.

Training of a network can take two forms, “incremental” or “batch”. In case of
incremental training, individual pairs are fed one at a time to the network.
Output is compared with the target for each input and adjustments of the
weights are made using a training algorithm, most often the backpropagation
algorithm. The next pair is then fed to the network after making the adjustment
for the previous pair and the same process is repeated. Incremental training is

sometimes referred to as "on line" or "adaptive" training. In case of batch



training, all the pairs of input and output are fed to the network at the initial

stage and the weights are adjusted.

In case of unsupervised learning, outputs for a given set of inputs are not
available. Unsupervised learning is mostly used for networks that perform
clustering and pattern recognition. Cheng and Titterington (1994) provides a

comprehensive review of ANNs from a statistical perspective.

A well trained ANN can exploit the underlying non-linear relationships that
drive security prices. Further, the networks can be retrained using newer data.
Thus, a network can adapt to new information as it comes. This makes ANNs
a very promising tool for security price modeling. The vast increase in
computing power has made modeling of complex systems relatively easy and

less time consuming than in the past.

ANNs are being used in various fields of application including business
forecasting, credit scoring, bond rating, business failure prediction, medicine,
pattern recognition, image processing, speech processing, computer vision,
control systems etc. In the context of financial forecasting, Kuan and
Liu(1995) discusses forecasting of foreign exchange rates using ANNs. They
show that a properly designed ANN has lower out-of-sample mean squared
prediction error relative to the random walk model. Jasic and Wood(2004)
discusses the profitability of trading signals generated from the out-of-sample

short-term predictions for daily returns of S&P 500, DAX, TOPIX and FTSE



stock market indices evaluated over the period 1965-1999. The out-of-sample
prediction performance of neural networks is compared against a benchmark
linear autoregressive model. They find that the buy and sell signals derived
from neural network predictions are significantly different from unconditional
one-day mean return and are likely to provide significant net profits for
reasonable decision rules and transaction cost assumptions. Cao et. al.
(2005) provides a comparison between the Fama and French’s model and the
ANN model in the context of prediction of the Chinese stock market. They
report that the ANNs outperform the linear models from financial forecasting
literature in terms of its predictive power. Tkacz (2001) provides an interesting
study regarding the use of leading indicator neural network models for
forecasting of Canadian GDP growth. It is reported that the neural network
models yield statistically lower forecast errors for the year-over-year growth

rate of real GDP relative to linear and univariate models.

Huang et. al. (2004) report a comparative study of application of Support
Vector Machines(SVM) and Backpropagation Neural Networks (BNN) for
analysis of corporate credit ratings. They report that the performances of SVM
and BNN in this problem were comparable and both these models achieved
about 80% prediction accuracy. Pendharkar(2005) discusses the application
of ANNs for the bankruptcy prediction problem. It is reported that the ANNs
perform better than the statistical discriminant analysis both for training and

hold-out samples.



3. ANN for modeling BSE SENSEX

The most widely tracked and popular stock index in India is the BSE
SENSEX. This index is extremely sensitive and has a high volatility. Though it
is generally perceived as a not very reliable index of the overall market
movement, the high liquidity of the stocks comprising the index and high level
of sensitivity makes it an attractive choice for use as a proxy for stock price
movements. We use weekly closing values of SENSEX for 250 trading weeks
starting from January, 1997 for training the ANNs. The duration is long
enough in order to model the prices accurately and has a “boom-bust” cycle.
This is important since otherwise the ANNs will not be properly trained to
handle a “boom-bust” cycle if that happens in future. Figure 3 below gives the
weekly closing values of SENSEX for the period 1997-2003. The two year
weekly closing values of SENSEX from January, 2002 onwards are used as
the validation data set. It is to be noted that the Indian market witnessed a
major trend change around May 2003, when the “bust” part of the cycle ended

and a new “boom” started.

In this context, it may be noted that during the entire period 1997-2003 the
process of liberalization of the Indian economy was carried forward by
successive governments which came to power during this period. As a result,
the period saw progressive easing of controls on capital and money market
instruments, opening of equity markets further to international investors,
removing foreign ownership ceilings in many sectors, deregulation of interest
rates, reduction of import duty and tax rates etc. In our context, this would

mean that the error rates for prediction observed on application of the ANNs



on the validation data set are likely to be somewhat higher than what it would
be in a situation when there is no change in the economic environment

between the periods when the input data and the validation data are collected.

BSE Sensex 1997-2003
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Figure 3 : BSE SENSEX weekly closing values for the period 1997-2003

In the remaining part of this section we discuss, with specific reference to the
above data, construction of ANNs that perform reasonably well on the
validation data set. We use in addition to the weekly closing values of
SENSEX, some indicators which are well known in Technical Analysis and

which can be easily calculated based on the historical price data, as input to



the ANNs. Feed Forward Backpropagation Networks are chosen for modeling
purposes. Feed forward networks with one sigmoid layer and one linear layer
are known to be able to model non-linear relationships of great complexity
(Bishop, 1995). Depending on the complexity of the task, hidden layers can be
added to the network in order to achieve desired level of accuracy. The
software chosen for creating, training and testing the networks is MATLAB
Neural Network Toolbox, which has an extensive capability in terms of
creating and training different types of networks. The BSE SENSEX data is
quite complex and even with a large number of neurons in the two main layers

it could not be modeled effectively.

The need to increase the number of layers was felt in order to improve the
performance. Initially, the number of sigmoid layers was increased to improve
the performance. ANNs containing up to 8 sigmoid layers with up to 200
neurons each were tried in order to approximate the relationship. The inputs
used were varied from using just preceding week’s closing value to up to 26
weeks’ closing values (going backwards from the week preceding the target
week) and using a single target week’s closing value as the output. It was
seen that quite often the output was close to a single arbitrary number and
showed very little fluctuation. Upon analysis, the problem was found in the
structure of the network itself. A sigmoid layer can have one of the two
transfer functions - tan sigmoid function (tansig) or log sigmoid (logsig)
function. The tansig transfer function takes inputs over a wide range and

provides output in the range of -1 to 1, while logsig function gives output in the

10



range of 0 to 1. Thus, the sigmoid layer takes an input over a wide range and

provides an output over a limited range.

One of the problems associated with the sigmoid function is that towards the
extreme, the gradient changes very little and hence, outputs change very little
even for inputs which are quite different in value. Multiple layers with sigmoid
transfer function clearly run into problems due to this reason. Successive
layers of sigmoid transfer functions drive outputs to a constant number
regardless of the variations in the inputs. Thus, in order to correctly model
security price relationships, it is necessary to restrict the number of sigmoid
layers to a minimum and if necessary, increase the number of linear layers

only,

It is extremely important to choose the parameters of the sigmoid layer
carefully as the network performance is extremely sensitive to these
parameters. Again, this sensitivity arises from the nature of the transfer
function. Since the gradient changes very little at the extremes of input values
(and the backpropagation algorithm essentially relies on gradient changes), a
transfer function with smaller range of outputs gives much poorer results. This
effect was evident during the various experiments conducted by us, as the
logsig transfer function performed rather poorly compared to the tansig
transfer function. The reason possibly lies in the fact that tansig transfer

function has double the range of outputs (-1 to +1) versus the logsig transfer

11



function (0 to +1). The tansig transfer function, therefore, allows a larger

change in gradient for the extreme values of inputs.

An even larger impact of the transfer function appears on the input ranges
chosen for the first layer of the network. In case of SENSEX, for example, the
error during training dropped by almost 60% when input ranges were
narrowed down to 2500-6000 from the initial range of 0-10000. Specifying an
input range which is much larger than the possible values of inputs has a
huge penalty in terms of accuracy and reliability of the network as gradient
changes become much smaller due to larger input range, and network
performance becomes poorer in line with increasing range. This creates some
difficulty in modeling financial data. A narrow range around the training and
validation data sets would reduce the errors made by the network in modeling
the prices. But that reduces the usefulness of the network as the prices in
future may move outside the range and the network starts giving erroneous
results. A wide range, on the other hand, reduces accuracy but increases the
usefulness of the network. It is necessary to choose the ranges keeping this
trade-off in mind. The decision would depend on where the prices are at the
time of the modeling (close to the extremes of the range or in the middle), for
what time the model is intended to be used before retraining (whether
retraining would happen after a quarter or a year) and so on. If the prices at
the time of training the network, are in the middle of the price range exhibited
by the input data, an input range very close to the price range is likely to
serve the purpose very well as the prices are unlikely to move beyond the

range in the short term. If, on the other hand, the prices are close to the

12



extreme of the price range exhibited by the input data, it would be necessary
to provide some margin in terms of input range to that extreme so that even if
prices move beyond the earlier range, the network still stays useful. Likewise,
a network intended for short term use can do with narrower input ranges

versus the network which is supposed to be trained for longer term use.

One of the difficult problems that are encountered while modeling complex
systems is over-parameterization. Excessive number of parameters, coupled
with variables and weights highly fine-tuned to the data available, can drive
the error on test/ training data to extremely low levels. Over-parameterization,
however, can impose a huge penalty in terms of subsequent validity of the
model being created as the results can be significantly different from the
actual observations. Some approaches to model choice typically uses a
criterion function, analogous to the widely used Akaike Information Criterion
(AIC) or Schwarz Information Criterion(SIC) in statistics, that contains a
penalty term which increases with the number of parameters present in the
model. The model which gives the best value according to the chosen
criterion is then selected. However in the context of ANNs it is difficult to bring
in a penalty function within the training process (Amari et. al., 2006). Instead,
a validation data set may be used to select the network and the training
algorithms. Over fitting problems in a Neural Network context would occur in
the way of excessive number layers and of neurons in each layer. It is
possible to keep on increasing the number of layers in the networks in order to
drive the error down. By optimizing the network size based on the validation

errors we have attempted to avoid the problem of over fitting. An approach

13



similar to that used in the context of genetic algorithms has been used to
optimize the number of layers and neurons in the network. Networks with
three different input profiles using different training algorithms were created
with varying number of layers and neurons. While the number of sigmoid
layers was kept to one, the number of linear layers was raised up to 10. The
number of neurons was also varied between 100 and 1000 for the hidden
linear layers and between 100 and 2000 for the sigmoid layer. Networks
across all input profiles improved performance when the number of layers was
raised from 1 in case of linear layers. But the gain dropped off around 3
hidden linear layers and 1 output linear layer. Performance, measured in
terms of validation data set errors, dropped significantly after number of

hidden layers went beyond six.

In terms of number of neurons a similar approach was used. Beyond a certain
number of neurons, the results started showing performance losses. In case
of sigmoid layer, the problem occurred after the number of neurons went
beyond 1000. In case of hidden linear layers, the problem became visible after

neurons went beyond 800 per layer.

Based on these initial experiments, the following combination was chosen for

modeling:
Input Layer: Tan Sigmoid Transfer Function with 800 Neurons
Hidden Layers: Three Linear Layers with 600 Neurons each

Output Layer: Linear Layer with 1 Neuron

14



The above ANNs were trained using batch processing and the best
performance was given by a quasi-Newton algorithm, One Step Secant (OSS)
implemented in MATLAB. The technical indicators were chosen to represent
different influences on the market prices; the medium term trends, short term

fluctuations etc. The following variables/ indicators were used -
1. Weekly closing values of SENSEX for the past 200 weeks

2. 52-week moving averages of the weekly closing values for the past

200 weeks

3. 5-week moving averages of weekly closing values for the past 200

weeks

4. 5-week volatility of the weekly closing values (only in case of ANN2)

for the past 200 weeks

5. 10-week Oscillator (or Momentum) (only in case of ANN1) for the

past 200 weeks.

Moving averages are added as input to the ANNs on the premise that a
moving average represents some sort of a trend in price for the given period.
Different moving averages (5-week, 10-week, 13-week and so on) were tried
to find the one that yielded significantly better results. Two moving averages
were found to be performing better than the rest — 52-week moving average
and 5-week moving average. When both of these are used in conjunction,
significant gain in performance is noticed. Hence both are used as input to the

ANNs. A possible explanation for this effect could be that the 52-week

15



moving average provides the long term trend information. The 5-week moving
average then gives a reference point as to how far (and in which direction)

values have been moving in the recent past (i.e. short term trend information).

10-week Oscillator (or Momentum) is an extremely simple indicator as it
simply subtracts the value at 10 periods prior to latest value from the latest
value. The resulting value is supposed to give information regarding the future
direction of the values. Combined with the two moving averages, it is
observed to improve performance of the ANN. We use the 10-week oscillator

as an input variable for construction of ANN1.

Volatility computed over different periods- 5-week, 10-week, 13-week, 26-
week and 52-week, was used to test the network performance. 5-week
volatility gave the best performance. We use the 5-week volatility as an input

variable for construction of ANN2.

Thus, in order to predict the SENSEX value for a given period, ANN1 uses the
past 200 weeks information on the following: weekly closing values, 52-week
moving average of the weekly closing SENSEX values, 5-week moving
average of the same, and the 10-week Oscillator. On the other hand, ANN2
uses the past 200 weeks information on weekly closing values, 52-week
moving average of the weekly closing SENSEX values, 5-week moving

average of the same and the 5-week volatility.

16



4. Results

For ANN1, the Root Mean Square Error (RMSE) was 4.82% and the Mean
Absolute Error (MAE) was 3.93% on the validation set. It was seen that the
error towards the end of the validation set was higher than the earlier values.
If the last 10 weeks’ values are dropped from the validation set, the RMSE

(MAE) drops to 4.40% (3.67%)

For ANN2, RMSE (MAE) was 6.87% (5.52%) on the validation set. As with
ANN1, the error towards the end of the validation set was higher than the
earlier values. If last 10 weeks’ values are dropped from the validation set,

the RMSE (MAE) drops to 6.596% (5.36%).

Considering all of the above, we find that the performance of ANN1 is better
than that of ANN2 for predicting the weekly closing values of BSE SENSEX.
With an MAE of 3.93% on the validation data set it is expected that ANN1 will
work well for prediction purposes. However, it is well known that the
performance of ANNs, with respect to forecasting, depends on a variety of
factors (Zhang et. al., 1998). Thus, the performance of ANN1 cannot be

compared easily with the published findings of other studies.

5. Conclusion

The RMSE and MAE achieved by ANN1 on weekly closing values of SENSEX

in the validation data set is quite commendable given the reputation of

17



SENSEX being a volatile index. The 5-week (annualized) volatility of SENSEX
varied between 6% and 63% during the training data period and between 6%
and 31% during the validation data period. In such a volatile environment,
predictions with the level of error reported above are likely to be quite useful. It
has been observed that the error increases gradually during the validation
period. Thus, an appropriate approach may be to retrain the network
periodically (may be after every six months). There is considerable scope to
build on these results further and build ANN models that can predict the

security prices with higher level of accuracy.
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