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Abstract

A simple best-first tree search scheme with pruning rules to minimize the completion
time (makespan) of the project is described. A project consists of a set of activities
partially ordered by precedence constraints. An activity has a given non-negative duration
and uses renewable resources such as manpower and machinery. The total number of
available units of each resource is constant and specified in advance. A unit of resource
cannot be shared by two activities. An activity is ready to be processed only when all its
predecessor activities are completed and the numbers of units of the various resources
required by it are free and can be allocated to it. Once started, an activity can be
interrupted and rescheduled later on without any increase in remaining duration of that
activity. Each such part of the activity can be called a segment of that activity. There are
no set-up times. The objective is to assign start times to the activities or segment of
activities so that the makespan is minimized.

1. Introduction

A project consists of a set of activities partially ordered by precedence constraints. An activity has a
non-negative duration and uses different types of renewable resources such as manpower and
machinery. The total number of available units of each resource type is constant and specified in
advance. Two activities cannot simultaneously make use of the same unit of resource. An activity is
ready to be processed only when all its predecessor activities are completed and the number of units of
the various resource types required by it are free and can be allocated to it. In the non-preemptive
case, once started an activity is not interrupted and runs to completion. One of the objectives is to
minimize the completion time (makespan) of the project. In the preemptive case which is discussed in
this paper, an activity can be interrupted any number of times. However, this preemption is allowed at
unit time intervals only.

Extensive work on resource constrained project scheduling problem can be found in Stinson ef al.
[1978], Christofides et al. [1987], Bell and Park [1990], Demeulemeester and Herroelen [1992], and
Nazareth et al. [1999]. However, very little literature is available on solving project-scheduling
problem when activities can be preempted to resume later on, so that some other activities can be
executed. Demeulemeester and Herroelen [1999] presented an algorithm for the preemptive case.
However, experiments were conducted on standard set of Patterson [1984] only, which are very small
compared to the new standard sets, by Kolisch ez al. [1995]. In Verma [2004] a breadth first algorithm
for the preemptive case was explained. The objective of this paper is to present an optimal best-first
algorithm to solve the preemptive resource-constrained project scheduling problem, and to show
the results on the standard set of Kolisch et al. [1995].

Section 2 of the paper introduces the basic terminology and notation, and gives the mathematical
formulation of the problem. Section 3 reviews the existing literature. Section 4 explains the operation
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Demeulemeester, from Department of Applied Economics, Operations Management Group Katholieke
Universiteit Leuven, Belgium for providing source code of their programs. This paper was possible due to
research grant by Research and Publications Unit of IIM Ahmedabad.
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of Preempt BFS with the help of examples. Section 5 explains a Breadth First Implementation of
Preempt BFS called Preempt BDS. Section 6 details our experimental observations. Preempt BFS,
Preempt BDS and a very popular algorithm for same problem by Demeulemeester E. & Herroelen
W. [1996] are coded in C and executed on a Linux based machine. The results of experiments
conducted over standard set of Patterson as well as, that of Kolisch ef al [1995] are recorded. Section
7 suggests further work on the problem and concludes the paper. Section 8 provides references.

2. Definitions of Terms

1. Project: A project consists of N activities a,, ay, ..., aj, ..., ay. Activity a; has duration of
pi units; this includes the set-up time, processing time and set-down time. We use the
Activity-on-Node (AON) convention when referring to projects.

2. Precedence Constraints: Activity a; (i=1, ..., N) can start only when all its predecessor
activities have finished. The predecessors are determined by the technological
considerations of the project. An activity a, is said to be a predecessor of a;, when a;
cannot start until a, has finished. This is represented as a, < a;, where '<' defines the
precedes relationship. Similarly as is said to be a successor activity of a; if a; cannot begin
until a; has finished. Let A denote the set of all the pairs of activities with predecessor and
successor relationships.

3. Resource Types: M types of renewable resources are assumed to be available. R; (j=1.,..
M) denotes the total availability in number of units of resource type j. Activity a; requires
r; units of the j™ resource.

4. Resource Constraints: The total number of units of resource type j used by all the
activities in progress at any instant of time should not exceed the total availability R; of
that resource type.

5. Integrality Condition: Values of parameters such as activity duration (p;), resource
availability (R;) and resource requirements (r;;) are non-negative integers.

Note:  Without loss of generality and in consistency with standard practice, it is assumed
that:

a) A project has 2 dummy activities, a (unique) dummy start activity a, and a (unique)
dummy finish activity ay, which are of zero duration and consume no resources (i.e.,
pl=pxn=0, rj=1=0, j, j=1,..., M).

b) The activities are numbered in such a way that no activity has a predecessor with a
higher number.

c) Every non-dummy activity has at least one predecessor and at least one successor,

d) In listing the set of predecessor activities of a given activity, only the activities

directly preceding need to be listed. If the direct predecessors have completed, all
indirect predecessors must also have completed.

A project starts at time t =0 (i.e., s; = 0). A schedule for the project is an assignment of a start time s;
to each activity a;. An activity is said to be scheduled when it is assigned a start time. The makespan
(T = 1\) of a schedule is the time when the last activity (ay) finishes. A feasible schedule is a schedule
that satisfies the given precedence and resource constraints. An optimum schedule is a feasible
schedule that optimizes the given objective function.

Given Rj (j =1, .. M), and p;, H and r;; for each a;, (1 =1, ..., N, j =1, ..., M), our problem is to

determine an optimum schedule. In the widely discussed resource-constrained project-scheduling
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problem (RCPSP), activities once started are executed unto their completion. The problem can be
formulated mathematically as follows:

Minimize fy (D
subject to the conditions

) fi-f > pi V(a, %) € H; and 2)
i) 21 < R; foreachj, 1 <j<M, at every integer time instant t, 0 <t <fy, 3)

where the summation is over all i such that activity a; is in progress during the time interval [t,
t+1).

However, when preemptions are allowed, the activities can be interrupted at any integer time instant
and restarted later without any setup cost, i.e. an activity (a;) with duration (p;) can be splitted into p;
segments of unit duration where each segment consumes same resources as that of activity a; and two
segments cannot run in parallel. Following formulation is discussed in Demeulemeester and Herroelen
[1999].

Let fy be the completion time of k™ unit of activity a;, where each activity a; is broken into p;
durations. Let f;y be the earliest start time of the activity a;. Only finish-start relations with a time lag of
zero are allowed, and therefore fjy, equals the latest finish time of all the predecessors of activity a;. An
activity a; belongs to the set of activities in progress at time t if one of its duration units k = 1,2,......p;
finishes at time t. With these, PRCPSP can be formulated as follows:

Minimize f, o 4
i) fa< fio V (aja) e (5)
i) fixau+t1<fy fori=1,..nandk=1,....d; 6)
iii) fi0=0, and (7)
1il) 21 < Ry foreachj, 1 <j<M, at every integer time instant t, 0 <t <fy, (®)

where the summation is over all 1 such that activity a; is in progress during the time interval [t,
t+1).

The objective function (4) minimizes the makespan by minimizing the earliest start time of activity ay
(dummy activity). In (5) all precedence relationships are satisfied; the earliest start time of an activity
a; cannot be smaller than the finish time of the last unit of duration of its predecessor a;.(6) specify that
the finish time of a portion of activity at least one unit of time more that the completion time of
previous portion. (7) specify that the earliest start time of activity a; is 0. (8) specifies that the
resources consumed at any point of time during the duration of the project are not greater that the
resources available. It should be noted that with preemption the number of possible solutions increase
and therefore the computational complexity of the problem also increases.

3. Literature Review

Significant work has been done in the field of project scheduling. A comprehensive survey of the
work that has been done can be found in Herroelen ef al. [1998]. In RCPSP the objective is to
minimize the makespan of the project, where activities have deterministic duration and resource
requirements. The resource requirement as well as, resource availability is given and remains constant
throughout the duration of the project. Some of the noteworthy publications in this field are by
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Stinson et al. [1978], Demeulemeester and Herroelen [1992], and Nazareth et al. [1999].
Demeulemeester and Herroelen [1992] use a depth first strategy. It generates a search tree, in which
the nodes correspond to partial schedules. At each node finish times are assigned to a subset of
activities in the project. DH uses the concept of Minimal Delaying Alternatives (MDA). A delayed set
consists of all subset of activities that are either in progress or are eligible, the delay of which would
resolve the resource conflict in the partial schedule. Pruning rules are also used.

Nazareth et al.[1999] have used two strategies, a breadth-first and a best first strategy. The concept of
Maximal Resource Satisfying Set (MRS) is used. An MRS is considered out the candidate set. A
candidate set is those activities that are available for scheduling. A MRS is a maximal subset of
activities that are eligible to be scheduled and does not cause a resource violation; however if another
activity belonging to candidate set is added to an MRS, the resulting subset would cause a resource
violation. Nazareth et al.[1999] also use three pruning rules, namely Dominance Pruning rule, Left
shift rule and One child rule.

However, not enough work has been done in the area of PRCPSP. Davis and Heidorn [1971]
suggested and implicit enumeration scheme based on the splitting of activities into sub-activities of
unit duration. The algorithm of Demeulemeester and Herroelen [1996] has also been extended for
PRCPSP. IN PRCPSP, Demeulemeester and Herroelen (DH) make a distinction between activities
and sub-activities. Each activity in the project network is replaced by sub-activities; their number
being equal to the duration of the activity. Each sub-activity has duration of 1 and resource
requirement equal to the corresponding activity. In Nazareth [1995] it is suggested that it is possible to
modify the algorithms discussed in Nazareth et al. [1999] for the preemptive case. In this paper, the
same idea has been taken further.

4. Preempt_BFS: A Best-First Strategy

Like most other project scheduling methods, Preempt BFS is a tree-search procedure augmented with
pruning rules. The nodes in the search tree are called states and correspond to partial schedules, where
a partial schedule is a schedule of a subset of the N activities that do not violate any of the given
precedence and resource constraints. A complete schedule is a partial schedule of all the N activities; a
state corresponding to a complete schedule is a solution state. A state is identified with its partial
schedule when no confusion is likely to arise; for clarity, we sometimes refer to the partial schedule
corresponding to a state X as schedule(X). The root node of the search tree corresponds to a partial
schedule with no activity completed and the dummy start activity a; in progress. The following
parameters are associated with a state X:

Cx Current time: The time of creation of state X.

Fx Finished set: The set of activities that have already finished at or before time cx (without
violating any precedence or resource constraints).

Ax Active set: The set of activities, whose segment started at time cy; this is the set of segments
(of activities) in progress in state X at time cx.

dpx  Decision point: The time at which we make consider new activities for scheduling. This
becomes the current time of each child state of X.

Kx Decision set: The set of activities, which are not yet completed at time cx but all of whose
predecessors have completed at some time < cx. These are the ready activities at time cx.
Activities in Ay, also belong to K.

4.1 Generation of Root State

The parameters associated with the root state I of the search tree are as follows:

O —
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C = 0 = Current time of the root state |

F = {} = Set of activities completed at ¢; (empty set)

A = {a)} = Set of activities in progress at time ¢

dp; = 0 = Finish time of activity a;

K = {a1}

Initially the search tree consists only of the root state I. States get added to the tree as follows.
Suppose X is a state in the tree that is not a solution state and X is selected for expansion. First the
decision point dpx and candidate set Ky are determined. Let us suppose that Ky is non-empty. A
Maximal Resource Satisfying Set (MRS) is a maximal subset of Kx that does not cause a resource
violation; if another activity belonging to Kx is added to an MRS, the resulting subset would cause a
resource violation [Nazareth et al. 1999]. In general, Kx has a number of distinct subsets each of
which is an MRS; these are not necessarily disjoint. For example, suppose there is only one resource
type with a total availability of two units. Also suppose that in schedule(X), activities a; and ay are in
progress, and a; finishes at time dpx but a is still in progress. Let a, and a, be two other activities that
are ready to be scheduled at dpy, so that Ky = {ay, a,, a,}. Let each of a, a,, and a, require one unit of
resource. Then, at dpx the MRSs are {ay, a,}, {a, a,} and {a,, a,}. The expansion of X, which takes
place at time dpy, creates a child node corresponding to each MRS. In every child state Y of X

Cy = de
Fy = Fx augmented by the activities in Ax that completed at time dpx
Ay = the MRS of X that corresponds to this child state

Since the activities are pre-empted, these will be scheduled many times.
4.2 Expansion of a State

Let the /evel of a state X in the search tree be the decision point of the state dpx. The next state is
generated at time cy = dpx = cx+1. However, if the duration of any activity in progress (Ax) is zero
than cy = cx (and dpx = dpy) and therefore, level of both parent and child states will be the same.

The root state is at level zero; its children are at level one, and so on. In the best-first formulation, the
evaluation function for the state Y employs the usual makespan heuristic. A partial schedule is
converted to a pseudo-complete one by adding the unfinished activities to the schedule in conformity
with the precedence constraints but ignoring the resource constraints. The makespan of this schedule
is used as the heuristic estimate of the state. The states are maintained in a priority queue with smaller
estimates having higher priority, and in each iteration the state with the highest priority is selected for
expansion. In case of ties, states with larger Fyx sets get preference; if the Fx sets are equal in size,
states with lower dpx values are preferred. Since the heuristic value underestimates the actual
makespan, the first solution state selected yields a schedule of minimum length. We find a state which
has activity ay in progress (or Ky = ay), it must be a state that will provide an optimal solution. Also, it
is important to note that the level of the search tree can never exceed the sum of durations of all the
activities.

In this simple form the algorithm is very inefficient as too many states get generated. Pruning rules
must be employed to cut down the effective branching factor of the search tree. Two pruning rules are
used to prune the tree. These are Dominance Pruning rule and One Child Rule and are described
below.

O e—
W.P. No. 2006-03-08 Page No.6



IIMA e INDIA
e — Research and Publications

Algorithm Preempt BFS

Begin
create the root state I and insert it in priority queue; /* initialize */
do /*loop */
get current best state X form the priority queue; /* select state for expansion */
if state X is a solution state then output schedule and makespan, and exit; [*terminate */
else
determine the decision point dpx.
construct Kx and all the MRSs;
if the One-Child Rule applies then generate one child state of X
corresponding to the singular MRS/* expand with one-child rule /* expand -one-child rule */
else
for each MRS
construct the corresponding child state;
apply the Dominance Pruning Rule;
if the child state has not been pruned
determine its heuristic estimate;
insert it in the search tree as a child of state X;
insert it in the priority queue at the appropriate place;
end if}
end for;
end if-else;
end if-else;
while true; /*end do */
end algorithm.

Two activities a; and a; are compatible if a; and a; can be processed concurrently not taking other
activities into account. Two activities cannot be compatible if one is a successor of the other in the
precedence relationship. When not so related, their compatibility is determined by their resource
requirements and by the total availability of resources.

An MRS Ay at a decision point dpx of a state X is singular if
1) no activity belonging to Ay is in progress in X prior to dpx; and

i) there is an activity a; in Ay such that a; is the longest activity in Ay, and among activities that
remain unfinished at time dpy, those that are compatible with a; are all included in Ay.

Activity a; will be referred to as a distinguished member of the singular MRS Ay.

One-Child Rule: If all activities in progress in a state X complete at the decision point dpx, and if
there exists a singular MRS Ay at that time, then generate only one child state of X, namely the state
Y that corresponds to MRS Ay. If more than one MRS is singular at dpy, then choose any one
arbitrarily. For this child state Y dpy= cx + duration of a;.

While the One-Child Rule helps to reduce the number of states, the use of a Dominance Pruning Rule
makes the pruning much more effective. This rule prunes states that would generate solutions no
better than those obtainable from states that remain in the search tree.

Many alternative formulations of the rule are possible, some weaker than others in pruning power. A
balance must be struck between effective pruning and implementation overhead. The Dominance

Pruning Rule used in Preempt_BFS has the following form:

The Dominance Pruning Rule used in Preempt BFS has the following form:

O e——
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Figure 1: Project for Example 1

Dominance Pruning Rule: If at any time during the execution of Preempt BFS there are two states

X and Y in the search tree such that:

) dpx =dpy;

i) Set of Candidate Activities for state X = Set of Candidate Activities for state Y;

1ii) The balance (remaining) time in state X of each activity in set of Candidate activities is
less than or equal to the balance time of corresponding activities in state Y at time dpy

then prune state Y from the search tree.

Let us define level of a state by its dpx. Thus a state X can dominate a state Y only if X and Y are at
the same level. The algorithm with its pruning rule is shown in the box. Example 1 shows
implementation of algorithm with One-Child and Dominance Pruning rule.

Example 1: Consider the project network shown in Figure 1. It has twelve activities numbered 1
to 12. The duration (p;) and resource requirement (r;) of each activity is given on the top of the
activity. There is one resource type with maximum availability of six. The pre-emptive makespan
of the project is 11 as shown in Figure 2(a). Please note that if preemptions were not allowed the
makespan would be 12 as shown in Figure 2(b). Table 1 shows the details of the states generated
in the search tree.

5 Preempt_BDS: A Breadth-First Implementation

O —
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Along with the best-first implementation, a breadth-first version of the algorithm was also
implemented. The breadth-first version is different from best-first as the nodes in breadth-first are
expanded level-by-level, where a level is defined as the decision point of that particular partial
state. Since the expansion of states is done level-by-level, it is enough to keep at most two levels
in memory, rather than keeping all the states. This reduces the need for memory significantly and
many instances which cannot be solved by best-first may be solved by using breadth-first
approach, especially under memory constraints.

11|11

4 717188 |11|9 (11

2|12(3|5|6|6|6|6([10(10]| 9
o 1 2 3 4 5 6 7 8 9 10 11

Figure 2(a) : Schedule for Example 1
(Preemption Allowed)
4 7 8 9 10
2 3|5 6 11

O 1 2 3 4 6 8 10 12

Figure 2(b) : Schedule for Example 1
(Preempntion Not Allowed)
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6. Experimental Observations

In this section we refer to the three algorithms of interest as follows. DH: Algorithm of
Demeulemeester and Herroelen, 1997; PBR: Algorithm Preempt BDR (with all pruning rules);
PBS Algorithm Preempt BDS (with all pruning rules). The experiments were conducted on the
problem set of Kolisch et al. containing 480 problems. The algorithm was coded in C on Linux
and was run on a Pentium IV 1.7 GHz machine with 490 MB RAM. The results are as follows.

1. As shown in Table 2, PBS solves 411 problems in all followed by PBR (376 problems
solved) and then DH (337 problems solved).

ii. DH takes least time to solve the problems. However, this is because it solves only easier
problems. DH takes 1.26 seconds” to solve 337 problems while PBR takes 14.49 seconds to
solve 376 problems. PBS solves 411 problems in 10.29 seconds (Table 2).

Table 2: Overall Results on Problem Set of Kolisch et. al.

DH PBR PBS
Problems Solved 337 376 411
Average Time 1.26 14.49 10.29
States Generated 46,991 221,046 154,930
States Expanded 4954 43,015 23,757
iii. DH on average generates 46,991 states for the problems solved. Average number of states

generated is highest for PBR with 221,046 states while PBS generates 154,930 states (on
average) only. Out of the 46,991 states generated DH expands 4,954 states which are
10.54 % of the states generated. Similarly, PBR expands 43,015 states resulting in
expansion ration of 19.46%. PBR has an expansion ration of 15.33% (Table 2).

These 480 problems are categorized on the basis of three parameters viz. Network Complexity
(NC), Resource Factor (RF) and Resource Strength (RS). NC measures the complexity level of
the network as determined from its topology; it depends on the number of arcs and edges in the
network. The lower the value of NC, the more activities can be done in parallel, allowing more
activities to compete for same resource. RF reflects the average resource requirement of a job. RF
= 1 means that each job requests all resources; RF = 0 indicates that no job requests any resource.
RS shows the relationship between resource requirement and resource availability.

RS = Resource Availability - Minimum Resource Requirement

Maximum Resource Requirement - Minimum Resource Requirement

The value of RS lies between zero and one. When resource availability just equals the minimum
resource requirement, resource constraints are very tight and RS = 0. When resource availability
equals the maximum resource requirement, RS = 1. The values of minimum resource requirement
and maximum resource requirement are calculated by solving the project scheduling problem
ignoring resource constraints.

iv. More problems are solved with increase in NC by all the three algorithms (Table 3). PBR
solves one problem less than DH when NC is equal to 1.5 (PBR = 107, DH = 108), however
for NC values of 1.8 and 2.1 PBR solves much more problems compared to DH (DH: from
107 solved for NC = 1.8 to 122 solved for NC = 2.1, PBR: from 124 solved for NC = 1.8 to
145 solved for NC =2.1).

2All timings, number of states generated as well as expanded are averages.
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For NC = 1.5 and NC = 2.1 PBS takes less time compared to PBR. However for NC =
1.8 PBR takes less time than PBS (Table 3).

Time taken for by DH and PBR decreases with increase in NC. For PBS time taken reduces
from 0.13 second of NC = 1.5 to 0.05 second for NC = 1.8 but then increases to 2.87 for NC
=2.1(Table 3).

If the ratio of number of states generated to number of states expanded is considered, at
NC = 1.5 DH has the most favourable ratio of 5.9% followed by PBS at 13.8% and then
by PBS at 17.3%. At NC = 2.1 also the ratio remains in favour of DH. However at NC =
1.8, the ratio is favourable to PBS at 13.8% (Table 4).

Table 3: Impact of NC in Problems by Kolisch ez al.
No. of Problems Solved

1.5 1.8 2.1 Total
DH 108 107 122 337
PBR 107 124 145 376
PBS 126 135 150 411
Total 160 160 160 480

Average Time Taken

1.5 1.8 2.1 Total
DH 0.78 0.04 2.75 1.26
PBR 18.27 10.53 15.10 14.49
PBS 13.32 12.17 6.05 10.29

No. of States Generated

1.5 1.8 2.1 Total
DH 62,052 3,488 71,814 46,991
PBR 264,824 201,759 205,235 221,046
PBS 170,888 181,730 117,406 154,930

No. of States Expanded

1.5 1.8 2.1 Total
DH 3,689 654 9,846 4,954
PBR 45,850 40,176 43,351 43,015
PBS 23,506 25,102 22,7757 23,757

Table 4: Ratio of States Expanded to States Generated
for change in NC
1.5 1.8 2.1
DH 5.9% 18.8% 13.7%
PBR 17.3% 19.9%  21.1%
PBS 13.8% 13.8% 19.4%

Number of problems solved decrease for all the methods with increase in RF. While for
RF =0.25 DH could solve only 116 problems PBR and PBS solved all 120 problems. For
all values of RF PBS always solved maximum instances, followed by PBR and DH
(Table 5).

With increase in RF, time taken to solve the problems always increase for PBR. For PBS
and DH time taken increase in general but for RF = 0.75 time taken is less than time taken
for RF = 0.5. For DH this reduction from RF = 0.5 to RF= 0.75 is significant (Table 5).

If the ratio of number of states generated to number of states expanded is considered, at
RF = 0.25 PBS has the most favourable ratio of 17.55% followed by PBR at 19.53% and
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then by DH at 23.16%. At RF = 1.0 the ratio is in favour of DH at 7% followed by PBS
(11.32%) and PBR (17.05%) (Table 6).

Table S: Impact of RF in Problems by Kolisch ez al.
No. of Problems Solved

0.25 0.5 0.75 1 Total
DH 116 82 76 63 337
PBR 120 108 83 65 376
PBS 120 112 97 82 411
Average Time
0.25 0.5 0.75 1 Total
DH 0.07 0.57 0.05 5.80 1.26
PBR 1.61 12.65 24.25 28.89 14.49
PBS 0.80 8.99 7.57 29.19 10.29
No. of States Generated
0.25 0.5 0.75 1 Total
DH 3,947 27,266 5,505 201,969 46,991
PBR 34,708 277,486 304,794 364,338 221,046
PBS 16,498 187,885 146,719 322,216 154,930
No. of States Expanded
0.25 0.5 0.75 1 Total
DH 914 7,382 894 14,131 4,954
PBR 6,745 58,037 60,953 62,111 43,015
PBS 2,895 35,549 25,191 36,485 23,757

Table 6: Ratio of States Expanded to States Generated for change in RS

DH 23.16% 27.07% 16.24% 7.00%
PBR  19.43% 20.92% 20.00% 17.05%
PBS 17.55% 1892% 17.17% 11.32%
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Xi.

Xii.

xiii.

Table 7: Impact of RS in Problems by Kolisch et al.
No. of Problems Solved

0.2 0.5 0.7 1 Total
DH 29 78 110 120 337
PBR 71 73 112 120 376
PBS 68 105 118 120 411
Average Time Taken
0.2 0.5 0.7 1 Total
DH 1.45 1.05 2.73  0.00 1.26
PBR 36.33 12.82 17.27  0.00 14.49
PBS 22.74 23.39 1.93  0.00 10.29
No. of States Generated
0.2 0.5 0.7 1 Total
DH 65,660 89,297 63,277 52 46,991
PBR 644,251 216,420 192,589 25 221,046
PBS 493,157 249,403 33,462 49 154,930
No. of States Expanded
0.2 0.5 0.7 1 Total
DH 19,467 5,843 5,846 51 4,954
PBR 139,721 39,861 29,828 25 43,015
PBS 99,169 24,110 4,095 49 23,757

With increase in RS, number of problems solved increase sharply. For RS = 1, all the
three methods solve all 120 problems. Fro RS = 0.2, PBR solves maximum number of
problems followed by PBS and DH (PBR =71, PBS = 68, DH = 29) (Table 7).

For RS = 0.2, number of states generated are maximum for PBR followed by PBS and
DH. However the states generated reduce sharply as RS increases. For RS = 1, PBR has
least number of states generated followed by PBS and DH (Table 7). Number of states
expanded also reduces with increase in RS. This reduction is significant for PBR followed
by PBS and DH.

Table 8 shows that if the ratio of number of states generated to number of states expanded
is considered, at RS = 0.2 PBS has the most favourable ratio of 20.1% followed by PBR
at 21.7% and then by DH at 29.6%. At RS = 1.0 both PBR and PBS expand all the states
generated while DH expand 98.1% of the states. However, it is at lower values of RS, it is
beneficial to have lesser number of states generated as well as expanded.

Table 8: Ratio of States Expanded to States Generated
for change in RS

DH  29.6% 6.5% 9.2% 98.1% 10.5%
PBR  21.7% 18.4% 15.5% 100.0% 19.5%
PBS  20.1% 9.7% 12.2% 100.0% 15.3%

The analysis so far considers all the solved problems. However, it is quite obvious that PBR and
PBS may seem to perform poor in terms of average time, states generated and states expanded
because they solve more and therefore difficult instances. Therefore, now we analyse common
instances solved by all three problems.

X1V.

In all 315 problems were commonly solved by all the three algorithms (Table 9).
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XV.

XVI.

XVil.

XViil.

XIX.

XX.

Table 9: Common Problems Solved by All Three Methods

NC 1.5 1.8 2.1 Total
Problems Solved 95 103 117 315

95 of these 315 common problems were for NC = 1.5, 103 were for NC = 1.8 and 117
were for NC = 2.1 (Table 9).

As shown in Table 10, out of these 315 problems, PBS (0.06 second) takes least time
followed by DH (1.12 seconds) and then PBR (6.49 seconds).

Table 10: Average Time for Common Problems

NC
1.5 1.8 2.1 Total
DH 0.13 0.05 287 1.12
PBR 9.71 638 397 6.49
PBS 0.10 0.05 0.05 0.06
RF
0.25 0.5 0.75 1 Total
DH 0.07 0.56 0.04 5.51 1.12
PBR 047 1.10 15.80 15.91 6.49
PBS 0.05 0.10 0.06 0.04 0.06
RS
0.2 0.5 0.7 1 Total
DH 1.50 0.19 285 0.00 1.12
PBR 1.82 636 15.22 0.00 6.49
PBS 0.19 0.13 0.07 0.00 0.06

PBS gives best time performance for all values of NC followed by DH and PBR.

With increase in RF, time taken may seem to behave erratically. This behaviour is due to the
fact that the difficulty of instances increase slightly problems get solved in more time, but if
the difficulty increase beyond a certain level lesser problems get solved, even though it may
be observed that time taken has reduced.

With increase in RS time taken for PBS reduces. Time take by PBR first increases with
increase in RS up to 0.7 and then reduces to zero. However, it should be noted that whenever
the average time increases, number of problem solved also increases implying that more
difficult problems are being solved (Table 10).

Table 11 shows that out of 416 problems solved for 278 problems there is no reduction in
makespan when compared against non-preemptive case. For 56 problems makespan reduced
by 1 unit time. Similarly reduction was 2, 3, 4, 5 and 6 for 52, 21, 7, 1 and 1 problem
respectively.
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Table 11: Decrease in the optimal project length if preemption is allowed
Problems by Kolisch et al.

Decrease in Makespan 0 1 2 3 4 5 6 Total
Count of Problems 278 56 52 21 7 1 1 416

7. Conclusion

The algorithm Preempt BFS is a simple algorithm based on best-first search. The pruning rule is also
simple and therefore, easy to implement. However, newer pruning rules may be devised to improve
the performance of the algorithm. The algorithm is compared to Demeulemeester and Herroelen
[1996] and it can be shown that it gives better results.
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