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Abstract

The term ‘bottleneck’ has been extensively used in operations management litera-

ture. Management paradigms like the Theory of Constraints focus on the identification

and exploitation of bottlenecks. Yet, we show that the term has not been rigorously

defined. We provide a classification of bottleneck definitions available in literature and

discuss several myths associated with the concept of bottleneck. The apparent diver-

sity of definitions raises the question whether it is possible to have a single bottleneck

definition which has as much applicability in high variety job shops as in mass produc-

tion environments. The key to the formulation of an unified concept of bottleneck lies

in relating the concept of bottleneck to the concept of shadow price of resources. We

propose an universally applicable bottleneck definition based on the concept of aver-

age shadow price. We discuss the procedure for determination of bottleneck values for

diverse production environments. The Law of Diminishing Returns is shown to be a suf-

ficient but not necessary condition for the equivalence of the average and the marginal

shadow price. The equivalence of these two prices is proved for several environments.

Bottleneck identification is the first step in resource acquisition decisions faced by man-

agers. The definition of bottleneck presented in the paper has the potential to not only

reduce ambiguity regarding the meaning of the term but also open a new window to

the formulation and analysis of a rich set of problems faced by managers.

Keywords: Bottleneck, Production, Scheduling, Theory of Constraints, Average

shadow price

1 Introduction

The roots of bottleneck focused approach in operations management can be traced back to
the days of Henry Ford. In his effort to deliver an affordable car, Ford introduced the mov-
ing assembly line which exploited the economies of scale involved in producing a standard
product in high volume. It was understood that the workstation with the maximum pro-
cessing requirement, denoted as the bottleneck, would constrain the output of the system.
This understanding was inherent in the attempt to ‘balance capacity’ by ensuring that the
total work was allocated equally among the workstations. The operating tool employed
to achieve this allocation was the Assembly Line Balancing technique (Salveson (1955)).
The focus on bottlenecks was implicitly captured by the importance given to the capacity
utilisation metric as the prime tool for managerial planning and control in such high volume
low variety environment.

The complexity of operations has increased tremendously since the days of Henry Ford.
Single model assembly lines have given place to mixed model assembly lines. Inflexible
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transfer lines have yielded ground to various forms of flexible manufacturing systems. The
need for constant product innovation and the resultant product proliferation has resulted
in an increase in the variety in the product mix. The identification of bottleneck becomes
much more difficult as we move from the high volume low variety repetitive manufacturing
scenario towards low volume high variety job shops and finally to the project environment.
Job shops and projects primarily compete on the dimension of time as opposed to a mass
production system where throughput at the lowest cost is the primary concern. Thus the
definition of bottleneck has to be agreed upon given that ‘capacity’ is no longer approachable
in job shops and projects in the same way as in assembly lines.

For a practicing manager running a production or service set up, focusing on the bot-
tleneck is an intuitive way of managing this complexity. Yet, as we show in this paper,
management science literature does not provide a bottleneck definition which is universally
valid for all production/service scenarios. The absence of an universally applicable defini-
tion implies the absence of any universally applicable bottleneck focused approach. This
void was partially filled when Goldratt and Cox (1984) proposed the Theory of Constraints
(TOC). As an operations management paradigm, TOC centered mainly on the identifica-
tion and exploitation of bottlenecks. For the practicing manager, the acceptance of such a
theory comes naturally as it exploits the fundamental intuition about bottlenecks carried
over from the days of Henry Ford. This acceptance is reflected in the phenomenal success
of Goldratt’s novel The Goal.

In order to demonstrate the universal applicability of TOC, Goldratt published the
novel Critical Chain (Goldratt (1997)) aimed at applying the bottleneck focused approach
in project environments. As Raz et al. (2003) explain, the critical chain is the set of tasks
or activities that results in the longest path to project completion after resource leveling.
Several authors have pointed out that the concept of critical chain is nothing but old wine
in new bottle (McKay and Morton (1998), Trietsch (2005a)). Identifying the critical path
after resource leveling as the bottleneck in a project is too simplistic and is dependent on
the realised schedule (Herroelen et al. (2002)). The reader is referred to Herroelen and Leus
(2001) for a balanced understanding of the merits and pitfalls of critical chain scheduling.

The criticism of Goldratt’s bottleneck focused approach has centered around the lack of
rigour in his work. The format of his primary works, the novel, does not allow a display of
scientific rigour. This choice of format is not accidental and matches a disregard for the sci-
entific process of acknowledging and building on the work of others. Previous research work
was not acknowledged, topics like resource optimisation, sequence optimisation, investment
optimisation were branded as ‘academic’ and by implication, irrelevant. Any academic work
displaying similar characteristics would have been summarily consigned to oblivion by the
research community. The very fact that researchers have been forced to devote time, en-
ergy and valuable journal pages to point out the lack of rigour, is due to the popularity
of Goldratt’s approach among practitioners. We would like to make a distinction between
the bottleneck focused approach per se and Goldratt’s implementation of the bottleneck
focused approach. A practitioner should not be forced to compromise rigour in order to
follow a bottleneck focused approach. Management science researchers need to provide a
scientifically rigorous bottleneck focused approach as a viable alternative to Goldratt’s ap-
proach. The work of Trietsch (2005b) is a step in this direction. Our effort in this paper

W.P. No. 2006-05-01 Page No. 3



IIMA • INDIA

Research and Publications

is on similar lines and is grounded in the understanding that the bedrock of a bottleneck
focused approach is the definition of bottleneck itself.

In our view, Goldratt has not erred in his belief about the universal applicability of
the bottleneck focused approach. However, the attempt at formulating an universally valid
bottleneck focused approach was not preceded by the rigorous formulation of an universally
valid bottleneck definition. Instead, a generic way to approach the problem of identifying
bottlenecks is presented in Goldratt and Fox (1986): “A capacity constraint manifests
itself in all of the major business issues. An analysis of the major business issues can be
used to identify the capacity constrained resources”. Trietsch (2005a), while quoting the
above, pointed out that the definition was rather simplistic for a complex system, making
it virtually impossible to apply.

The objective of this paper is to establish an universally valid bottleneck definition.
The term ‘universal’ has several connotations for this paper. Primarily our intention is
to search for a bottleneck definition which has applicability in diverse production/service
scenarios spanning project environment to continuous flow lines. Secondly, we hope that
an universally accepted bottleneck definition would bridge the gap between theoreticians
and practitioners. We show that the popularly used capacity based and critical path based
bottleneck definitions are special cases of the universally valid bottleneck definition. As a
result, we sensitise the practicing managers against overextending the definition valid for
a particular scenario. At the same time, the existence of an universal definition having
scientific validity means that practitioners do not have to sacrifice rigour while employing
a bottleneck focused approach to problem solving.

The foundation of this unified approach lies in understanding the similarity between
the concepts of bottleneck and shadow price of resources. The shadow price for a resource
in a mathematical programme provides the same managerial insights as does a bottleneck
measure. The bottleneck definition proposed by us is an application of the concept of
average shadow price in the context of operations management. We show how the definition
can be applied in diverse production/service environments and discuss the procedure for
determination of bottleneck values. The determination of the average shadow price is much
more difficult than determining the marginal shadow price. The two prices would be equal
if the Law of Diminishing Returns holds for a production/service environment. We provide
an example to show that the Law of Diminishing Returns does not necessarily hold for
all production/service environments. An interesting research question having significant
implication for practitioners would then be to characterise environments where the two
shadow prices are equivalent. We make a start by proving the equivalence of the average
and marginal shadow prices for four specific environments.

The rest of the paper is presented as follows. In Section 2 we discuss the fundamental
characteristics of bottlenecks and formulate a bottleneck definition which is in conformity
with the idea of shadow price. In Section 3 we provide a classification of bottleneck def-
initions available in literature and show that many bottleneck definitions do not conform
to the idea of bottleneck as a constraining resource. The literature on shadow prices for
integer programmes is reviewed in Section 4. An universally valid bottleneck definition is
introduced in Section 5 . Section 6 highlights the procedure for determination of bottle-
neck values. The relationship between the average and marginal shadow price is studied in
Section 7. Finally we conclude in section 8.
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2 Fundamental characteristics of bottlenecks

bot-tle-neck (bot′∂ l-nek′), n. 1. a narrow entrance or passageway. 2. a
place or a stage in a process at which progress is impeded. -v.t. 3. to hamper
or confine by or as by a bottleneck. -v.i. 4. to become like a bottleneck; be
hindered by or as by a bottleneck. 1

The term bottleneck has been extensively used in operations management literature.
Yet there are few instances where it has been explicitly defined. However, practitioners
have a clear understanding of the implications of a resource being a bottleneck. According
to Goldratt, “An hour lost at a bottleneck is an hour lost for the entire system. An hour
saved at a non-bottleneck is a mirage”. In our opinion, this statement captures the essence
of the concept of bottleneck. It communicates in very simple terms the crucial role played
by bottlenecks. Moreover, the statement is ‘actionable’ in that it provides a clear focus for
managerial planning and control activities.

We choose this statement as the guiding principle in formulating an universally valid
bottleneck definition. This action on our part is not because we consider Goldratt’s words
as infallible. Instead, we realise that this statement is nothing but an application of the
well-known complimentary slackness conditions (Tucker (1956)) in a production/service
context. The complimentary slackness conditions for linear and non-linear mathematical
programmes state that dual variables (shadow prices) exist if and only if the corresponding
constraints are binding. In the context of a production/service system, this translates to the
fact that an improvement for the whole (‘entire system’) is possible if and only if there is an
improvement for a crucial part (‘bottleneck’) of the whole. We have not come across a single
published article where this connection between Goldratt’s characterisation of bottlenecks
and the fundamental Operations Research concept of complimentary slackness conditions
has been highlighted.

We propose the following bottleneck definition as our working definition till we provide
a more rigorous definition later in the paper.

Definition 1 A bottleneck constrains the performance of a system.

Note that a resource defined as a bottleneck according to Definition 1 would be in
accordance with our guiding principle. The definition is also in accordance with the com-
plimentary slackness conditions for the mathematical programme representing the produc-
tion/service situation at hand. If a resource constrains the performance of a system then a
manager can profitably utilise an additional availability of that resource. Hence the resource
is a bottleneck. On the other hand, the manager cannot profitably employ extra capacity
for a resource which already has enough slack. Hence such a resource is a non-bottleneck.
While Definition 1 is intuitive, its theoretical validity rests on the existence of a valid shadow
price definition. Since most production/service environments are likely to be formulated as
integer programmes, we need a valid shadow price definition for integer programmes as a
fundamental construct on which we can claim the validity of Definition 1. Such a construct
is provided by the concept of average shadow price, discussed later in this paper.

1The Random House Dictionary of the English Language, College Edition
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While Definition 1 is stated in abstract terms, it can be readily made to conform to the
needs of a particular application area. For example, consider the general job shop problem
denoted as J ||Cmax where a set of n jobs J1, J2, . . . , Jn require processing on a set of m
machines. Each job Ji has a processing time pi. The routing of each job, also known
as the machine sequence of each job, is fixed. A machine can process only one job at a
time. We need to determine the job sequence of each machine such that the makespan, the
maximum completion time of all jobs, is minimised. Thus, for the J ||Cmax environment,
the ‘performance’ is measured by how quickly one can finish the processing of jobs in the
system, i.e. makespan. Hence an application of Definition 1 for the J ||Cmax environment
would be as follows.

Definition 2 For the J ||Cmax environment, a machine is termed a bottleneck if it con-
strains the achievement of a lower makespan.

The bottleneck machine constrains the performance of the system by not allowing more
than one operation to be performed at a given time. While this characteristic is typical of
all machines in a job shop, it is only for some machines that this characteristic comes in the
way of achieving a lower makespan. We call such machines as bottleneck machines. Note
that it is not necessary that a bottleneck has to be a resource. It can be any constraint
which constrains the performance of the system. For example, as shown in Section 5.1,
the duration of an activity on the critical path of a project network can be a bottleneck.
We now provide a classification of the bottleneck definitions in operations management
literature and show that many of the definitions do not conform to Definition 1.

3 A classification of bottleneck definitions

We classify the existing bottleneck definitions into five major groups. These are (i) Capac-
ity based definitions (ii) Critical path based definitions (iii) Structure based definitions (iv)
Algorithm based definitions and (v) System performance based definitions. Our focus is
on production/service environments and we ignore references to bottlenecks in other Op-
erations Research fields like the bottleneck assignment problem or the bottleneck traveling
salesman problem.

3.1 Capacity based bottleneck definitions

A representative definition of bottleneck, occurring in many text books, can be stated as
follows: “A bottleneck is defined as any resource whose capacity is less than the demand
placed upon it” (Chase et al. (2006)). Similar definitions of bottleneck appear in TOC
literature, e.g. according to the APICS Dictionary (The American Production and Inven-
tory Controls Society (1995)), a bottleneck is a “facility, function, department, or resource
whose capacity is less than the demand placed upon it. For example, a bottleneck machine
or workcenter exists where jobs are processed at a slower rate than they are demanded”.
Such definitions propagate the following myth.
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Table 1: Processing time data of a 2 job 2 machine flow shop
Job M1 M2

J1 1 3
J2 4 3

Myth 1: Any resource whose capacity is less than the demand placed on it is necessarily
a bottleneck.

Reality: A resource can be a non-bottleneck even if its capacity is less than the demand
placed on it.

Example 1 Consider a service scenario where arriving customers are first served by Server
A and then by Server B. Customers arrive at a steady rate of 12 customers per hour. Servers
A and B can process at the rate of 6 and 4 customers per hour respectively. According to
the bottleneck definitions expounded in Chase et al. (2006) and the APICS Dictionary, both
servers are bottlenecks. However, Server A is not a bottleneck according to Definition 1
since the system output would not increase if its capacity is increased.

Lawrence and Buss (1994) proposed several capacity related bottleneck definitions based
on the time horizon of analysis. In the short term, a machine is a bottleneck if it is
temporarily under-capacitated. Similarly, in the long term, a machine is termed a bottleneck
if it has the greatest long-run utilisation among all machines.

Myth 2: The resource having highest capacity utilisation is necessarily the bottleneck.

Reality: A resource can be a non-bottleneck even if its capacity utilisation is highest.

In Example 1, both servers have 100 per cent capacity utilisation. Yet, as we have shown
already, Server A is not a bottleneck. A similar result also holds for bottleneck definitions
based on workload of a machine, as in Uzsoy and Wang (2000) where test problems with
bottleneck machines were created by manipulating the workload on machines. The workload
of any machine is the sum of processing times of jobs on that machine.

Myth 3: The resource having highest workload is necessarily the bottleneck.

Reality: A resource can be a non-bottleneck even if its workload is highest.

Example 2 Consider minimising the makespan in a flow shop with processing times as
provided in Table 1. The optimal solution using Johnson’s Rule (Johnson (1954)) is J1−J2

with makespan 8. Consider a two-stage flow shop with identical parallel machines in stage
2. A lower bound on makespan for such flow shops is the sum of processing times on
stage 1 and the smallest processing time of stage 2. Since this lower bound equals 8, a
decrease in makespan cannot be obtained by increasing machine availability at stage 2.
Hence machine M2 cannot be a bottleneck according to Definition 1 even though it has the
highest workload.
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In the intermediate term, Lawrence and Buss (1994) define a bottleneck machine as
the one having most jobs or customers. Thus the machine with maximal queue length is
the intermediate term bottleneck. Lawrence and Buss (1994) note that in their experience
production managers describe production bottlenecks in terms of L, the number of jobs at
a workcentre (in-process or in queue) or the time W required to complete processing of all
waiting jobs. These two parameters are essentially same since they are related by Little’s
Law.

Myth 4: Any resource with a queue before it is necessarily a bottleneck.

Reality: A resource can be a non-bottleneck even if an infinite queue forms before it.

If the demand placed on a resource is more than its capacity, there would exist a queue
before that resource. But the mere presence of a queue does not make a resource a bottle-
neck. This is demonstrated in Example 1 where Server A is not the bottleneck even though
the queue length before it monotonically tends to infinity.

Myth 5: The resource having the biggest queue before it is necessarily the bottleneck.

Reality: A resource can be a non-bottleneck even if the queue before it is bigger than all
other queues.

The maximal queue length based definition is indeed extensively used by practitioners
as reported in Lawrence and Buss (1994). Server A in Example 1 will always have higher
queue length than Server B. Yet, as already shown, Server A is not the bottleneck.

3.2 Critical path based bottleneck definitions

The critical path in a project restricts the achievement of a lower project completion time.
Similarly, the critical path in a job shop defines the makespan of the schedule. It is well
understood that any improvement of the overall objective of minimising project completion
time or the makespan is conditional on shortening the critical path(s). The critical path
considering resource availability constraints is termed the critical chain by Goldratt, who
considered it as bottleneck for project environment. The concept of criticality can be
extended from activities and paths to resources. A resource required by a critical activity is
termed a critical resource. In the context of job shops, Adams et al. (1988) have pointed out
that a partitioning of resources into critical and non-critical leaves a lot to be desired. Such
a partitioning presents criticality as a ‘yes or no property’ rather than a matter of degree.
Moreover, equating the concept of criticality with the concept of bottleneck is misleading.

Myth 6: A critical activity, path, chain or resource is necessarily a bottleneck.

Reality: A critical activity, path, chain or resource may not be a bottleneck.
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Table 2: Project Data
Activity Processing Time Immediate Predecessor Resource Required

A 2 RA

B 1 RB

C 1 B RC

Example 3 Consider the data for a three-activity project presented in Table 2. The op-
timal project completion time of 2 results from starting activities A, B and C at times 0,
0 and 1 respectively. All activities, paths, chains and resources are critical in the optimal
schedule. Yet no activity in itself is a bottleneck. Let S and T be the dummy start and
finish nodes. The critical paths (equivalently the critical chains) S−A−T and S−B−C−T
constrain the project together. None of the critical paths is a bottleneck in itself. Similarly,
all resources are critical but the project completion time cannot be decreased by increasing
availability of any resource.

A bottleneck in such a situation is the ‘package’ constituting all the critical activities
rather than any critical activity on its own. Similarly the ‘package’ of bottleneck paths
can be defined. The difference between the concepts of criticality and bottleneck is further
highlighted by discussing the following myth.

Myth 7: A bottleneck resource is necessarily a critical resource.

Reality: A resource can be a bottleneck even if it is non-critical.

Consider changing the processing time of J1 on M2 in Table 1 to 2. The optimal
makespan remains 8 and the new optimal digraph does not contain disjunctive arcs belong-
ing to M2. Yet the optimal makespan can be reduced to 7 by increasing the availability of
M2 by one unit and setting sequence J2−J1 on M1. Hence M2 is a bottleneck even though it
is non-critical. Comparing with Example 2, an interesting counterintuitive result emerges.
A decrease in workload of machine M2 has changed a non-bottleneck to a bottleneck!

3.3 Structure based bottleneck definitions

Several authors have defined a bottleneck based on the inherent structure of the production
environment. For example, Drobouchevitch and Strusevich (2000) consider a job shop
where the processing route for each job consists of two operations at most. The number
of machines is arbitrary, and one of the operations of each job has to be processed on
a particular machine, the same for all jobs. Such a machine is termed the bottleneck
machine. In the next example we show that this definition of bottleneck does not conform
to Definition 1.

Example 4 Consider the processing time data provided in Table 3 where 4 jobs have to
be scheduled on 4 machines to minimise the makespan. Each job has two operations, the
second one has to be done on machine B. Clearly, machine B is the bottleneck machine
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Table 3: Processing times of 4 jobs on 4 machines
Job M1 M2 M3 B

J1 5 2
J2 7 3
J3 100 2
J4 200 3

Table 4: Processing time data of a 4 job 2 machine flow shop
Job M1 M2

J1 4 16
J2 4 1
J3 4 1
J4 4 1

in accordance with the bottleneck definition advanced by Drobouchevitch and Strusevich
(2000). But for any schedule, the addition of any number of machines of type B in parallel
will not result in a decreased makespan. Hence B cannot be a bottleneck machine according
to Definition 1.

Bottleneck definitions have also been proposed based on the structure of processing
times. For example, while proposing branch and bound algorithms for the permutation
flow shop problem, Carlier and Rebai (1996) have defined bottleneck as a machine on which
jobs have higher processing times than on others. If all jobs have higher processing times
on a particular machine then that machine is likely to be a bottleneck. However, the result
is not so straightforward even if all but one job have higher processing time on a particular
machine.

Example 5 Suppose 4 jobs have to be processed in a two-machine flow shop with min-
imisation of makespan objective. The processing time data for the problem is presented
in Table 4. The optimum solution to this problem is J1 − Jx − Jy − Jz where x, y, z ∈
{2, 3, 4}, x 6= y 6= z. The optimal value of makespan is 23 and cannot be decreased by
increasing the availability of M1. Thus M1 cannot be the bottleneck machine according to
Definition 1 even though all but one job have highest processing time on M1. By changing
the processing time of J1 on M2 from 16 to 8 we can similarly show the fault with identifying
the bottleneck as the machine on which the operation with maximum processing time is
scheduled.

Grosfeld-Nir and Gerchak (2002) define a ‘single bottleneck system’ as a serial multistage
production system where all stages, except one, have zero setup costs. The stage with non-
zero setup cost is defined to be the bottleneck. Two-bottleneck and zero-bottleneck systems
are similarly defined (Grosfeld-Nir (2005)). In the next example we show that the existence
of setup time or setup cost on a machine does not automatically make it a bottleneck even
if setup times and costs are zero for other machines.

W.P. No. 2006-05-01 Page No. 10



IIMA • INDIA

Research and Publications

Table 5: Processing time data of a 2 job 2 machine flow shop
Job M1 M2

J1 1 4
J2 1 4

Example 6 Consider a 2 job 2 machine flow shop with processing time data presented in
Table 5. The objective is to schedule the operations so as to minimise the makespan. Both
jobs on machine M1 have identical setup time of 1. Jobs do not require setup on machine
M2. It can be easily verified that machine M1 is not a bottleneck according to Definition 1
even though it is the only machine with non-zero setup times and hence non-zero setup
costs.

In certain cases, instead of defining a bottleneck, a ‘non-bottleneck’ machine has been
defined. Strusevich and Hall (1997) consider the two-machine open shop scheduling problem
in which one of the machines is non-bottleneck. A non-bottleneck machine is one such that
an arbitrary number of jobs can undergo processing on that machine simultaneously. The
concept is further clarified as “An alternative interpretation is to view the non-bottleneck
machine as a collection of m > n parallel identical machines, so that whenever it is desired
to start the processing of some job, there is always a machine available. We denote this
problem by O2|NB|Cmax”.

The condition specified for a machine to be non-bottleneck by Strusevich and Hall (1997)
is a sufficient but not necessary condition. Consider a machine which has the characteristic
that an arbitrary number of jobs can undergo processing on it at any point of time. Such a
machine is definitely a non-bottleneck according to Definition 1. However, a machine which
does not have this characteristic can still become a non-bottleneck machine. Machine B
in Example 4 is an example of a non-bottleneck machine even though it does not allow an
arbitrary number of jobs to be processed simultaneously.

3.4 Algorithm based bottleneck definitions

The most prominent algorithm based definition of bottleneck is contained in the Shifting
Bottleneck (SB) heuristic of Adams et al. (1988). The SB procedure involves solving a
series of machine-based decomposition problems with minimisation of maximum lateness
(Lmax) objective. At any iteration, the choice of next machine to be scheduled is based on
the machine with the highest Lmax value, termed the bottleneck machine.

Myth 8: The Shifting Bottleneck heuristic is a bottleneck focused approach.

Reality: The term ‘bottleneck’ in the Shifting Bottleneck heuristic is a misnomer.

The SB heuristic starts with the condition that none of the machines is scheduled. The
makespan at this stage is the critical path assuming infinite resource availability. At this
scheduling instant tnow = 0, let Mk be identified as the bottleneck by using the ‘highest
Lmax’ rule. According to Definition 1, this implies that there would be a reduction in
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makespan if another machine of the same type as Mk is made available at this scheduling
instant tnow = 0. This is impossible since the current makespan is computed assuming
infinite resource availability. Hence referring to Mk as the bottleneck machine violates
Definition 1.

The SB heuristic uses the ‘highest Lmax’ rule not just for the scheduling instant tnow = 0
but also for every iteration. Hence all machines would be identified as a bottleneck at one
iteration or other. Thus admitting Myth 8 as true is equivalent to denying the existence of
a non-bottleneck machine as a concept.

The concept of using the highest Lmax value as the bottleneck predictor can be traced
back to the paper by Lageweg et al. (1977). Among two different branching schemes pre-
sented for solving the job shop problem, one was that of settling essential conflicts. This
involved selecting a branching pair from a ‘conflict set’ containing pairs of operations whose
processing intervals overlapped. To select a particular member of this conflict set, Lageweg
et al. proposed a two-stage strategy. In the first stage, the machines were ordered according
to non-increasing value of the one machine lower bound. This was done since the authors
felt it was ‘a natural way’ to select a machine on which at least one conflict exists. In the
second stage, the choice was restricted to members of the conflict set which were to be
processed on the machine with highest value of one machine lower bound.

The ordering of machines by the one machine lower bound is equivalent to the ordering
by Lmax value. Thus, in the initial stage of the SB heuristic when none of the machines is
scheduled, the machine with the highest Lmax value is the machine with the most amount
of conflict. Hence it is understandable that the SB heuristic aims at settling the schedule on
the most conflicting machine. In this manner, the main idea of the SB heuristic is similar
to that of Lageweg et al. (1977), except that in the latter only one disjunctive pair is settled
while in the former, all the disjunctions belonging to the selected machine are settled.

Perhaps a better descriptor of the machine-based decomposition procedure adopted by
Adams et al. (1988) would be the Shifting Conflict heuristic. The term conflict gives us an
idea about the internal state of a system when some operations are yet to be scheduled.
The term bottleneck is not interchangeable with the term conflict. In fact, for any feasible
schedule, none of the machines would have any conflict. Yet there may exist more than one
bottleneck.

In the absence of a formal bottleneck definition acceptable to all, there is a danger that
terms like ‘Shifting Bottleneck’ may mean many things to many people. For example, tem-
poral shifting of bottlenecks in production environments has been a well researched area.
Such shiftiness can arise out of various causes like changes in the product mix, machine
breakdowns and other random events and even management decisions based on perfor-
mance objectives (Hurley and Kadipasaoglu (1998)). Temporal shiftiness of bottlenecks
has nothing to do with the ‘shiftiness’ of the Shifting Bottleneck heuristic. Yet books
(Morton and Pentico (1993), p. 28) and papers (Lawrence and Buss (1994)), (Moss and
Yu (1999)) discussing the temporal shiftiness of bottlenecks talk in the same breath about
the bottleneck shiftiness in SB heuristic. This highlights the fact that practitioners and
researchers not conversant with the intricacies of the SB heuristic may erroneously ascribe
certain characteristics to the terms ‘shifting’ and ‘bottleneck’ which were not envisaged by
the original researchers.
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3.5 System Performance based bottleneck definitions

Several authors have used bottleneck definitions based on the performance of a system.
Billington et al. (1986) define a bottleneck as the workcentre that limits the production
rate of the entire system. Chiang et al. (1998) state that “Intuitively, bottleneck (BN) of
a production line is understood as a machine that impedes the system performance in the
strongest manner”. Wu (2005) define bottleneck as the constraint that prevents a factory
from attaining its production goals. The author notes that different kinds of bottlenecks
may exist depending on different production goals. “A throughput bottleneck prevents a
factory from achieving a higher throughput rate, while a cycle time bottleneck prevents
it from achieving shorter total cycle time.” Definition 1 is clearly similar to this idea of
a bottleneck. A bottleneck is ultimately defined in terms of the decision maker. Given
the same job shop, the decision maker can be interested in minimising makespan or the
average flow time. The bottleneck machine for the minimisation of makespan objective can
be different from the one for minimisation of average flow time objective.

The bottleneck definition adopted by us falls under the category of system performance
based bottleneck definitions. While we do not claim to be the first to link the definition of
bottleneck to system performance, our approach differs from others in providing a rigorous
shadow price based theoretical framework on which the definition is based.

It may be pointed out that all our arguments are based upon the validity of Definition 1.
A definition cannot be proved or disproved, it requires acceptance and a basic criteria of
acceptance is whether the definition proposed is in conformity with other definitions used
in that branch of science. Our belief in Definition 1 stems from the fact that it matches
the idea of shadow price for a constraint in mathematical programming. We review the
literature on shadow prices for integer programmes in the next section.

4 Average shadow price

Kantorovich (1939) introduced the concept of shadow price and demonstrated that at op-
timality we can associate a shadow price with every resource. He provided an economic
interpretation of the dual variables as “guides for the coordination of allocative decisions”,
(Koopmans (1976)). The active constraints in the optimal solution of a linear programme
could be thought of as bottlenecks which constrain the achievement of a better objective
function value. Unfortunately, the concept of shadow price in integer programming is not
as straightforward as its linear counterpart.

The first attempt to determine shadow prices in integer programming was by Gomory
and Baumol (1960). But their shadow prices suffered from various theoretical imperfections
like a free good having a positive price. Alcaly and Klevorick (1966) could rectify some,
but not all, of these imperfections. Geoffrion (1974) applied Lagrangian relaxation based
approaches, but the shadow prices determined were not unique and a free good could have
a non-zero shadow price. A shadow price for integer programming with valid economic
interpretation eluded researchers, until Kim and Cho (1988) introduced the concept of
average shadow price.
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Figure 1: Graphical representation of Average Shadow Price

Consider the integer programming formulation zIP = max{cx : Ax ≤ b, x ∈ S}, where
A ∈ R

m×n, b ∈ R
m , c ∈ R

n and S = {x : Gx ≤ h, xj(j = 1, . . . , n) are nonnegative
integers}. For resource k, the perturbation function zk is defined as zk(w) = max{cx :
aix ≤ bi(i 6= k), akx ≤ bk + w, x ∈ S}. Then the Average Shadow Price (ASPC ) for
continuous perturbation of resource k is defined as ASPCk = sup{(zk(w) − zk(0))/w},
w > 0. In Figure 1, O − A − B − C − D − E − F is the piecewise linear curve obtained
by plotting the objective function value zk(w) as w increases. Let X be any point on this
curve. The average shadow price ASPCk is then the maximum gradient of the straight line
OX.

Kim and Cho (1988) showed that ASPCk has the characteristic that its existence and
uniqueness in the mathematical sense can be guaranteed. They also obtained a version of the
complementary slackness theorem in integer programming for such average shadow prices.
Crema (1995) extended the concept of average shadow price to the Mixed Integer Linear
Programme (MILP) domain. Instead of perturbing one resource at a time, he considered
perturbing a ‘package’ (i.e. combination) of resources.

Most models of right hand side (RHS) parametric analysis (Geoffrion and Nauss (1977),
Crema (1999)) focus on perturbing the RHS in a continuous fashion. However, continuous
perturbation does not have a realistic significance for problems where the resources are
available in discrete units. Such problems can be of varied nature like the knapsack problem,
the capacitated plant location problem and scheduling problems. For production/service
environments where fractional availability of resources have no realistic significance, we
need only be concerned with an integer vector b. Specifically, a Integral RHS Integer Linear
Programme (IRILP) and its parametric version are defined as follows.

IRILP: Given rational m×n matrix A, integer vector b and rational vector c of conformable
dimensions, determine zIR = max{cx : Ax ≤ b;x ∈ Z

n}.

PIRILP(w): Given rational m × n matrix A, integer vector b and rational vector c of
conformable dimensions, with w ∈ Z

1
+ and ∆b ∈ Z

m, determine zIR(w) = max{cx :
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Ax ≤ b + w∆b;x ∈ Z
n}. The vector ∆b is constructed such that its ith element is

strictly positive if and only if the corresponding constraint represents a resource which
is being perturbed.

Sensitivity and parametric analysis in linear programmes are carried out under the as-
sumption that w can be varied continuously. In contrast, any shadow price calculated for
an IRILP will have a realistic significance only for integral w. In order to take care of
integrality of resource availability, Mukherjee and Chatterjee (2006) introduced the Av-
erage Shadow Price for Integer Resource Availability (ASPIRA). Specifically, ASPIRA =
sup{(zIR(w) − zIR(0))/w}, w ∈ {Z1

+} for a maximisation problem. For a minimisation
problem, ASPIRA = sup{(zIR(0) − zIR(w))/w}, w ∈ {Z1

+}. Mukherjee and Chatterjee
(2006) also introduced the Marginal Unit Shadow Price (MUSP) as the difference between
zIR(1) and zIR(0). It corresponds to the concept of Marginal Shadow Price (MSP) in linear
programmes where resource availability can be varied infinitesimally. The extension of the
concepts of ASPIRA and MUSP to MILP problems is straightforward.

5 An universal bottleneck definition

Definition 3 A set of constraints with strictly positive average shadow price is defined as
a bottleneck.

Definition 3 identifies a bottleneck as a specific set of constraints. This set can be
composed of a single constraint or a collection of constraints which together represent a
resource. For example, the set of constraints specifying the availability of a resource for
each time bucket in a time indexed formulation of a scheduling problem may be a bottleneck.
Given a set of constraints, the mode of perturbation of the RHS would determine whether
ASPC or ASPIRA would be the valid measure of average shadow price. Using ASPC
assumes that a manager can alter resource availability fractionally. In case this assumption
is violated, ASPIRA would be more relevant measure of average shadow price.

Since Definition 3 is based on the concept of average shadow price, it has the character-
istics that (i) it respects the complimentary slackness conditions and (ii) its existence and
uniqueness is guaranteed. In addition, the integral availability of resources can be handled
using ASPIRA. Furthermore, the attractiveness of this definition stems from its wide ap-
plicability. It can be used for finite planning horizon project and job shop environments
as well as infinite horizon repetitive manufacturing environments. It does not assume any
structural properties of the shop floor nor are decision maker’s objectives hard coded into
it. It does not specify any particular mode of capacity addition. Definition 3 provides
a single reference point from which bottleneck definitions in particular production/service
situations can be derived.

Given a production/service environment, there may be several alternate ways of im-
proving the performance of the system. For example, a manager may evaluate two options
of increasing the throughput of a shop - (i) by increasing the availability of a particular
machine Mk and (ii) by increasing the processing speed of Mk. The bottleneck values of
both options can be determined using ASPIRA if the speed of Mk can only be increased
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in discrete steps. If the speed of Mk can be uniformly varied, ASPC would be the relevant
measure for the bottleneck value of the second alternative. In this paper, when we deter-
mine the bottleneck value of a resource, we assume that the only way of increasing system
performance is by increasing resource availability.

5.1 Project environment

The simplest form of a project environment involves scheduling activities given a set of
precedence relationships such that the project completion time is minimised. The duration
of each activity can be thought of as a constraint that prevents a lower project completion
time. In order to identify the bottleneck activity we need to ask the question ‘Would there
be a decrease in project completion time if the duration of a particular activity is decreased?’
The ASPC values of each activity can be determined by quantifying the extent of decrease
in project completion time as the activity duration is shortened.

Theorem 1 An activity is a bottleneck if and only if it is present on all critical paths in
the optimal project schedule.

Proof: If the activity is present on all critical paths then the project duration can be de-
creased by decreasing the duration of the activity. Thus this activity would have a strictly
positive ASPC and hence would be a bottleneck. The project duration cannot be shortened
if all critical paths are not simultaneously shortened. Hence ASPC = 0 for an activity not
present on all critical paths and as a result it is a non-bottleneck. �

The set of activities with strictly positive ASPC values would be equivalent to the set of
activities on the critical path for a project with a single critical path. It would be a subset of
the set of critical activities if multiple critical paths exist. If the activity durations can only
be decreased in integer steps then we would replace ASPC with ASPIRA. The bottleneck
values of activities can be similarly determined for time-cost trade-off (‘crashing’) problems
with no resource constraints. The following theorem identifies situations when a critical
chain can be termed a bottleneck.

Theorem 2 A critical chain is a bottleneck if and only if shortening the critical chain
shortens all critical paths simultaneously.

Proof: If shortening the critical chain shortens all critical paths simultaneously, then the
critical chain would have a strictly positive ASPC value and hence would be a bottleneck.
On the other hand if there exists at least one critical path which remains unaffected, the
project makespan remains unaffected. Hence the ASPC value for the critical chain is zero
implying a non-bottleneck Hence the result. �

Several types of resources have been considered by the Resource Constrained Project
Scheduling Problem (RCPSP) literature. Talbot (1982) presented time-resource trade-off
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models involving renewable, non-renewable and doubly-constrained resources. Partially
renewable resources (Böttcher et al. (1999)) cover the renewable and non-renewable resource
constraints as special cases. Ahn and Erenguc (1998) combined time-cost and time-resource
trade-offs into one formulation. We can define a bottleneck for a RCPSP as any resource
with strictly positive ASPIRA value. While the RCPSP literature considers scarce resources,
we are unaware of any study which considers the value of a scarce resource. If a project
manager wishes to augment capacity, a need may arise to choose a subset of the scarce
resources due to budgetary limitations. In such a situation, the ASPIRA value of a resource
would provide valuable guidance to the project manager.

The capacity of a system is not only dependent on the capacity of individual resources
but also on the flexibility of resources. Increasing the flexibility of resources would imply an
increase in capacity of the entire system. Given a production/service system, a manager may
be interested in identifying the resource which would contribute the most to the objective
function if the resource is made flexible. A framework for determining the value of resource
flexibility in the resource constrained project environment is presented in Vairaktarakis
(2003). The bottleneck in such an environment can be identified by determining the suitably
defined ASPIRA value for each resource.

5.2 Job Shops

With Definition 3, we are also able to surmount the difficulties faced by Adams et al.
(1988) in defining a bottleneck in job shop scheduling. They had identified three measures
of bottleneck value which included (i) criticality of a machine (ii) marginal utility of a
machine in reducing makespan and (iii) the ‘highest Lmax’ measure discussed earlier in this
paper. Comparing the bottleneck measures, they noted the following.

In order to prioritize the machines, we need a concept that expresses the
bottleneck quality as a matter of degree rather than a yes or no property. This
quality could be measured, for instance, by the marginal utility of the machine
in reducing the makespan, were it not for the practical difficulty of assessing the
later.

The concept of Marginal Unit Shadow price (MUSP) introduced in Mukherjee and
Chatterjee (2006) is a rigorous definition of marginal utility of a machine as perceived by
Adams et al. (1988). However, Definition 3 is based on the average and not the marginal
shadow price. In fact, as we show in Example 7, ASPIRA and MUSP may differ for a
scheduling problem. Hence Definition 3 represents an advancement in the understanding of
what constitutes a bottleneck in scheduling.

5.3 Batch Production

Batch production environments are characterised by moderate product volume and variety.
Such environments occur, for example, in chemical, pharmaceutical and food processing
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industries where large number of products share the same production assets and are pro-
duced cyclically in batches. Certain intermediate products may need to be stored in tanks
having limited capacity. In such cases we can determine the bottleneck value not only for
each machine, but also for the storage tanks.

5.4 Assembly Lines

Given an assembly line, a manager may wish to identify the bottleneck workstation. For
a single model assembly line, this analysis is similar to the one presented for Continuous
Flow Lines in next subsection. For mixed model assembly lines, Drexl and Kimms (2001)
provide a mathematical formulation where at most Ho out of No successively sequenced
units may require an option o ∈ O. Then Ho operators or installation teams are required
for installation of option o. We can derive the ASPIRA values for all such installation teams
and identify the bottleneck team.

A different type of bottleneck analysis can be performed for labour intensive assembly
lines with worker cross functionality. In such a case, a worker can be assigned to any
workstation and we assume that the number of workstations equals the number of direct
workers. Type II Assembly Line Balancing problems (Uğurdağ et al. (1997)) consider the
objective of minimisation of cycle times (equivalently, maximisation of throughput) given a
number of workstations. The bottleneck value of labour as a resource class can be computed
if we parametrically solve the Type II problem by changing the number of workstations
allowed.

5.5 Continuous Flow Lines

In the most extreme form, a Continuous Flow Line may produce only one product day in and
day out. More general are Continuous Flow Lines that process a small number of product
varieties. The dominant objective in such a production environment is to compete on price
by reaping economies of scale. This translates to an objective of maximising throughput of
the line. There can be identical parallel processors at a particular stage and it makes more
sense to talk about the bottleneck stage rather than the bottleneck machine.

Consider the process flow of a 1-commodity Continuous Flow Line. We construct a
network G = (V,E) where node v ∈ V is a processing stage having capacity cv. Two nodes
are connected with an arc e ∈ E if they are adjacent stages in the processing route. Two
nodes S and T , denoting the source and sink nodes, are added to G. The source and sink
nodes model the supply and demand rates for the commodity and cS and cT are set to
supply and demand rates respectively. Then the 1-commodity Continuous Flow Line can
be represented as the problem of maximising flow of the commodity over the network G.
Given a feasible allocation of activities to workstations, a single model assembly line can
be similarly modeled. In such a situation, the capacities of each workstation would be the
inverse of the workload of that station.

A ‘cut’ in network G is a collection of nodes whose removal disconnects the source-sink
pair of nodes and no proper subset of the cut should have this property. The capacity of
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the cut is the sum of capacities of nodes constituting the cut. The node-constraint version
(Hu (1969), p. 216) of the celebrated ‘max-flow min-cut’ theorem of Ford and Fulkerson
(1956) states that for single commodity network flows, the maximum flow over the network
is equal to the capacity of the minimum cut.

Theorem 3 For a production/service environment where the ‘max-flow min-cut’ theorem
holds, the bottleneck(s) are the node(s) that constitute the minimum cut.

Proof: If node v is not a constituent of the minimum cut, an addition of capacity at node
v would not change the capacity of the minimum cut and hence that of the maximum flow
value. Thus the ASPIRA value of node v would be zero. On the other hand, if node v is a
constituent of the minimum cut, addition of capacity at node v changes the maximum flow
value, implying a strictly positive ASPIRA value for node v. Hence the result. �

Corollary 1 For a single model assembly line or a 1-commodity Continuous Flow Line,
the bottleneck is the stage with lowest capacity.

Proof: Both the single model assembly line and the 1-commodity Continuous Flow Line
can be modeled as the problem of maximising flow over a 1-commodity network. Hence
the ‘max-flow min-cut’ theorem holds for both environments. The network structure for
both environments imply that each cut consists of a single node. Hence there exists an
equivalence between cuts and stages. Using Theorem 3, the bottleneck is the node having
lowest capacity. Hence the result follows. �

We are not the first to relate the concept of bottleneck to the capacity of the minimum
cut (Hu (1969), p. 107). Our contribution lies in showing that a valid definition of bot-
tleneck for maximal flows in networks is a special case of an universally valid bottleneck
definition. Further, operations managers are oriented towards stage-based capacity calcu-
lations and hence tend to identify one of the stages as the bottleneck. However, Theorem 3
defines bottlenecks in terms of cuts and not stages. If we have multiple commodities with
different routings, a cut may consist of several nodes. Consequently, the bottleneck in such
cases may be a combination of stages constituting the minimum cut. In case if supply or
demand are constrained, the bottleneck may even be a combination of stages and/or supply
capacity/demand rate. For example, consider the cranberry processing situation described
in Shapiro (2002). Identifying the drying operation as the bottleneck is incomplete since
the cut consists of the dryers along with the dry berry supply rate.

Several complications arise as we move from 1-commodity network flows to the multi-
commodity case. Firstly, it is not necessary that the ‘max-flow min-cut’ theorem holds for
all production/service environments which can be modeled as maximal flows in networks.
Network structures where the theorem does not hold are presented in Schrijver (1990).
Secondly, in certain cases like mixed-model assembly lines, we may need to model integer
flows. Thirdly, the literature on multi-commodity network flows mostly consider the case
where a commodity can take any route between its source and sink nodes. However, in
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modeling a k-commodity production environment as a flow over a network, we may need
to make sure that a commodity can move from source to sink over a specific route only.
Hence, to derive a result similar to Corollary 1, we need to check whether the ‘max-flow min-
cut’ theorem holds for a production/service environment. Finally we need to explore the
possibility of special cases where minimum cut capacity remains a valid bottleneck definition
even when the ‘max-flow min-cut’ theorem does not hold for the underlying network. Of
particular interest can be situations where approximate versions of the theorem are known
to be valid (Leighton and Rao (1999)).

6 Determination of bottleneck values

Consider a production/service environment which can be represented as a minimisation
problem. The ASPC value of a resource can be determined by solving a series of non-
parametric MILP problems (Crema (1995)). If availability of resource R can only be changed
in discrete steps, we consider the perturbation of the production/service environment rep-
resented by the PIRILP zIR(w) = min{cx : Ax ≤ b + w∆b;x ∈ Z

n}; where the ∆b vector
is suitably defined. The bottleneck value of resource R can be determined as follows.

Step 1: Perform an iterative procedure of determining the optimal solution value zIR(w)
for particular values of w = 1, 2, 3, . . ..

Step 2: Determine ASPIRA = sup{(zIR(0) − zIR(w))/w,w ∈ {Z1
+}}

There are two main ways in which this analysis can be performed: (i) mathematical
programming based procedures and (ii) other algorithm based procedures. Within mathe-
matical programming based approaches, time-indexed formulations allow us to model the
resource availability as a right hand side (RHS) vector, similar to the representation in
zIR(w). Time-indexed formulations with machine availability modeled as a RHS vector
are available for projects (Talbot (1982), Böttcher et al. (1999)), single machine schedul-
ing problem (Sousa and Wolsey (1992), Van den Akker et al. (2000)), job shop problem
(Fisher (1973)), batch production (Kondili et al. (1993)) and assembly lines (Drexl and
Kimms (2001)). A general framework for modeling production systems has been proposed
by Hackman and Leachman (1989). It provides a meta model where resource availability is
modeled as a RHS vector. Hence the ASPIRA values can be determined for any production
situation which can be formulated in terms of this general framework.

The time-indexed formulation based procedure has its drawbacks. For any reasonable
problem size, the number of variables in the time-indexed formulation would become exceed-
ingly large rendering difficult any such effort (Van den Akker et al. (2000)). Note that the
optimal solution value of a mathematical programme is independent of its formulation type.
The ASPIRA value ultimately depends on the optimal objective function value and hence
exists irrespective of whether we could model the resources as right hand side availability.

Non-mathematical programming approaches require an optimal solution procedure which
can handle multiple units of a resource type. Most RCPSP solution techniques have this
desirable property. However, in scheduling research, parallel machine scheduling problems
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are relatively less extensively studied than their single machine counterparts. Hence, in such
situations, we need to first identify or develop an optimal solution procedure for the parallel
machine version. For example, suppose we are concerned with determining the ASPIRA
value for the 1|rj |Lmax problem, a single machine scheduling problem with release times
and due dates. We need to find an optimal solution procedure for the P |rj |Lmax problem
where identical machines are available in parallel. If there are n jobs to be performed on
this machine, then we need to solve a maximum of n P |rj |Lmax problems to determine the
ASPIRA value. A solution method for the P |rj |Lmax problem has been discussed in Carlier
(1987). Mokotoff (2001) provides a review of parallel machine scheduling problems. Hybrid
flow shop problems (Linn and Zhang (1999)) deal with multistage flow shops with multiple
machines in each stage. The multistage job shop problem with identical parallel machines
in each stage is a specific case of the Flexible Job Shop problem (Sule and Vijayasundaram
(1998)).

For repetitive manufacturing environment, the five-step focusing procedure of Goldratt
can be adapted for determination of bottleneck values. One of the five steps, ‘Elevate the
constraint’, is similar to the perturbation analysis that we propose. The significant difference
is that the five-step procedure does not quantify the value of elevating the constraint. This
value has managerial significance because one may decide against elevating the constraint
if the value gained is less than the cost involved. Secondly, the five-step procedure does not
help us determine the quantum of additional resource that should be employed to elevate
the constraint. The work presented in this paper fills this gap. If the ASPIRA value of a
production/service stage equals a/b then the value gained by adding b additional resources
at that stage is precisely a.

7 Equivalence of the average and marginal shadow price

The determination of the applicable marginal shadow price (MSP or MUSP) may be far
easier than the applicable average shadow price(ASPC or ASPIRA). Hence our first effort
in any production/service environment would be to check whether the two shadow prices
are equivalent. Even if it is not possible to prove the equivalence for a problem class, we
may be able to deduce the equivalence for a particular problem instance. In this section
we first provide some general results and then proceed to investigate the equivalence or
otherwise for specific environments.

7.1 General results

Consider the PIRILP zIR(w) = min{cx : Ax ≤ b + w∆b;x ∈ Z
n} representing the per-

turbation of a production/service environment. Note that while the resource availability is
changed by suitably changing the RHS, the parameters A and c remain unchanged. Thus
the ‘technology’ employed is deemed to be constant. The Law of Diminishing Returns
(LDR) holds for resource R if zIR(w) − zIR(w + 1) ≥ zIR(w + 1) − zIR(w + 2) for any
w ∈ {Z1}. The law can be similarly defined for maximisation problems as well as for MILP
problems. As a concept, the Law of Diminishing Returns may appeal to practitioners as
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intuitive. However, it may not hold for a production environment as shown in Example 7
later in this paper.

Theorem 4 The Law of Diminishing Returns is a sufficient but not necessary condition
for the equivalence of average and marginal shadow prices.

Proof: Example 7 shows a situation where ASPIRA = MUSP even when LDR does
not hold. If LDR holds, MUSP = zIR(0) − zIR(1) = supw{zIR(w) − zIR(w + 1)},
w ∈ {Z1} = supw{(zIR(0) − zIR(w))/w}, w ∈ {Z1} = ASPIRA. The equivalence of
ASPC and MSP can also be derived if LDR holds (Mukherjee and Chatterjee (2006)).
Hence the result follows. �

LDR holds for any production/service environment which can be modeled as linear
programme. It also holds for any integer programme where (i) the coefficient matrix A is
totally unimodular (TUM) and (ii) the RHS is integer (Mukherjee and Chatterjee (2006)).
An integer b vector implies that apart from resource constraints, the RHS of all other
constraints are also integral. This can be ensured by suitable algebraic modifications as
long as all such RHS values are rational. Our survey of mathematical formulations of
production environments suggests that this assumption is not unrealistic. The concept of
ASPIRA is valid even if this assumption is violated. However, in such a situation, we
cannot claim the equivalence of ASPIRA and MUSP by showing A as TUM. In any case, it
is unlikely that majority of production/service environments can be represented as a linear
programme or an integer programme with TUM coefficient matrix.

We need not solve for all possible w values to check the equivalence of the two shadow
prices. Consider a parallel machine scheduling problem where the objective function needs
to be minimised. For such problems, zIR(∞) may be easy to determine as it represents the
case where sufficient number of machines are available for each job. A similar situation exists
for project scheduling subject to a single resource constraint. Let K = zIR(0) − zIR(∞)
and k = K/(zIR(0) − zIR(1)). We start by determining zIR(0), zIR(1) and set ASPIRA =
(zIR(0) − zIR(1)). At iteration w, we check if (zIR(0)− zIR(w))/w > ASPIRA and update
ASPIRA accordingly.

Theorem 5 A maximum of k iterations are required to determine ASPIRA value.

Proof: Without loss of generality, let ASPIRA = (zIR(0) − zIR(w))/w,w ∈ {Z1
+}. Hence

(zIR(0)−zIR(w))/w ≥ zIR(0)−zIR(1). From definition of k, zIR(0)−zIR(∞) = k(zIR(0)−
zIR(1)). But zIR(0) − zIR(∞) ≥ zIR(0) − zIR(w).
⇒ k(zIR(0) − zIR(1)) ≥ zIR(0) − zIR(w) ≥ w(zIR(0) − zIR(1))
⇒ k ≥ w. �

Theorem 6 ASPIRA = MUSP if k ≤ 2.

Proof: For k = 2, zIR(0) − zIR(1) = zIR(1) − zIR(∞). Hence ASPIRA = MUSP since
zIR(0) − zIR(1) ≥ (zIR(0) − zIR(w))/w,w ∈ {Z1

+}. For k < 2, using Theorem 5, the only
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Table 6: Data for identical parallel machine scheduling problem
Job ri pi qi

J1 1 5 6
J2 2 6 4
J3 4 7 8
J4 5 8 5
J5 13 2 2

feasible w value is w = 1. Hence the result follows. �

Let f(1) represent objective function value of any feasible solution to the minimisation
problem with one additional machine in parallel. Let f = K/(zIR(0) − f(1)).

Corollary 2 ASPIRA = MUSP if f ≤ 2.

Proof: Follows from Theorem 6 noting that f ≥ k since zIR(0) − f(1) ≤ zIR(0) − zIR(1).
�

Consider the data for an identical parallel machine scheduling problem provided in
Table 6. Each job Ji has a release time ri, a processing time pi and a ‘tail’ qi. The
objective is to schedule the jobs such that makespan is minimised. The non-preemptive
version of this scheduling problem is known to be NP-hard (Carlier (1987)). We determine
zIR(∞) = maxi{ri + pi + qi} = 19. The optimal sequence is J1 − J2 − J3 − J4 − J5 with
makespan of 31 when only one machine is available. When two identical parallel machines
M1 and M2 are present, a feasible schedule is obtained by scheduling jobs J1 − J4 − J5

on machine M1 and J2 − J3 on machine M2, resulting in a makespan of 23. Hence, using
Corollary 2, ASPIRA = MUSP for this problem instance as f = (31− 19)/(31 − 23) = 1.5.
The actual determination of the ASPIRA value would then require solving only one NP-hard
problem. We do not need to solve zIR(w) for w = 2, 3, 4.

7.2 Project crashing

Consider a project without any resource constraints. The project makespan can be de-
creased by crashing the duration of an activity, but an incremental crash cost has to be
incured. Assume convex cost-time trade-off curves. The duration of activity i can vary
between the normal duration Ni and crash duration Mi. Two different bottleneck values
would be associated for each activity. ASPM

i (ASPN
i ) would specify the bottleneck value

of decreasing Mi (increasing Ni). A strictly positive ASPN
i value implies that the project

duration can be compressed if activity i is lengthened.

Theorem 7 ASPM
i = MSPM

i and ASPN
i = MSPN

i for unconstrained project crashing
with convex cost-time trade-off.
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Table 7: Solution of parametric P ||Cmax problem instance

Number of machines (w + 1) Allocation Makespan Improvement (zIR(0) − zIR(w))/w

1 (5) 5
2 (3, 2) 3 2 2
3 (2, 2, 1) 2 1 1.5
4 (2, 1, 1, 1) 2 0 1
5 (1, 1, 1, 1, 1) 1 1 1

Proof: The time-cost trade-off problem in a project environment with convex cost-time
trade-off and no resource constraints can be represented as a linear programme with Mi and
Ni in RHS (Wiest and Levy (1977), p. 79). Since LDR holds for any linear programme,
the result follows using Theorem 4. �

7.3 The P ||Cmax problem

Consider the P ||Cmax problem where jobs have to scheduled on identical parallel machines
to minimise makespan. All job are available at start time and preemption is not allowed.
While the 1||Cmax problem is trivial, the P ||Cmax problem is known to be NP-hard (Garey
and Johnson (1979)). The number of identical machines available for scheduling is an input
to the P ||Cmax problem. In reality, an operations manager may have m number of identical
machines available for scheduling. We denote such a situation as the P ||Cmax problem at
base m. We now show in Example 7 that (i) in general ASPIRA 6= MUSP for the P ||Cmax

problem and (ii) for the P ||Cmax problem at base 1, ASPIRA = MUSP even though LDR
does not hold.

Example 7 Consider a single machine scheduling problem with minimisation of makespan
objective. Five identical jobs are to be scheduled on this machine, each job having unit pro-
cessing time. All jobs are available for scheduling. The makespan for this trivial problem
is 5. The ASPIRA value is determined by considering the identical parallel machine per-
turbation of this problem. Table 7 shows solution of the trivial parallel machine problems.
An allocation of (3, 2) implies that three jobs are scheduled on machine M1 while two are
scheduled on M2. The improvement column provides the decrease in makespan achieved by
adding one more machine.

It is obvious from the improvement column that the Law of Diminishing Returns does
not hold for this problem instance. In this case ASPIRA = max{2/1, 3/2, 3/3, 4/4} = 2/1
and hence ASPIRA = MUSP. However, if our base problem was to schedule five identical
unit processing time jobs on three machines, then for that problem, MUSP = 0 while
ASPIRA = 1/2 and hence ASPIRA 6= MUSP. Note that we represent ASPIRA values as a
fraction rather than a real number as it provides additional information.
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7.4 The 1||Cmax problem

Even though the equivalence of ASPIRA and MUSP does not hold in general for the P ||Cmax

problem, there can be certain problem subsets where ASPIRA = MUSP. Specifically we
are interested in the 1||Cmax problem which can be looked upon as a P ||Cmax problem
with only one machine available in the base configuration. Consider the PIRILP zIR(w)
for the 1||Cmax problem with n jobs, job Ji having processing time pi. If L =

∑
i pi, then

LB(w) = L/(w +1) is a lower bound for zIR(w). Let pmax denote the maximum processing
time among all jobs.

Theorem 8 zIR(1) − LB(1) ≤ (1/2)pmax.

Proof: Without loss of generality, let M1 be the most loaded machine and let Jk be any
job scheduled on M1 in the optimal schedule. Since LB(1) = L/2, sum of processing times
on M2 equals LB(1) − (zIR(1) − L/2). Then pk ≥ zIR(1) − (LB(1) − (zIR(1) − L/2)) =
2(zIR(1) − LB(1)) since otherwise it would be possible to reduce makespan by shifting job
Jk to M2. Hence the result follows. �

Theorem 9 ASPIRA = MUSP for 1||Cmax problem.

Proof: There exists two possibilities:
Case I: Suppose pmax < L/3. Then using Theorem 8, zIR(1) − LB(1) ≤ (1/2)pmax < L/6.
Hence zIR(1) < 2L/3 since LB(1) = L/2. Thus zIR(0) − zIR(1) > L − 2L/3 = L/3. Since
zIR(0) − zIR(w) ≤ L for any integer w, (zIR(0) − zIR(w))/w ≤ L/3 for any integer w > 2.
For w = 2, LB(2) = L/3 and hence zIR(0) − zIR(2) ≤ zIR(0) − LB(2) = 2L/3. Hence
ASPIRA = MUSP since zIR(0) − zIR(1) ≥ (zIR(0) − zIR(w))/w for any integer w.
Case II: Suppose pmax ≥ L/3. Then zIR(0) − zIR(∞) = L − pmax ≤ L − L/3 = 2L/3.
Hence (zIR(0)−zIR(w))/w ≤ (zIR(0)−zIR(∞))/w ≤ L/3 for any integer w ≥ 2. A feasible
solution for the 2||Cmax problem involves scheduling the job with largest processing time on
one machine and all other jobs on the other. If f(1) denotes the makespan of this feasible
schedule then f(1) = max{pmax, L − pmax}. If pmax ≥ L/2 then f(1) = zIR(1) = pmax

and hence ASPIRA = MUSP since zIR(w) = pmax for any integer w. If pmax < L/2, then
f(1) = L − pmax. Thus zIR(0) − zIR(1) ≥ zIR(0) − f(1) = pmax ≥ L/3. Hence ASPIRA =
MUSP since zIR(0) − zIR(1) ≥ L/3 ≥ (zIR(0) − zIR(w))/w for any integer w. �

The implication of Theorem 9 is that ‘the marginal utility of the machine in reducing
the makespan’ (Adams et al. (1988)) is indeed the rigorous definition of bottleneck for
the 1||Cmax problem. Having established MUSP as the applicable bottleneck measure,
the next step would be to determine the bottleneck value for a problem instance. This
involves solving the 2||Cmax problem, known to be NP-hard (Garey and Johnson (1979)).
An optimal O(2n) solution procedure for the 2||Cmax problem has been presented in Ho
and Wong (1995). The difference in optimal makespans of the 1||Cmax problem and the
corresponding 2||Cmax problem would then be the valid bottleneck value for the 1||Cmax

problem instance.
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7.5 Continuous Flow Lines

A result similar to Theorem 9 can also be derived for any production/service environment
where the ‘max-flow min-cut’ theorem holds. Using Theorem 3, each member of the mini-
mum cut is a bottleneck. Without loss of generality, let the minimum cut be cut k and the
next lowest capacity be for cut j. Let resource R be a constituent of cut k. We assume that
the capacity of resource R can only be added in discrete steps of C. Let zk(w) denote the
maximum flow through this system when the capacity of cut k is incremented by adding w
units of resource R, each having capacity C.

Lemma 1 For any production/service environment where the ‘max-flow min-cut’ theorem
holds, zk(w + 1) − zk(w) ≤ C; ∀w ∈ {Z1}.

Proof: Either of two possibilities exist.
Case I: At iteration w, cut k remains the bottleneck after addition of capacity C. Thus the
difference in capacity of the minimum cut before and after addition of capacity equals C.
Hence, using the ‘max-flow min-cut’ theorem, zk(w + 1) − zk(w) = C.
Case II: Otherwise, cut j becomes the bottleneck and hence zk(w+1)−zk(w) < C. Further,
zk(p + 1) − zk(p) = 0; ∀p ≥ w + 1, p ∈ {Z1}. Combining, the result follows. �

Theorem 10 ASPIRA = MUSP for each resource in a production/service environment
where the ‘max-flow min-cut’ theorem holds.

Proof: If resource R is not part of the minimum cut then ASPIRAR = MUSPR = 0.
Otherwise two possibilities exist.
Case I. zk(1) − zk(0) = C. Then using Lemma 1 zk(1) − zk(0) = supw{zk(w + 1) −
zk(w)},∀w ∈ {Z1} and hence the result.
Case II. zk(1) − zk(0) < C. Then the bottleneck shifts to cut j after addition of capacity
C at cut k. Hence zk(w + 2) − zk(w + 1) = 0; ∀w ∈ {Z1}. The result then follows since
zk(1) − zk(0) = supw{zk(w + 1) − zk(w)}, ∀w ∈ {Z1}. �

Corollary 3 ASPIRA = MUSP for single model assembly lines and 1-commodity Contin-
uous Flow Lines.

Proof: Follows from Theorem 10 and the fact that the ‘max-flow min-cut’ theorem holds
for both environments. �

8 Conclusions

In this paper we have highlighted the existence of several bottleneck definitions in operations
management literature. We have provided a classification of these bottleneck definitions.

W.P. No. 2006-05-01 Page No. 26



IIMA • INDIA

Research and Publications

Many of these definitions do not conform to the idea of bottleneck as a constraining resource.
We have proposed an universal bottleneck definition in conformance with the concept of
shadow price of a resource. We have identified general conditions under which the average
and marginal shadow prices would be equivalent. The equivalence of the two shadow prices
has been established for four specific environments - project crashing under convex cost-
time trade-offs, the 1||Cmax problem, the single model assembly line and the 1-commodity
Continuous Flow Line.

Further research needs to directed towards investigating the equivalence of average and
marginal shadow prices for diverse production/service environments. For the job shop envi-
ronment, we need more research on the perturbations of classical scheduling problems where
a bank of identical machines are available in parallel. For production/service environments
which can be represented as a network flow problem, we need to identify situations when
the minimum cut defines the bottleneck.

Finally, a valid bottleneck definition provides the foundation on which a rich set of
resource acquisition problems can be formulated. The identification of bottleneck is the
first step towards the ‘de-bottlenecking’ process. The aim is to change the availability of
resources so as to meet management objectives. Which resource to choose and by how
much its availability needs to be changed are important managerial decisions. This paper
provides the groundwork on which an universally valid bottleneck focused approach can be
developed.
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