A new algorithm for continuous optimization

Tejas A Desai”
The Indian Institute of Management, Vastrapur, Ahmedabad--3800135,
Gujarat, India

Abstract

We present a new algorithm for continuous, nonlinear or linear, and constrained or
unconstrained optimization. After proving its convergence, we apply it to unconstrained
and constrained maximum likelihood estimation, and compare its performance to that of
the Newton-Raphson algorithm.
Keywords: Nonlinear programming; Linear programming; Constraints satisfaction;

Multivariate statistics; Simulation

1. Introduction

A vast amount of literature exists on both non-linear as well as linear continuous
optimization. Many key references in this area are available, for example, in Luenberger
(2004). However, to the best of our knowledge, the approach discussed in this paper has
not been considered before.

To motivate the algorithm, in Section 2.1 we first consider the problem of finding a

solution to a set of nonlinear and/or linear inequalities. After describing an algorithm for
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this problem, we prove its convergence to a solution, and apply it to an introductory
example. Thereafter, in Section 2.2, we show how the problem of continuous and
possibly constrained optimization, namely, the problem of maximizing a continuous
objective function in possible presence of nonlinear or linear constraints, may be
considered an extension of the first problem. An extended algorithm is proposed for this
problem, and its convergence is proved. The extended algorithm is then applied to
unconstrained maximum likelihood estimation in presence of imcomplete data. For the
sake of comparision, the Newton-Raphson method is also applied to this example. Next,
the (extended) algorithm is applied to an example of constrained maximum likelihood

estimation, and its performance is also compared to that of the Newton-Raphson method.

2. The algorithm
2.1 Motivation: Finding a solution to a system of linear and/or non-linear inequalities
Consider the following system of inequalities:

hj(zi,...,zq) <aj, j=1,...,p; and (1)
b,; S.’L} Sci,izl,...,q

Let

B = [bl,Cl] X ... X [bq,Cq]

Any of the first p inequalities above may be linear or nonlinear. Letz = (x4, ..., x,)
denote a point in IRZ. Let

A-:{:I:E]Rq

x € B, hj(x) §a]},j: 1,....p;

and



Then finding a solution to system (1) above is equivalent to finding a point in the set S
Our algorithm is denoted A1. To start A1, draw z(®) randomly from B. If z(°) satisfies
the p inequalities in (1), then stop the algorithm. Else, in the next iteration draw z(*)
randomly from B. If (1) satisfies the p inequalities in (1), then stop the algorithm; else,
go to iteration 2. In general, suppose A1 has not converged at iteration? 0. Then in
the iteration 7 + 1, draw randomly 2+ from B. If £(**+1) satisfies the p inequalities in
(1), then stop the algorithm; else, go to iteration i + 2. Then we have the following
result:
Theorem 2.1. Suppose that the set S defined above has positive Lebesgue measure in
RY. Then the algorithm A1 described above converges to a solution in S in a finite
number of iterations with probability 1.
Proof. The result is a direct consequence of the fact that S' is a set of positive Lebesgue
measure in R?. In other words, the probability that a point randomly sampled from B is
in S is positive. Thus, the event that a sequence {:c(i)} generated by the algorithm A1l
fails to converge in a finite number of iterations is of probability 0. O
Now we apply Al to the following example.
Example 2.1. Consider the following system of inequalities:
sin(z) —y <0,
y—e' <0,
23—y <0, and

—10< 2,y <10

Algorithm A1 was run 100 times to find a solution to the above system of inequalities.
The algorithm converged to a solution each of the 100 times. A summary of the real

times required by A1 to converge is presented in Table 1 below.



Table 1 : A summary of the number of iterations, the real times required by Al

Real time (in seconds)
Max 0.51
Mean 0.02
Median 0.01
Minimum 0.01

In the next section, we extend algorithm A1 to the case of continuous nonlinear or linear,

constrained or unconstrained optimization.

2.2 Continuous nonlinear or linear, constrained or unconstrained optimization
Consider the following optimization problem :

Maximize f(z1, ..., z,) subject to ()
hj(z1,...,24) <a;,j=1,...,p, and
bi<wzi <c¢,i=1,...,q.

The last p + ¢ constraints may or may not be there. Furthermore, if we assume that the
function f is continuously differentiable over the domain implicit in (2), achieves exactly
one extremum in the interior of the domain and that this extremum is a maximum, then

finding a solution to the problem (2) reduces to finding solutions to the following system

of inequalities:
of af
— <0, ..., —/— <
oxry — 0, Oz, — 0 (3)
af af
— < L= — <
ox, — 0, .-, Ox, — 0



Let B be defined as in the previous section. For each component j, 1 < j < ¢, consider
the two relations of g—qi with O: 3_1{/ < 0and g—i 0. Consider the following 2 - g regions
AnpinR? 1 <m<q 1<k<2:

of

:L.TIL

Am,l = {SL’ € R

<0,z € B, hj(x) <ajj= 1,...,p}, and

of

ox,

’

Amzz{.’EGRq

0,z € B,hj(x) <a,;,j= 1,...,p}, m=1,...,q

We will assume that each of the 27 sets

Ay [ VA2, [ VAg- 1k VAgky 1< Faye by <2 (4)

has positive Lebesgue measure in R9. The algorithm for finding the solution to system
(3) will be denoted A2. The first iteration of A2, denoted by ¢ = 1, is as follows. We

randomly select 27 points

.’L'g 1]) D,(:{) = (Al k1mA2 Ky - mAq 1k, 1>mAq.75 1<5<2, k7 = (ky,.. kqfl).

where 1 < ky,...,k,—1 < 2,1 < j <2.This selection is done by applying algorithm A1

to each of the 27 sets D,(c:i) .. Consider the average (:L'g*l) + :1:(z Y 5 )/2. If this average lies

in D,(c*) then let a:(z 1) = (a:,(j*l) + x(z b 5 )/2. Similarly, if this average lies in D( )

then let x(’ 1) = (:z:g*l) + ar:(z Y 5 )/2.. Repeat this procedure for all the 27~ possible

values of k7 until a:g*’ ) — 935:*1) Now let :z:(zzl) = ;:111) if k,—1 = 1 and 93;:22) ,(:11)

if k,—1 = 2. Note that .'1:(Z 2) € D(z)1 and .’L'g*zz) S D(z)2 where
DR, = (AukNAzk (VA 2k, ) VAg 151 ST <2 K5 = (Rr, o Ky 2),

where 1 < ky,..., k2 <2,1 < j<2. Consider the average (sc,(cz*2) + :z:(z 2))/2. If this

(7,2) _ ( (¢,2

average lies in D,(c*) then let o, T | ) + :z:(z 2) 5 )/2. Similarly, if this average lies

in D,(c;?z then let xg:?) = (:z:gf) -+ ar:(z 2))/2.. Repeat this procedure for all the 272



possible values of k3, until sc(z 2) = :v,(cz*z) Now let a:(z?’l) = a:éwl) if k, o = 1and

2% = oY) itk =2 Note that 2y € D) and 2y € D, where
D,(::)] = (Al,klmAQ,kz- . ﬂAq—3,kq_3)ﬂAq—2,ja 1<j<2 k3= (k,...,kg3),

. . . . i,g—1 i,g—1
We repeat the above averaging processes until we arrive at the points :z:,(:l’ql ) and a:glqz )

such that x,(:l’:]lil) € D(gjll’i = Al,klﬂ A2,1 and xg’zﬁl) € D(gj:; = Al,klm A2,2. Here

k;_y = ky. Consider the average (a:g"?L Doy w,(ci’flz_l) )/2. If this average lies in D,(c‘;?

then let w](:l’ql_l) = (a;g’ql_l) + :z:g"g_l) )/2. Similarly, if this average lies in D,(;ij%

(i7q_1) — (w(zaq 1)+ (’L,q 1))

then let z; ™ /2. Repeat this procedure for the 2 possible

values of k1, until scg’ql_l) = :v,(;l’,q_l).Now let ("9 = :L'gzlq D if k) = 1and

mgﬂ) — xg’lq ) if ky = 2. Consider the average (mg %4) + x(z,q) )/2 If this average lies in
A1 then let x&z’q) = (x; o) 4 sc(z’q) )/2. If the average lies in A4 o then let :z:(z’Q)
(29 4+ 209 /2. We will denote the average (z\"? + £5"9) /2 as w®. This ends

iteration <.

Iteration ¢ + 1 is similar to iteration 4, except that using A1 we randomly select 27 points

i+1,1 1 . *
mé;’j ) S Dl(c:{?] = <A1,klmA2,k2' .. mAQ*l,kq—l)nAq,j’ 1 < ] < 27 kl = (kl, ey kqfl)

such that the first component o a: . I. D L1 <j <2 isthe same as the first component o
p Kz, J< p

(z’q) if ki1 = 1 and same as the first component of:cz 9) if ki = 2. The rest of the

iteration ¢ + 1 is the same as iteration 7, except that :z:g D) and/or x,

(i+1,9)

) will get updated at

(i+1

the end of iteration ¢ + 1 to z; and/or x, 9 Then in iteration i + 2, the first

(z 2,1)

P if

component of x;, , 1 <j <2, is the same as the first component of x;
k1 = 1 and same as the first component of a:giH’Q) if k1 = 2; and so on for subsequent
iterations. To ensure that each iteration finishes in finite time, we use an ¢ € (0,0-1) such

that if

('L1.7) ("a]) < < <
|l — 2l <e1<j<q



then we consider scgjl) and 932”2) to be equal upto the decimal point implied by e.
37 A

Then we have the following result:
Theorem 2.2. Suppose the function f is continuously differentiable over the domain
implied by the constraints in (3), and has exactly one maximum and no other extremum
in the domain implied by the constraints in (3). Furthermore, suppose that this maximum
occurs in the interior of the domain. Suppose each of the sets defined in (4) has positive
Lebesgue measure in R1. Furthermore, suppose that each of the sets D,(:” ;U D,(C‘;?z,
1 <a<gq—1,and Ay 1|JA: 2 is convex in R?. Then the sequence of points {w(i)}
converges to the solution w to the system (3) above as i — ©0.
Proof. The condition of positive Lebesgue measure ensures that algorithm A1 converges
in finite time at each iteration ¢. The convexity property ensures that each itreation and

subiteration of A2 is well-defined. Note that

[l — wO| < [ — w02

Thus the sequence {'w(i)} converges to a point w in IR?. Note that by construction,

w € ﬂ (Al,k1 mAZk‘z' .. mAq—l,k‘qﬂmAq,k‘q)'
1<k, kg <2

Thus, w s the solution to (3); i.e., ng
k

=0, 1 <k < g (upto the decimal point

r=w

implied by ¢). a

Example 2.2. Unconstrained M aximum Likelihood Estimation

Consider a binomial random variable X such that Pr(X = 0) = 0.5 and

Pr(X =1) = 0.5. Consider a random variable Y such that if X = 0, Y is distributed as
N(uy =0,0%=1)and if X = 1, Y is distributed as N (u; = 1,02 = 1). Furthermore,
X is observed with probability 0.7, and X is randomly missing with probability 0.3. The

variance o2 and Pr(X = 1) are assumed known, whereas the means y; and 5 are



assumed unknown and are to be estimated. Table 2 presents 30 simulated values of X and

Y:
Table 2 : Data for Example 2.2
i x| Y
1 0.35091
2 1.02329
3 . — 0.66084
4 0 |0.73133
5 0 | —1.40108
6 0 | 1.74854
7 0 | 1.45779
8 0 | —0.32389
9 0 | 0.43005
10 0 | —1.71751
11 0 | —0.36244
12 0 | —1.37992
13 0 | 0.25498
14 0 | —0.35546
15 0 | —0.69894
16 0 | 0.13100
17 0 | 1.42635
18 1 | 0.28686
19 1 |1.62940
20 1 | —0.46279
21 1 | 1.68601
22 1 | 0.68534
23 1 | —0.72390
24 1 |0.72166
25 1 | 2.78640
26 1 | 3.61448
27 1 | 1.18818
28 1 | —0.55797
29 1 | 1.71294
30 1 | —1.23507

We will denote the mle of F(Y|X = 0) as 11, and the mle of E(Y|X = 1) as u,. Let
f(y|p;) denote the density of N (u = u;, 0% = 1), = 1,2. Let  denote the probability
of X being missing. Furthermore, let Y denote the data in the third column of Table 2,

and X5, denote the observed data in the second column of Table 2. Last, let I(X; = 0)



and I(X; = 1), = 4 to 30 be indicator functions indicating which values X; takes,
¢ = 4to 30. Then the loglikelihood of 1,19, and 7 given the observed data in Table 2

and known variance is as follows:

w

logL(pu1, p12]0”, Y, Xops) = > _ (1og(0.5 - f(yil ) + 0.5log f (y;|112) + logr)
=1

30
+ Z ) - log f(yilm) + 1(X; = 1) - log f (y;|p2) + log(1 — 7))

Then finding the maximum likelihood estimates of 141 and po is equivalent to the
following non-linear, continuous, and unconstrained optimization problem:

Maximize logL (i1, po|o?, Y, Xops) -

Algorithms A2 and Newton-Raphson were each run 100 times to maximize the
likelihood yielded by the observed data. Table 3 presents a summary of the values to
which algorithm A2 converges, along with a summary of the values to which the

Newton-Raphson converges. Also presented are summaries of real times in seconds taken

by each algorithm.
Table 3 : A summary of the values yielded and real times taken by A2 and Newton-Raphson
Algorithm A2 Newton-Raphson
Wy |, | real time (in secs.) | p, 1y real time (in secs.)

Max 0.00 | 0.83 | 0.38 0.00 102.22 | 0.03

Mean 0.00 | 0.83 | 0.26 -0.26 | 1.84 0.01

Median 0.00 | 0.83 | 0.27 0.00 0.83 0.00

Minimum 0.00 | 0.83 | 0.22 -26.59 | 0.83 0.00

Table 3 demonstrates that while the Newton-Raphson algorithm is faster, it did not
converge to the correct value (i.e., 7; = 0.00 and 1z, = 0.83) 100 out of 100 times.
Furthermore, although A2 is slower compared to Newton-Raphson, the former is still

quite fast in the sense that it took less than a second to converge each time.



Example 2.3. Constrained maximum likelihood estimation

Consider a bivariate normal random variable (X, Y") such that (X, Y") is distributed as
N (p1,X) with probability 0.5 (assumed known) and as N (ue, 33) with probability 0.5.
The population indicator, i.e., the random variable which indicates whether an
observation is from N (u1,3) or from N (e, 33) is not observed at all. The parameters

are as follows:
1 —-0.3
X={ _gy3 1 )= (1, 1) = (2,2), and po = (u2, u2) = (— 2, — 2).

The covariance matrix 33 is assumed known, whereas p; and po are assumed unknown
and are to be estimated. Using the parameters above, 30 data were simulated. These data

are presented in Table 4 :



Table 4 : Data for example 2.3
i x; Yi

1 — 238477 | —2.42155
2 —1.74090 | — 2.05489
3 3.08294 2.63114

4 3.36635 1.96981

5 2.54749 3.68319

6 — 1.48511 | —2.09576
7 — 2.68046 | — 5.01516
8 —1.26134 | — 2.95281
9 1.05888 3.33043
10 | 2.17464 2.09240

11 | 4.17771 1.14555

12 | —2.36698 | — 3.32461
13 | —2.28839 | — 3.98008
14 | 2.07698 2.27375

15 | 2.13451 0.10032

16 | —2.22344 | — 2.49873
17 | 1.94836 1.05031

18 | —2.46237 | —4.73239
19 | 1.76903 1.31959
20 | —3.41411 | —2.16737
21 | —1.94223 | —4.67921
22 | 0.47866 2.36898
23 | —2.12063 | — 1.82635
24 | —3.13627 | — 2.84237
25 | —0.12150 | — 2.66558
26 | 1.23187 2.31169
27 | 2.17193 2.56457
28 | —3.99247 | —3.23134
29 | 2.82728 1.63710
30 | 2.25181 2.08827

Let f(x,y|p1,X)and f(x, y|pe, X) denote the densities of the N (u1,3) and N (g, X)
distributions, respectively. Let X and Y™ denote the data in the second and third columns

of Table 4. Then the loglikelihood of g; and o given 3, X and Y is

3

0
logL(p1, p2|2, X,Y) = 2109(0-5 - f(@i, yilpr, B) + 0.5f (2, yi| pe, )
i—1

Then finding the maximum likelihood estimates of 14 and po subject to the constraints



w1 > po and pq > 0 is equivalent to solving the following nonlinear, continuous and
constrained optimization problem:

Maximize logL(u1, p2|3, X, Y") subject to
pa > po and
w1 >0

Algorithms A2 and Newton-Raphson were each run 100 times to maximize the
likelihood yielded by the data. The Newton-Raphson algorithm not only failed to
converge 100 out of 100 times, but was terminated each time because it yielded a
singular matrix of second derivatives. In contrast, A2, converged to the right solution
(u; = 2.13 and i, = — 2.67) 98 out of 100 times. Table 5 presents a summary of the
values to which algorithm A2 converges, along with a summary of real times in seconds

taken by A2 to converge.

Table 5 : A summary of the values yielded and real times taken by A2
Algorithm A2
| real time (in seconds)
Max 219 | —2.67 | 1.32
Mean 213 | —267 | 1.15
Median 213 | —2.67 | 1.16
Minimum 213 | —2.67|0.95

3. Concluding remarks

The algorithm presented in this paper may be used for nonlinear or linear continuous
optimization in possible presence of nonlinear and/or linear constraints. Special cases of
such continuous optimization include both unconstrained and constrained maximum
likelihood estimation. The algorithm works well in cases where the Newton-Raphson

algorithm works well. This was illustrated through example 2.2. Moreoever, it works



well in cases where the Newton-Raphson doesn't, as was illustrated through example 2.3.

Moreover, the examples also illustrated that the algorithm is quite fast in real time.
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