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Abstract

To iteratively solve large scale optimization problems in various contexts
like planning, operations, design etc, we1 need to generate descent directions
that are based on linear system solutions. Irrespective of the optimization al-
gorithm or the solution method employed for the linear systems, ill condi-
tioning introduced by problem characteristics or the algorithm or both need
to be addressed. In [GL01] we used an intuitive heuristic approach in scaling
linear systems that improved performance of a large scale interior point algo-
rithm significantly. We saw a factor of 103 improvements in condition number
estimates. In this paper, given our experience with optimization problems
from a variety of application backgrounds like economics, finance, engineer-
ing, planning etc., we examine the theoretical basis for scaling while solving
the linear systems. Our goal is to develop reasonably “good” scaling schemes
with sound theoretical basis.

We introduce concepts and define “good” scaling schemes in section (1), as
well as explain related work in this area. Scaling has been studied extensively
and though there is a broad agreement on its importance, the same cannot be
said about what constitutes good scaling. A theoretical framework to scale
an m × n real matrix is established in section (2). We use the first order con-
ditions associated with the Euclidean metric to develop iterative schemes in
section (2.3) that approximate the solution in O(mn) time for real matrices.

We discuss symmetry preserving scale factors for an n × n symmetric
matrix in (3). The importance of symmetry preservation is discussed in sec-
tion (3.1). An algorithm to directly compute symmetry preserving scale factors
in O(n2) time based on Euclidean metric is presented in section (3.4).

We also suggest scaling schemes based on rectilinear norm in section (2.4).
Though all p−norms are theoretically equivalent, the importance of outliers
increases as p increases. For barrier methods, due to large diagonal correc-
tions, we believe that the taxicab metric (p = 1) may be more appropriate. We

1Professor Leon Lasdon holds the David Bruton Jr. Chair in Business Decision Support Systems
at the Department of Information, Risk, and Operations Management, the University of Texas at
Austin. He is the author of several widely used NLP codes, is a co-developer of the Microsoft Excel
Solver, and has published over 100 journal articles and three books.
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develop a linear programming model for it and look at a “reduced” dual that
can be formulated as a minimum cost flow problem on networks. We are in-
vestigating algorithms to solve it inO(mn) time that we require for an efficient
scaling procedure. We hope that in future special structure of the “reduced”
dual could be exploited to solve it quickly. The dual information can then
be used to compute the required scale factors. We discuss Manhattan metric
for symmetric matrices in section (3.5) and as in the case of real matrices, we
are unable to propose an efficient computational scheme for this metric. We
look at a linearized ideal penalty function that only uses deviations out of the
desired range in section (2.5). If we could use such a metric to generate an
efficient solution, then we would like to see impact of changing the range on
the numerical behavior.
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1 Why Scale?

In theory, it is easy to distinguished a singular matrix from a non-singular one.
This is especially true for the small problems used for illustrating concepts in text-
books that have typically fewer than four variables and one or two constraints. In
practice, it is difficult to say if a matrix is singular or nearly singular in presence
of ill-conditioning. Hilbert matrices family from [Wat91, page 123] is illustrative.
An n× n symmetric positive definite matrix Hn in this family has its (i, j) entry is
given by 1/(i+ j− 1). If we try to solve the equation

Hnx = bn,

on a computer where the component i of the vector bn is

(bn)i =

n∑
j=1

1

i+ j− 1
,

we start getting random values for n = 6 and higher. The correct answer for above
linear system is x = [1, 1, . . . , 1]t. A Hilbert’s matrix for n = 4 looks like:

H4 =

⎡
⎢⎢⎣

1 1/2 1/3 1/4

1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7

⎤
⎥⎥⎦ .

Ill conditioning occurs because of two main reasons: finite precision represen-
tations of real numbers and floating point operations errors. Some matrices like
the Hilbert’s matrices are inherently ill-conditioned. Note, we can easily construct
integer versions (all matrix entries integers) of Hilbert’s matrices with the same
pathological behavior. Watkins [Wat91, page 118] suggests that while solving a
linear system Ax = b, if A and b are a accurate to about s decimal places and if
the condition number of A, κ(A) ≈ 10t, where t < s, then the entries of computed
solution are accurate to about s− t decimal places.

In addition to errors introduced solving linear systems, some optimization meth-
ods like barrier and penalty methods lead to ill conditioning even in a well condi-
tioned problem. For instance, at each iteration of an interior point method a sym-
metric system of equations has to be solved. These matrices become ill-conditioned
due to large diagonal corrections as variables approach their bounds in final steps.
Hence scaling becomes even more important to preserve quality of solution to the
linear system. The solution of the linear systems is used in computing directions
for primal and dual variables and poor quality solutions delay convergence. As
the problem size becomes larger, empirically more errors related to smaller piv-
ots have been observed in [Gaj95]. A small pivot leads to a very large multiplier
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and these swamp out significant bits of precision from previous entries of the row.
When multiples of this row are now added to other rows, other rows suffer the
same fate. Net result is that all the subsequent rows start looking similar, and even
a matrix that was not singular to start with appears singular.

The following example from [Wat91, page 100] has an exact solution [1, 1], but
the condition number κ2(A) = 1/ε is very large. In the example, ε is a very small
positive number 0 < ε� 1. [

1 0

0 ε

] [
x1

x2

]
=

[
1

ε

]

Hence any small error in the representation, say the right hand side becoming
[1, 2ε] leads to a large error in the computed solution. For the minor change, the
solution becomes [1, 2] instead of the correct [1, 1]. If we use scale factors of 1 and
1/ε for the first and second row, this is a well conditioned problem. In summary,
scaling may not help pathological matrices like the Hilbert family but in most prac-
tical cases, it can mitigate the effects of ill-conditioning.

1.1 “Good” Scaling

The objective is to scale an m × n matrix A such that all non-zeros are between
[β−1, 1] where β is the machine base, usually 16 or some integral power of 2. In
Gaussian elimination, the idea is to keep the lower triangular factor L and the
upper triangular factor U small and by [Wat91, Theorem 2.5.5, page 115], ensure
stable behavior. Due to the small pivot problem mentioned earlier, during factor-
ization the pivots are carefully monitored to ensure that small pivots are avoided
and growth in factors L and U are kept with in bounds.

Instead of floating point numbers, if the scaling factors are chosen as nearest
integer power of the machine base, β = 16, then the scaling operation is just a
change in the exponent and the mantissa does not change. Thus no introduction of
new errors due to floating point operations in computing scaled values. By Bauer’s
theorem [Wat91, 128–130], this type of scaling assures that if the same pivoting se-
quence, as the one used before scaling, is employed during Gaussian elimination,
the solution obtained is same including roundoff errors. We call scaling proce-
dures that do not introduce new floating point errors as non-intrusive. In contrast,
methods that use scales that are unrestricted, lead to additional errors influencing
the algorithm behavior. Thus using integral powers of β as a scale factor is non-
intrusive. The objective of a non-intrusive scaling is to influence the pivoting sequence
but no other side effects.

Since each iteration of an optimization algorithm solves a linear system, the
scaling procedure has to be efficient both in space and time. We call a procedure
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that computes in O(mn) time and with O(n) space, the scales for a m × n real
matrix, as efficient for our purposes.

1.2 Related Work

The approach used by Lasdon et al. in [LPY95] was to scale each row by the largest
element and then the columns next. The first stage is an O(mn2) operation while
the second stage was O(mn) for a sparse matrix. In addition, to being slow, it
also destroyed symmetry of the matrix since column and row weights were not
the same. Secondly, since scaling factors were themselves floating point numbers,
this introduced additional floating point arithmetic errors. The scaling algorithm’s
time efficiency was O(n3) because the matrices were stored by columns and hence
row oriented access was costly. In [Gaj95], the scaling method preserved symmetry
by using same scale factors for rows and columns. The scale factors were integral
powers of β. Lastly, the approach used in [Gaj95] is O(n2). A three pass approach
to identify the largest element in each row and column was used. Thus each pass
reduced the row and column norms by factors calculated in the previous pass.
A three pass mechanism was found to reduce condition number estimates by a
factor of 103, refer to section (A) for a discussion on the estimators used. Curtis
and Reid [CR72] claim that such pat heuristics are unsatisfactory.

Our current approach is similar to Curtis and Reid [CR72] where they use Ham-
ming’s least squares criterion that minimizes the distance of scaled terms from 1.
We feel that this is more restrictive than using the center of the range. Thus the
objective function we use differs in a correction term. Secondly, we propose a
Gauss-Seidel iterative scheme to solve the least squares problem. As Curtis and
Reid point out, the resulting normal equations are singular but consistent and direct so-
lution is complicated by the need to solve large symmetric positive definite systems. They
use a conjugate gradient method to solve the system. Curtis and Reid [CR72] do
not address the issue of symmetry preserving scaling. This is essential if one is to
use Cholesky or other symmetric solvers. We also formulate an alternative opti-
mization model that is based on the Manhattan metric.

Rothblum and Zenios [RZ92] address a more general problem of finding row
and column scale factors satisfying constraints on column and row products. Their
solution is an iterative one for the resulting constrained optimization problem. We
prefer the simpler unconstrained formulation because it is easier to solve. It is also
not clear how one can come up with desirable goals for column and row products
in our context. The authors mention that the problem of determining a scaling
that results in prescribed row and column sums has been studied for the past few
decades. The symmetric version of the scaling problem they attempt requires the
row and column products to be equal.
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2 Sparse Real Matrices

Let x ∈ �m be a vector of row scale factors. Later on, we will require x to be
integral. Similarly, let y ∈ �n be the column scale factors. Let A be a sparse real
m × n matrix and N be the associated incidence matrix. That is, N is an m × n
matrix of ones and zeros. We denote elements of matrices A and N as aij and nij

respectively. Thus:

N = {nij = 1 if aij �= 0, otherwise nij = 0}.

Let Ni denote the ith row of the non-zero incidence matrix and Nj denote the
jth column of the incidence matrix N. Thus the number of non-zeros in row i and
column j can be found by:

(Ni)te =
∣∣Ni

∣∣ and (Nj)
te = |Nj |

where e is a vector of all 1s appropriately dimensioned.

2.1 What is the Goal?

Let U be an m ×m diagonal matrix and V be an n × n diagonal matrix such that
the diagonal elements are given by:

Uii = βxi ∀ i = 1, . . . ,m and
Vjj = βyj ∀ j = 1, . . . , n.

The objective of scaling is to obtain matrix A′ = UAV such that elements of A ′ are
within the desirable range, namely, [β−1, 1]. The following lemma trivially estab-
lishes the connection between this goal and the choice of scale factors.

Lemma 2.1 (Scale Factors Range) The desired scale factors should ideally be such that
for each non-zero in matrix A the following condition holds:

xi + yj ∈
[
−1− logβ |aij | , − logβ |aij |

]
when nij = 1.

Proof of Scale Factors Range: Post scaling we would like

βxi |aij |β
yj ∈ [β−1, 1] when nij = 1.

If we take logarithms to the base β, the goal can be expressed as:

xi + logβ |aij | + yj ∈ [−1, 0] when nij = 1.

W.P. No. 2006-08-05 Page No. 8
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The necessary conclusion follows. �

We would like to use a penalty function that measures how effective are the
scale factors are chosen. Ideally, if the scaled matrix entries are in the desired range
[β−1, 1], they should incur no penalty. Outside the range, the penalty incurred is a
rapidly increasing function of distance from the nearest end point. Or equivalently,
if α represented the logarithm of a scaled non-zero entry of the matrix A, then we
would want the penalty function ψ(α) to be zero in the range [−1, 0]. Outside the
range it should be increasing. An example is shown in figure 1. An L1 penalty

0
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3

4

5

6

7

8

Psi

–3 –2 –1 1 2

alpha

Figure 1: Penalty function for scaled matrix terms

function, of the form
ψ(α) = max {0, α, γ(−1− α)}

is a good candidate where γ is a balancing factor to prevent a few terms larger than
1 from dominating the scale factors. With diagonal corrections in barrier methods,
this consideration becomes important. The penalty function, ψ(α), is convex but
not differentiable.

2.2 Euclidean Metric

Given the difficulties with a non-smooth objective, Hamming’s squared distance
criterion is widely used as in Curtis and Reid [CR72], Rothblum and Zenios [RZ92]
etc. We also use Euclidean distance from the center of the desired range as a
smoother alternative in the following lemma.

Lemma 2.2 (The Euclidean Metric) Let a m × n real matrix Ā be defined with the
same sparsity pattern as matrix A. Let elements of Ā be the center of the range define in

W.P. No. 2006-08-05 Page No. 9



IIMA • INDIA
Research and Publications

lemma (2.1), i.e.,

āij = − logβ |aij | −
1

2
whenever aij �= 0 and

āij = 0 if aij = 0.

The L2 norm based objective that minimizes the distance from the center of the range can
be stated as:

min Π2 =
1

2

∑
ij:nij=1

(xi + yj − āij)
2

Proof of the Euclidean Metric: This is similar to Curtis and Reid [CR72] objective
except that we are measuring the distance from the center of the range while they
use the upper end. �

We define an m ×m diagonal matrix R and an n × n diagonal matrix C such
that

Rii =
(
Ni

)t
e, (1)

Cjj = (Nj)
t e.

Thus Rii denotes count of non-zeros in row i and similarly Cjj gives count of non-
zeros in column j. The following lemma defines a set of equations that can be used
to iteratively calculate the scale factors.

Lemma 2.3 (Solutions for the Euclidean Criterion:) The scale factors x and y sat-
isfy:

Rx+Ny = Āe,
Cy+Ntx = Āte.

Proof of Solutions for the Euclidean Criterion: This is a standard unconstrained
least squares problem and the solution is guaranteed to exist since the Hessian is
positive definite. The normal equations are:

∂Π2

∂xi

= 0 =⇒ ∑
j∈Ni

(xi + yj − āij) = 0 ∀ i such that
∣∣Ni

∣∣ > 0,
∂Π2

∂yj
= 0 =⇒ ∑

i∈Nj

(xi + yj − āij) = 0 ∀ j such that |Nj | > 0.

Taking variables on left hand side and constants on right hand side we get:∑
j∈Ni

xi +
∑
j∈Ni

yj =
∑
j∈Ni

āij ∀ i such that
∣∣Ni

∣∣ > 0,
∑
i∈Nj

xi +
∑
i∈Nj

yj =
∑
i∈Nj

āij ∀ j such that |Nj | > 0.
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Using Āj to indicate column j of matrix Ā and Āi for row i, we can write the above
as:

Riixi + (Ni)Ty = eTĀi ∀ i such that
∣∣Ni

∣∣ > 0,
(Nj)

Tx+ Cjjyj = eTĀj ∀ j such that |Nj | > 0.

The normal equations can be written in matrix form as:

Rx+Ny = Āe,
Ntx + Cy = Āte.

The conclusion follows. �

Thus the row scales x, are based on a row constant term minus a term depen-
dent on the column scales. The constant term represents the sum of non-zeros in
a row divided by the row count - an “average” of the non-zeros in the rows. The
variable term is average of the column scale factors that are incident for the row.
Similar statement can be made about the column scale factors y.

2.3 Finding the Scale Factors

The following lemma gives the necessary conditions for convergence of the itera-
tive scheme being suggested. Later in this section, we check if the conditions are
met in general. We use an assumption on non-zero counts that is relaxed later on.

Lemma 2.4 (Gauss-Seidel Iterations) If we assume that Rii > 0, that is, at least one
non-zero in a row and Cjj > 0 - at least one non-zero in a column, then the matrices R and
C are invertible. The following iterative scheme to calculate scale factors is suggested by
lemma (2.3)

xk+1 = R−1Āe − R−1Nyk,

yk+1 = C−1Āte − C−1Ntxk+1

where k refers to the iteration number. Let the the matrix B be defined below:

B =

[
I

−C−1Nt I

] [
0 −R−1N

0 0

]
=

[
0 −R−1N

0 −C−1NtR−1N

]

The iterative scheme will converge if and only if matrix B has all eigenvalues less than one
(absolute value) and the rate of convergence depends on the largest absolute eigenvalue.

Proof of Gauss-Seidel Iterations: Under the scheme, in each iteration, previous
iteration values of the ys along with newly calculated xs are used. We can write

W.P. No. 2006-08-05 Page No. 11
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the normal equations in lemma (2.3), since R and C are invertible under the as-
sumptions of the lemma, as:

x+ R−1Ny = R−1Āe,
y+ C−1Ntx = C−1Āte.

This can be recast in the form (I − L − U)z = b where the vector b represents the
constant right hand sides, vector zt = (xt, yt) and L and U are lower and upper
triangular matrices with null principal diagonals and I is anm+n-rowed identity
matrix. The matrices L and U are defined by:

L =

[
0 0

−C−1Nt 0

]
,

U =

[
0 −R−1N

0 0

]
.

In this form, suggested in [Kre85, pages 811-812], upper triangular U has non-
zeros only in those positions where “old” values from previous iterations have to
be used because the corresponding “new” ones are not available - in our case y
scale factors. Similarly, the lower triangular matrix L has non-zeros in positions
where “new” approximations are already available -in our case current iteration x
values. Gauss-Seidel formula is:

(I− L)zk+1 = b+Uzk.

The convergence of the method depends on the eigenvalues of matrix B = (I −
L)−1U. The matrix I − L and its inverse for the scale factors are given by:

I − L =

[
I 0

C−1Nt I

]
,

(I− L)−1 =

[
I 0

−C−1Nt I

]
.

Inverse can be readily verified by forming the product. Thus forming the prod-
uct B = (I − L)−1U gives the desired result. The necessary condition follows
from [Kre85, page 811] where it is stated that if matrix B has all eigenvalues with
absolute value less than one then it will converge from any starting point. The con-
vergence rate depends on the spectral radius (largest eigenvalue in magnitude). �

In the following lemma, eigenvalues of the matrix B used in Gauss-Seidel iter-
ations are shown to follow the necessary condition.

Lemma 2.5 (Eigenvalues of Iteration Matrix) The iteration matrix B, defined in
lemma (2.4), has eigenvalues with absolute value less than 1.
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Proof for Eigenvalues of Iteration Matrix: The eigenvalues of a triangular matrix
are given by the diagonal entries. Hence both the matrices involved in forming B
have eigenvalues less than or equal to one. The first matrix[

I

−C−1Nt I

]

has all eigenvalues of 1. The second matrix[
0 −R−1N

0 0

]

has eigenvalues of 0. Let the product of eigenvalues of a square matrix C be de-
noted by φ(C). From [GMW81, page 24] the matrix product CD, where C and D
are arbitrary square matrices, satisfy the property:

φ(CD) = φ(C)φ(D)

We conclude that all eigenvalues are less than 1.

Alternatively, we can examine non-zero eigenvalues of matrix B and come to a
similar conclusion. For any vector, z ∈ �m+n, it can be partitioned as zt = (xt, yt).
Hence if vector z was an eigenvector of matrix B associated with a non-zero real
eigenvalue λ �= 0, then it would satisfy Bz = λz. In other words,

Bz =

[
−R−1Ny

−C−1NtR−1Ny

]
= λ

[
x

y

]
.

Thus the x part of the z vector has to be equal to −1/λR−1Ny. The y part indicates
that vector y and eigenvalue λ also solve the eigenvalue equation for the matrix
−C−1NtR−1N. The matrix N is anm× nmatrix of 1s and 0s. The product NtR−1N

is symmetric and positive semidefinite. For any n− dimensional vector y, using
s = Ny,

ytNtR−1Ny = stR−1s =

m∑
i=1

Riis
2
i ≥ 0.

If N was non-singular, then the inequality holds strictly and the matrix is positive
definite, but in practice it may not be. An extreme example would be a dense
matrix that has ones in all rows and columns. Because the product NtR−1N is
symmetric, it has n real eigenvalues, not necessarily distinct, but the eigenvectors
are distinct and form an orthonormal basis. The matrix C−1 is positive definite
with it eigenvalues given by the diagonal elements that are all smaller than unity.
Thus we see that the matrix −C−1NtR−1N is a product of a positive definite and a
positive semidefinite system but it itself is not symmetric. And this also leads to
the conclusion of the bounded eigenvalues. �

The setup procedure shown in algorithm (1) initializes the constants and right
hand sides used in the iterations during a single pass on the A matrix. Hence it is
efficient.
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For the iterative scheme to work, we had insisted that there be at least one non-
zero in each row and column ofA. While it seems reasonable to insist that a matrix
not be structurally singular, this requirement can be relaxed. Often, modeling lan-
guages like GAMS, AMPL have conditional operators and in a large optimization
model, it may happen that an empty row is generated because of these operators.
Similarly, before a solver is called, some variables may be fixed for some solve
statements as the modelers try various scenarios. This leads to columns with zero
counts. Hence in the following lemma we relax the requirement.

Lemma 2.6 (Structurally Singular Matrix) The requirement in lemma (2.4) that the
matrices R and C be invertible can be relaxed by ignoring zero count rows and columns
during the inversion operations.

Proof of Structurally Singular Matrix: Any value assigned to the scale factors as-
sociated such columns and rows does not matter while solving the linear systems.
The corresponding normal equations are consistent and shown below:

0xi + 0ty = 0 ∀ i where
∣∣Ni

∣∣ = 0,

0tx+ 0yj = 0 ∀ j where |Nj | = 0.

Thus if we skip the associated rows or columns during the divisions performed for
R−1 or C−1 operation, the effect is as if we are working on a reduced model without
these rows and columns. �

Algorithm 1 Setup for Gauss-Seidel Iterations
Require: n > 0∧m > 0

1: R← 0 { Non-zero row counts }
2: C← 0 { Non-zero column counts}
3: a← 0 { Row right hand sides }
4: b← 0 { Column right hand sides}
5: for all non-zeros (i, j) in matrix A do
6: t← (

− logβ |Aij | − 1/2
)

7: Rii← Rii + 1
8: Cjj← Cjj + 1

9: ai← ai + t
10: bj← bj + t
11: end for

{Skip zero count columns and rows from lemma (2.6) during inversion}
12: a← R−1a

13: b← C−1b

14: return a, b, R, C

W.P. No. 2006-08-05 Page No. 14
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The Gauss-Seidel iterations are shown in algorithm (2). As can be seen, each
iteration scans the A matrix twice for non-zero incidence information only. It is
tempting to combine the two scans to one. This can be done by saving previous
x values and using them to update y instead of the current x. This method is the
Jacobi iteration and the values are updated according to:

xk+1 = R−1Āe − R−1Nyk,

yk+1 = C−1Āte − C−1Ntxk

As mentioned in [Kre85, page 813], this method of simultaneous corrections in-
stead of successive corrections is mainly of theoretical interest.

Algorithm 2 Scale Factors using Gauss-Seidel Iterations
Require: k > 0 { Maximum iterations allowed }

1: y← 0 { Only old y needed }
2: l← 0 { Iteration count }
3: repeat
4: l← l + 1
5: t← a { Compute row factors }
6: for all non-zeros (i, j) in matrix A do
7: ti← ti − yj/Rii

8: end for
9: x← Round(t)

10: t← b { Compute column factors }
11: for all non-zeros (i, j) in matrix A do
12: tj← tj − xi/Cjj

13: end for
14: y← Round(t)

15: until l = k or convergence.

16: return integer vectors x, y

We conclude with an observation about the efficiency of the proposed scheme.
The set up cost is dominated by the sweep across the matrixA and hence isO(|N |)

while the actual scale factors require 2k sweeps across the incidence structure of
A. Hence, its cost is O(k× |N |). In the completely dense matrix case, it reduces to
O(kmn). In terms of space we need:

• Two real vectors a, b for row and column right hand sides.

• Two integer vectors R, C for row and column counts.

• One real vector t to store temporary values of x or y before rounding off.
Hence t is of dimension max(m,n).
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• Two integer vectors x, y to return the result.

Without loss of generality, if we assume n > m, the space efficiency is O(n).

The rounding off to produce integer scale factors is deferred. The computation
of right hand sides during set up is done using full precision available. Row fac-
tors are accumulated using real arithmetic in real vector t. Just before x values are
needed in computing y, we round off the results to integers. Similarly, column fac-
tors are accumulated using real precision. This allows iterations to adapt to rounding
errors. We feel that this produces better integer approximations than computing
everything in real precision and rounding off end results.

We feel that the limit on iterations, k, can be set to three based on our experience
in [GL01] but empirical work is needed to come up with appropriate values for the
new scaling scheme.

We conclude section (2.3) with a pathological example from [Gaj95, page 67].
We have been using such examples as “smelling salts” whenever we get carried
away by our ideas. The example illustrates how the Gauss-Seidel iterations work
and it is seen that it converges in two iterations. Like the proverbial successful
operation, but a dead patient, the scaled matrix seems to be worse than what we
started with.

Example 2.1 (Pathological Square Matrix) In the following, assume machine base
β = 10. This will allow human readable iteration output. Given the following “almost”
symmetric matrix

A =

⎡
⎣ 1 1010 1020

1010 1030 1050

1020 1040 1080

⎤
⎦ ,

what are the appropriate column and row scale factors?

Solution of Pathological Square Matrix: The incidence matrix,N, is a 3×3matrix
of all ones since this is a completely dense matrix. We execute steps of the setup
algorithm (1) and get the following output:

R = Diag(3, 3, 3) row non-zero count
C = Diag(3, 3, 3) column non-zero count
at = (−31.5,−91.5,−141.5) row right hand side
bt = (−31.5,−81.5,−151.5) column right hand side.

The output can be verified easily by stepping through each non-zero entry (i, j)
and incrementing appropriate counts and adding to right hand sides. Note, this is
based on a single scan of the matrix A. Next we execute steps in algorithm (2) to
compute scale factors.
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Iteration 1, Pass 1: The temporary vector t is assigned row right hand sides in
t ← a. Vector y is zero before the start of this iteration. No change in t values
from the loop based on old y values. Hence rounding off t gives row scale factors
xt = (−32,−92,−142).

Iteration 1, Pass 2: Temporary vector t is assigned column right hand sides. The
loop scanning through A matrix non-zeros adjusts t values based on the new x

values and leaves tT = (57.167, 7.167,−62.83). After rounding, the column scale
factors are yt = (57, 7,−63).

Iteration 2, Pass 1: The temporary vector t is assigned row right hand sides
and the steps are repeated. The main difference from first iteration being the non-
zero values for column scale factors y. The tT = (−31.8333,−91.8333,−141.833)

and hence row scale factors remain unchanged at xt = (−32,−92,−142). This
convergence implies that there will be no change in y values either and hence we
can stop.

Using scale factors xt = (−32,−92,−142) for rows and yt = (57, 7,−63) for
columns, the scaled matrix looks like:

A ′ = XAY =

⎡
⎣ 1025 10−15 10−75

10−25 10−55 10−105

10−65 10−95 10−125

⎤
⎦ .

If we use condition number estimates suggested in section (A), it seems to have
deteriorated with the scaled matrix. �

In defense of the iteration scheme, no scaling can help pathological instances
like this or Hilbert family matrices. Secondly, for any scaling scheme, given suffi-
cient time, one can come up with pathological instances where the scaling will not
do well.

2.4 Manhattan Metric

Theoretically all p−norms are equivalent. Two vector norms ‖ ‖(1) and ‖ ‖(2) are
equivalent if there exist positive scalars α and δ such that

α ‖ x ‖(1) ≤ ‖ x ‖(2) ≤ δ ‖ x ‖(1) .

In practice this does not translate to identical results. For example, in a curve fitting
exercise, when the integer p increases, the impact of outliers increases. In the limit,
p =∞, large elements determine the curve.

In the heuristic used in [GL01], we were implicitly using an ‖ ‖∞ norm in
choosing the largest column and row elements. While working with penalty and
barrier algorithms, this can be a disadvantage. For instance, in barrier methods,
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as variables approach the bounds, we have observed diagonal corrections become
larger than 1020. Allowing these terms to dominate the scale factors is not advisable. In
these situations ‖ ‖1 may be a more appropriate choice. Traditionally Euclidean
norm is more popular in scaling literature because of differentiability. Curtis and
Reid [CR72] use Hamming’s least squares criterion in that manner. The following
lemma suggests a linear programming formulation for the Manhattan metric.

Lemma 2.7 (Manhattan Metric) Let a m × n real matrix Ā, with sparsity pattern of
matrix A, be defined as in lemma (2.2). The L1 norm based objective that minimizes the
distance from the center of the range can be stated as:

min Π1 =
∑

ij:nij=1

zij,

subject to constraints:

−zij + xi + yj ≤ āij ∀ i, j such that nij = 1,

−zij − xi − yj ≤ −āij ∀ i, j such that nij = 1.

Proof of Manhattan Metric: Similar to the L2 objective, we can state the goal of
minimizing the distance from the center of the desired range in lemma (2.1) as:

Π1 =
∑

ij:nij=1

| xi + yj − āij | =
∑

ij:nij=1

max {xi + yj − āij, āij − xi − yj} .

Defining variables zij to be the result of the max operator, we get the constraints

zij ≥ −āij + xi + yj ∀ i, j such that nij = 1,

zij ≥ āij − xi − yj ∀ i, j such that nij = 1.

Rearranging the terms by moving variables to the left hand side, constants to the
right hand side and converting inequalities to less than form gives the desired
result. �

Both metrics considered so far, Euclidean and Manhattan metrics, measure de-
viations from the center of the desired range given in lemma (2.1). They are shown
in figure (2), with the thicker line representing the Euclidean metric.

Since, an m× nmatrix A has |N | non-zeros, the linear programming formula-
tion has 2× |N | constraints, |N | variables for the penalty terms andm+n variables
for the row and column scale factors. The following lemma yields a smaller model
involving |N | variables, m+ n explicit equality constraints by using duality.

Lemma 2.8 (Manhattan Dual) Dual multipliers of the following linear program solve
the primal problem in lemma (2.7).

max Π̄D
1 =

∑
ij:nij=1

āijuij.
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Figure 2: Euclidean and Manhattan metric penalty function for scaled matrix terms

Subject to constraints:

∑
j∈Ni

uij =
Rii

2
∀ i = 1, . . . ,m,

∑
i∈Nj

uij =
Cjj

2
∀ j = 1, . . . , n,

0 ≤ uij ≤ 1 ∀ i, j such that nij = 1.

Proof of Manhattan Dual: We can convert the linear program in lemma (2.7) to
canonical form by writing the objective with sign reversed as:

max −Π1 = −
∑

ij:nij=1

zij.

Associating non-negative dual multipliers uij and vij with the first and second set
of constraints respectively, we can write the dual linear program. Note, all the
variables in the primal program are unrestricted. The dual of the canonical form
is:

min −ΠD
1 =

∑
ij:nij=1

āijuij −
∑

ij:nij=1

āijvij.

subject to constraints:

−uij − vij = −1 ← zij ∀ i, j such that nij = 1,∑
j∈Ni

uij −
∑
j∈Ni

vij = 0 ← xi ∀ i = 1, . . . ,m and

∑
i∈Nj

uij −
∑
i∈Nj

vij = 0 ← yj ∀ j = 1, . . . , n.
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Using the substitution vij = 1− uij, we can re-write the dual objective as:

min −ΠD
1 = 2

∑
ij:nij=1

āijuij −
∑

ij:nij=1

āij.

And the constraints can be written as:∑
j∈Ni

uij =
Rii

2
∀ i = 1, . . . ,m,

∑
i∈Nj

uij =
Cjj

2
∀ j = 1, . . . , n,

0 ≤ uij ≤ 1 ∀ i, j such that nij = 1.

Rewriting the objective as a maximization and dropping the constant additive term
as well as the constant 2 we get the objective stated in this lemma. We can construct
solution to the dual of the original problem from the modified dual solution by
using vij = 1 − uij. It is trivial to verify that the reconstructed solution will meet
optimality criteria for the original dual. The multipliers associated with the dual
constraints are the primal variables, namely, scale factors. �

Lemma (2.8) gives a simple linear programming problem with a special struc-
ture. If we use the substitution ūij = 2uij and multiply each constraint by 2, it
becomes a minimum cost flow problem on an acyclic network. It can be viewed as
a capacitated transportation problem with a capacity of 2 units on each arc. Flows
are represented by variables ūij while āij denote the costs associated with the arcs.
The supply nodes {1, 2, . . . ,m} correspond to rows of A matrix and the demand
nodes {1, 2, . . . , n} correspond to columns of A matrix while the arcs correspond
to non-zeros in the matrix. The supplies at each node are half the outgoing capac-
ity available at the supply node. Similarly, the demands at each node are half the
incoming capacity. Solving it like a generic minimum cost flow problem will not
meet our O(mn) efficiency requirement mentioned in section (1.1). In practice, we
would like any algorithm used for scaling to require not more than three to four
scans of matrix A in computing scale factors.

2.5 Ideal Metric?

Both, Euclidean and Manhattan, metrics do not resemble the ideal penalty shown
in figure (1). In the following lemma we modify the model used for Manhattan
metric to reflect a linearized version of the ideal penalty that is shown in figure (3).
The idea is to minimize deviations from the end points of the desired range but
ignore anything in between. With this type of measure, we can explore sensitivity
of linear system solutions to the desired range itself. For instance, what if we
change the desired range from [β−1, 1] to [β−2, β]? Secondly, if a matrix entries
are all within the desired range, both Euclidean and Manhattan metrics measure
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deviations from a single point and hence would compute scale factors that are
not one. We would prefer to minimize interventions like scaling only when absolutely
necessary.

0

1

2

3

4

Psi

–3 –2 –1 1 2

alpha

Figure 3: Linearized Penalty function for scaled matrix terms

Lemma 2.9 (Linearized Ideal Metric) Let an m× n real matrix Ā, with sparsity pat-
tern of matrix A, be defined same as in lemma (2.2). The objective that minimizes the
distance from the end points of the range in lemma (2.1) can be stated as:

min ΠP =
∑

ij:nij=1

zij,

subject to constraints:

−zij + xi + yj ≤ āij +
1

2
∀ i, j such that nij = 1,

−zij − xi − yj ≤ −āij +
1

2
∀ i, j such that nij = 1,

zij ≥ 0 ∀ i, j such that nij = 1.

Proof of Linearized Ideal Metric: This is very similar to the model used for Man-
hattan metric in lemma (2.7) except for non-negativity conditions on zij and a con-
stant term 1/2 on the right hand sides of the constraints. From lemma (2.1) we
should penalize only when either of the following conditions hold for an associ-
ated non-zero in matrix A.

xi + yj < −1 − logβ |aij | or
xi + yj > − logβ |aij | .
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From the definition in lemma (2.2), we have, for non-zeros in Amatrix:

logβ |aij | = −

(
āij +

1

2

)
.

Hence we want to penalize deviations if either of the following conditions hold:

xi + yj < āij −
1

2
or

xi + yj > āij +
1

2
.

This is equivalent to saying, the penalty, zij, should be defined as:

zij = max
{
0, āij −

1

2
− xi − yj, xi + yj − āij −

1

2

}
when nij = 1.

Replacing the max operator with three inequalities for each non-zero in matrix A,
we get:

zij ≥ āij −
1

2
− xi − yj

zij ≥ xi + yj − āij −
1

2
zij ≥ 0.

Multiplying the first two inequalities by −1 converts them to the desired form. �

We conclude the discussion on linearized ideal metric by discussing the dual.
Though we would have preferred to use the ideal, the dual is not easily reducible
because of the non-negativity conditions associated with the variables zij. This
was not necessary when we were penalizing deviations from the midpoint of the
range.

max ΠD
P =

∑
ij:nij=1

(
āij +

1

2

)
uij −

∑
ij:nij=1

(
āij −

1

2

)
vij.

subject to constraints:

−uij − vij ≥ −1 ← zij ∀ i, j such that nij = 1,∑
j∈Ni

uij −
∑
j∈Ni

vij = 0 ← xi ∀ i = 1, . . . ,m and

∑
i∈Nj

uij −
∑
i∈Nj

vij = 0 ← yj ∀ j = 1, . . . , n.

The substitution vij = 1 − uij cannot be used now since the constraint associated
with zij has become uij + vij ≤ 1.
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3 Sparse Symmetric Matrices

LetA be an n×n symmetric matrix and let x ∈ �n be an n-dimensional vector that
represents the scale factors. Let U represent an n× n diagonal matrix such that:

Uii = βxi ∀ i = 1, . . . , n.

Similar tom×n real matrices, the objective of scaling is to obtain matrixA′ = UAU

such that elements of A ′ are within the desirable range, namely, [β−1, 1].

3.1 Why Preserve Symmetry?

Many authors like Rothblum and Zenios [RZ92] define symmetric scaling as gen-
erating A ′ by using A ′ = UAU−1. It is easy to see that this does not preserve
symmetry and leaves diagonal elements untouched. For instance, the element in
row i, column j of the scaled matrix under their scheme would like:

a ′
ij = βxiaijβ

−xj = βxi−xjaij

Hence a ′
ij �= a ′

ji unless xi = xj for off diagonal elements where i �= j. For diagonal
elements, the terms xi − xi become zero and hence they remain untouched.

While solving linear systems that are symmetric, one would not like to destroy
the symmetry because it precludes usage of Cholesky decomposition or symmetric
indefinite system solvers. For instance, in each iteration of interior point method
in [GL01], we solve the resulting linear system using symmetric indefinite system
solvers. We prefer to retain symmetry due to the following reasons:

Space efficiency: Symmetric solvers use half the space required for storing the
input matrix as well as less space for factors generated. For example, for
LU factorization one needs store both L and U while Cholesky factorization,
A = GGT, requires space for only one factor G.

Time efficiency: Symmetric solvers take advantage of the symmetry in pivoting,
element access etc. For instance, only half the non-zeros need to be examined
for Cholesky decomposition when compared to the asymmetric case. This
also may make the elementary row and column operations during factoriza-
tion more efficient.

Numerical stability: Symmetric methods are more stable. For instance, Cholesky
decomposition is numerically stable, whatever be the pivoting sequence.

When the general solver used in [LPY95] was replaced by a symmetric solver
in [GL01], we saw significant improvements along all the above dimensions.
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3.2 Goal for Symmetric Matrices

For symmetric matrices, without loss of generality we assume that only the lower
half is stored for space efficiency. We also denote incidence of non-zeros with two
incidence matrices. We define the incidence matrix N to contain only sub-diagonal
non-zeros and a separate incidence matrix D for the non-zeros on the diagonal.
HenceN is defined by:

N = {nij = 1 if i > j and aij �= 0, otherwise nij = 0} .

Similarly the diagonal non-zeros are indicated by:

D = {dii = 1 if aii �= 0, otherwise dii = 0}.

The reason for breaking the incidence matrix in two parts becomes apparent
once we examine desired ranges for the scale factors and look at the normal equa-
tions associated with the objective based on Euclidean metric. Let Nj be the jth
column of the incidence matrix N. Thus the number of sub-diagonal non-zeros in
column j can be found by:

(Nj)
te = |Nj |

where e is the vector of all 1s.

The objective of scaling is to obtain matrix A′ = UAU such that elements of A ′

are within the desirable range, namely, [β−1, 1]. The following lemma, similar to
lemma (2.1), connects the goal with the choice of scale factors. Note the diagonal
non-zero elements impose a different requirement.

Lemma 3.1 (Symmetric Scale Factors Range) The desired scale factors should ideally
be such that for each off-diagonal non-zero in symmetric matrix A the following condi-
tion holds:

xi + xj ∈
[
−1− logβ |aij | , − logβ |aij |

]
when nij = 1.

And for each diagonal non-zero in A, the following condition holds:

xi ∈
[

−1− logβ |aii |

2
,

− logβ |aii |

2

]
when dii = 1.

Proof of Symmetric Scale Factors Range: The proof for off-diagonal non-zeros is
identical to that in lemma (2.1). The second condition can be proved by looking at
the post scaling scenario. We want

βxi |aii |β
xi ∈ [β−1, 1] when dii = 1.

If we take logarithms to the base β, the goal can be expressed as:

2xi + logβ |aii | ∈ [−1, 0] when dii = 1.

Hence the conclusion follows. �
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3.3 Euclidean Metric for Symmetric Matrices

Similar to real matrices discussed in section (2.2) we use Euclidean distance from
the center of the desired range in the following lemma.

Lemma 3.2 (Symmetry Preserving Euclidean Metric) Similar to real matrices, let an
n×n real symmetric matrix Ā be defined with the same sparsity pattern as matrixA. Let
elements of Ā be the center of the ranges defined in lemma (3.1), i.e.,

āij = − logβ |aij | −
1

2
whenever nij = 1 ,

ājj =
− logβ |ajj | − 1/2

2
whenever djj = 1 and

āij = 0 if aij = 0.

The L2 norm based objective that minimizes distance from the center of the respective
ranges can be stated as:

min Π2 =

n∑
j=1

∑
i∈Nj

(xi + xj − āij)
2 +

1

2

n∑
j=1

Djj (xj − ājj)
2
.

Proof of the Symmetry Preserving Euclidean Metric: The off-diagonal entries of
matrix Ā defined here are the same as in lemma (2.2) for real matrices. Diago-
nal entries are an exception and they denote the center of the range defined in
lemma (3.1).

First term of the sum represents deviations in the off-diagonal entries. The
inner summation of the first term gives deviations for a column of sub-diagonal
entries while the outer summation sums over all the columns. The second term
of the summation represents the deviations in diagonal elements. If the diagonal
elementDjj is zero, it is not considered in the sum.

Since only the lower half, i.e., sub-diagonal elements of the symmetric matrixA,
are represented by non-zero entries, the weight given to diagonal elements should
be half the weights given to off-diagonal entries. �

Let the n× n diagonal matrix C such that

Cjj = (Nj)
t e. (2)

Thus Cjj gives count of sub-diagonal non-zeros in column j unlike the case ofm×n
real matrices where we used it for complete column count. Similar to lemma (2.3)
that provided a way to iteratively compute the scale factors for m × n real matri-
ces, the following lemma defines a set of equations for symmetry preserving scale
factors.
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Lemma 3.3 (Symmetry Preserving Solutions for Euclidean Criterion:) The scale fac-
tors x satisfy:

(2C+D) x + 2Ntx = 2Āte −DĀe

Proof of Symmetry Preserving Solutions for Euclidean Criterion: As in them×n
real matrix case, this is an unconstrained least squares problem and the solution
exists since Hessian is positive definite. The normal equations are:

∂Π2

∂xj

= 0 =⇒ 2
∑
i∈Nj

(xi + xj − āij) +Djj(xj − ājj) = 0

First term in the partial follows from the definition of incidence matrix N. Only
sub-diagonal elements, i.e., i > j, are likely to be non-zero in column j. The second
term follows from diagonal element deviation. Collecting variable terms on one
side, we can rewrite the normal equations as:

2
∑
i∈Nj

xi + 2
∑
i∈Nj

xj +Djjxj = 2
∑
i∈Nj

āij +Djjājj

Like Nj denotes the column j of the incidence matrix, let Āj be the column j of
matrix Ā. Since the column j of the incidence matrix, Nj, has only zeros above the
diagonal, and |Nj | = Cjj, we can simplify the first order conditions to:

2Nt
jx+ (2Cjj +Djj) xj = 2Nt

jĀj +Djjājj

The incidence matrixN contains only sub-diagonal elements by definition while
the matrix Ā includes diagonal elements too. Hence the term 2Nt

jĀj is equivalent
to:

2Nt
jĀj = 2Āt

je − 2Djjājj.

Hence the first order conditions are:

2Nt
jx+ (2Cjj +Djj) xj = 2Āt

je −Djjājj

The normal equations can be now written in matrix form as:

2Ntx+ (2C +D) x = 2Āte −DĀe.

This gives the result. �

We can interpret conditions of lemma (3.3) as defining scale factors by column.
Each scale factor is an average of the non-zero entries of the column (including
super-diagonal entries) but adjusted by values assigned to other scale factors inci-
dent to the column.
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3.4 Finding Scale Factors for Symmetric Matrices

Similar to lemma (2.4) that defined a mechanism to compute scale factors for an
m × n real matrix, the following lemma allows the scale factors of a symmetric
matrix to be computed directly.

Lemma 3.4 (Triangular Solves) The equations that scale factors need to satisfy in
lemma (3.3) define a triangular system that is consistent even if it is not invertible.

Proof of Triangular Solves: If we look at a row of the linear system

2Nt
jx+ (2Cjj +Djj) xj = 2Nt

jĀj +Djjājj

By definition of the incidence matrix, N, only sub-diagonal elements, i.e., i > j

are represented in the column Nj. Hence, when j = 1, then all the scale factors
involved in the equation. On the other hand, when j = n, then only xn is involved.
This is an upper triangular system that can be solved in O(n2) time by back sub-
stitution if the matrix 2C +D + 2Nt was invertible. If a column j has no diagonal
element, i.e., Djj = 0 and no sub-diagonal elements implying that Nj contains all
zeros and hence sub-diagonal count Cjj = 0, then the right hand side as well as the
left hand side are zero. The equation looks like:

20tx+ (2× 0+ 0)xj = 20t0 + 0.

This scenario is likely to occur in barrier methods where symmetric indefinite ma-
trices are encountered. Such an occurrence means that non-zeros in the column,
if any at all, occur above the diagonal and by symmetry they will be scaled when
the columns in which they occur below the diagonal are encountered. Thus we set
xj = 0 and continue with backward substitution. �

The computations to find symmetry preserving scale factors are shown in al-
gorithm (3). As can be seen, there is only one A matrix scan for the process and it
only requires scalars to compute the factors. Similar to the algorithm (2), we defer
conversion to integer, by rounding operation, to the last step before the factors are
needed.

Like in section (3), we conclude this section (3.4) with an example to illustrate
computation of symmetry preserving scale factors. This is another “smelling salts”
type of example from [Gaj95, page 67].

Example 3.1 (Pathological Symmetric Matrix) Similar to example (2.1), we use ma-
chine base β = 10 for better readability. Given the following symmetric matrix

A =

⎡
⎢⎢⎣

1 1020 1010 1

1020 1020 1 1040

1010 1 1040 1050

1 1040 1050 1

⎤
⎥⎥⎦ ,
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Algorithm 3 Symmetry Preserving Scale Factors using Triangular Solves
Require: n > 0

1: for j = n going down to 1 do {Backward substitution}
2: c← 0 { For 2Cjj +Djj − 2Nt

jx }
3: t← a { For 2Nt

jĀj +Djjāij }
4: if Djj = 1 then {diagonal element}
5: t← 1

2

(
− logβ |ajj | − 1/2

)
6: c← 1

7: end if
8: for all sub-diagonal non-zeros (i, j) in column j of matrix A do {i > j}
9: t← t+ 2

(
− logβ |aij | − 1/2

)
− 2xi

10: c← c+ 2
11: end for{end for column j}
12: if c > 0 then {positive count, otherwise let xj = 0 }
13: xj← Round(t/c)

14: end if

15: end for
16: return integer vector x

what are the appropriate symmetry preserving scale factors?

Solution of Pathological Symmetric Matrix: The sub-diagonal incidence matrix,
N, corresponding to dense matrixA, is a 4×4matrix of all ones below the diagonal
and zeros everywhere else. The diagonal incidence matrix has ones on its principal
diagonal and zeros everywhere else. We execute steps of the symmetry preserving
scale factors algorithm (3) and start with x4 in the backward substitution.

Scale factor x4: The count c = 1 since only a diagonal element with 0 sub-
diagonal elements. The value of t = −1/4. Hence x4 = 0 after rounding off.

Scale factor x3: Count c = 1+2 = 3 since there is one sub-diagonal element. The
value of t = −121.25 and hence x3 = −40.

Scale factor x2: Count c = 1+2+2 = 5 since there are two sub-diagonal elements.
The value of t = −92.25−2× (x3 = 40)−2× (x4 = 0) = −12.25 and hence x2 = −2.

Scale factor x1: Count c = 1 + 2 + 2 + 2 = 7 since there are three sub-diagonal
elements. The value of t = −63.25− 2× −40− 2× −2 = 20.75 and hence x1 = −3.
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Using the symmetry preserving scale factors xt = (3,−2,−40, 0) the scale ma-
trix A ′ looks like:

A ′ = XAX =

⎡
⎢⎢⎣

106 1021 10−27 103

1021 1016 10−42 1038

10−27 10−42 10−40 1010

103 1038 1010 1

⎤
⎥⎥⎦ .

Using estimates suggested in section (A), we see that ‖A ‖1 ≈ 1050 and
∥∥A−1

∥∥
1
≥

1020 and hence the condition number of A, κ1(A) ≥ 1070. For the scaled matrix A ′

we see the lower bound is 1048. Hence it seems to have improved the condition
number. �

3.5 Manhattan Metric for Symmetric Matrices

Similar to lemma (2.7) for m × n matrix, the following lemma suggests a linear
programming formulation based on Manhattan metric for symmetric matrices.

Lemma 3.5 (Symmetry Preserving Manhattan Metric) Let a n × n real symmetric
matrix Ā, with sparsity pattern of matrix A, be defined as in lemma (3.2). The L1 norm
based objective that minimizes the distance from the center of the range can be stated as:

min Π1 =

n∑
j=1

∑
i∈Nj

zij +

n∑
j=1:Djj=1

zjj,

subject to constraints:

−zij + xi + xj ≤ āij ∀ i, j such that nij = 1,

−zij − xi − xj ≤ −āij ∀ i, j such that nij = 1,

−zjj + xj ≤ ājj ∀ j such that djj = 1,

−zjj − xj ≤ −ājj ∀ j such that djj = 1.

Proof of Symmetry Preserving Manhattan Metric: The proof of correctness of
objective function term and constraints of the sub-diagonal elements is identical to
lemma (2.7) for m× nmatrix.

For diagonal non-zeros, goal of minimizing distance from center of the desired
range in lemma (3.1) can be written as:

n∑
j=1:Djj=1

| xj − ājj | =

n∑
j=1:Djj=1

max {xj − ājj, ājj − xj} .
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Defining variables zjj to be the result of the max operator we get the constraints in
the same manner as sub-diagonal elements. �

To define associated dual, we need rows of the incidence matrix N. Since it
is defined for sub-diagonal elements, row Nj, contains non-zeros for sub-diagonal
non-zeros of row j. To construct a full row or column j of matrixA, given non-zeros
below and on the diagonal, we can use the setNj∪Nj∪Djj. Similar to lemma (2.8)
form×nmatrices, the following lemma yields a smaller model involving |N |+|D |

variables, n explicit equality constraints by using duality.

Lemma 3.6 (Symmetry Preserving Manhattan Dual) Dual multipliers of the follow-
ing linear program solve the primal problem in lemma (3.5).

max Π̄D
1 =

n∑
j=1

∑
i∈Nj

āijuij +

n∑
j=1:Djj=1

ājjsj.

Subject to constraints:

∑
i∈Nj∪Nj

uij + djjsj =
|Nj | +

∣∣Ni
∣∣ +Djj

2
∀ j = 1, . . . , n,

0 ≤ uij ≤ 1 ∀ i, j such that nij = 1

0 ≤ sj ≤ 1 ∀ j = 1, . . . , n.

Proof of Symmetry Preserving Manhattan Dual: We can write the dual follow-
ing the same approach as in lemma (2.8). In the linear program in lemma (3.5) we
associate non-negative dual multipliers uij and vij with first and second set of con-
straints respectively representing sub-diagonal non-zeros. In addition, we need
dual multipliers sj and tj for the third and fourth set of constraints respectively for
diagonal non-zeros. The dual can be written as:

max ΠD
1 =

n∑
j=1

∑
i∈Nj

āij (uij − vij) +

n∑
j=1:Djj=1

ājj (sj − tj) ,

subject to constraints:

uij + vij = 1 ← zij ∀ i, j : nij = 1,

sj + tj = 1 ← zjj ∀ j : djj = 1,∑
i∈Nj∪Nj

(uij − vij) + djj (sj − tj) = 0 ← xj ∀ j = 1, . . . , n.

Using the substitutions vij = 1− uij and tj = 1− sj, and getting rid of constants in
the objective we get the required result. �
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A Condition Number Estimates

In this section we letA be a square n×n invertible matrix. We develop bounds that
can be computed efficiently on condition numbers before the linear system is solved.
Ideally, we would like the computations to be O(|A |) where |A | denotes the num-
ber of non-zeros in A matrix. We briefly mention the post-solution methods that
could be used in diagnostics. A matrix norm induced by any vector norm, ‖ ‖,
is called the subordinate norm. Thus for any p−norm, the corresponding matrix
p−norm induced by it is given by:

‖A ‖p = sup
x�=0

‖Ax ‖p

‖ x ‖p

= sup
‖x‖p=1

‖Ax ‖p .

The condition number of matrix A, denoted by κp(A) under any induced matrix
p−norm is defined to be

κp(A) = ‖A ‖p

∥∥A−1
∥∥

p
.

Note, for any non-zero vector x, using substitution Ay = x, we get

∥∥A−1
∥∥

p
= sup

x�=0

∥∥A−1x
∥∥

p

‖ x ‖p

= sup
y�=0

‖y ‖p

‖Ay ‖p

= sup
y�=0

1

‖Ay ‖p/ ‖y ‖p

=
1

infy�=0‖Ay ‖p/ ‖y ‖p

.

Since, A is invertible, both the supremum and infimum are attained.

Using the terminology from [Wat91, page 96], we can get a geometric picture
by defining two terms

maxmag(A) = sup
x�=0

‖Ax ‖p

‖ x ‖p

minmag(A) = inf
x�=0

‖Ax ‖p

‖ x ‖p

.

Thus ‖A ‖p signifies maximum magnification of a vector by the matrix A and it
follows from the preceding discussion that

maxmag(A) = ‖A ‖p ,

maxmag(A−1) =
1

minmag(A)
,

maxmag(A) =
1

minmag(A−1)
.
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Using the new terms defined, the condition number is the ratio of maximum to
minimum magnification done by matrix A on any vector x.

κp(A) =
maxmag(A)

minmag(A)
. (3)

A lower bound on the condition number [Wat91, page 101] can be trivially es-
tablished. If Aj denotes column j, then

κp(A) ≥ ‖Ai ‖p

‖Aj ‖p

∀ i, j = 1, . . . , n. (4)

Using the columns of identity matrix as x in computing maximum and minimum
magnification definition gives the result. Thus, the condition number will be large
if the columns differ widely in magnitude under all p−norms.

A.1 L2 Norm

For the Euclidean norm, we can write we have

‖A ‖2 = sup
‖x‖2=1

‖Ax ‖2⇐⇒ max
xtx=1

(Ax)tAx.

The Kuhn-Tucker conditions imply 2(A − λI)x = 0. Let λmax be the largest eigen-
value of matrixA and let λmin be the smallest eigenvalue. Then maxmag(A) = λmax

and minmag(A) = λmin. Thus the condition number of matrix A under the Eu-
clidean metric from equation (3) is

κ2(A) =
λmax

λmin
.

Since eigenvalues are usually not known before hand, the lower bound based
on column norms in equation (4) may be appropriate at the pre-solution stage.

A.2 L∞ Norm

For the infinity norm, p = ∞, the induced matrix norm is called row sum norm
because maxmag(A) is the row with largest sum of magnitudes [Wat91, page 93]),
i.e.,

‖A ‖∞ = max
1≤i≤n

n∑
j=1

|aij | .
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To estimate a lower bound on the condition number, we try to guess an up-
per bound on the minimum magnification. Using Aj for column j, and ej for a
corresponding column of the identity matrix we have:

minmag(A) = min
‖x‖∞=1

‖Ax ‖∞ ≤ min
1≤j≤n

‖Aej ‖∞ .

SinceAej is column j ofA, an upper bound on the minimum magnification is given
by:

minmag(A) ≤ min
1≤j≤n

‖Aj ‖∞ .
In other words, a lower bound on condition number can be estimated by equa-
tion (3):

κ∞(A) ≥ ‖A ‖∞ / min
1≤j≤n

‖Aj ‖∞ .
This is likely to be a tighter bound than the one computed in equation (4) since at
least the numerator is exact. It can be estimated by a single scan of the matrix A
and requires finding the largest magnitude in each column, and then finding the
column with smallest such magnitude. This corresponds to a solution of setting
xk = 1 for the column kwith smallest infinity norm and other components to zero.

A.3 L1 Norm

Similar to infinity norm, the matrix norm induced by the taxicab metric is called
column sum norm because maxmag(A) is the column with largest sum of magni-
tudes [Wat91, page 93]),i.e.,

‖A ‖1 = max
1≤j≤n

n∑
i=1

|aij | .

For the taxicab metric, p = 1, using Ai as row i of matrix A,

minmag(A) = min
‖x‖1=1

‖Ax ‖1 = min
‖x‖1=1

n∑
i=1

∣∣ (Ai)tx
∣∣

= min
‖x‖1=1

n∑
i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣
≤ min

‖x‖1=1

n∑
i=1

n∑
j=1

|aij | | xj | = min
‖x‖1=1

n∑
j=1

| xj |

n∑
i=1

|aij |

= min
‖x‖1=1

n∑
j=1

| xj | ‖Aj ‖1 .
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Hence for the rectilinear norm, to find the upper bound on the minimum magni-
fication, we find the L1 norm of each column. The smallest such value forms an
upper bound on minmag(A). Hence for the L1 metric we seem to do no better than
equation (4).

A.4 Post Solution Estimates

In addition to the above pre-solution methods, a post-solution bound on
∥∥A−1

∥∥
p

can be found. Since the induced matrix norm is consistent, we have∥∥A−1b
∥∥

p
≤ ∥∥A−1

∥∥
p
‖b ‖p .

In other words, we have

∥∥A−1
∥∥

p
≥

∥∥A−1b
∥∥

p

‖b ‖p

=
‖ x ‖p

‖b ‖p

,

where x is the computed solution. This bound is thus obtained by two vector
norms and does not involve any matrix scans. In addition, this gives an upper bound
on the condition number unlike the pre-solution methods. More tighter bounds can
be obtained by using the factors generated. This can be formulated as another
optimization problem.
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