
INDIAN INSTITUTE OF MANAGEMENT

AHMEDABAD • INDIA
Research and Publications

Scaling Sparse Constrained Nonlinear Problems for
Iterative Solvers

Ravindra S. Gajulapalli
Leon S. Lasdon

W.P. No. 2006-08-06
August 2006

�

�

�

�

The main objective of the Working Paper series of IIMA is to help faculty members, research
staff, and doctoral students to speedily share their research findings with professional

colleagues and to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD – 380015

INDIA

W.P. No. 2006-08-06 Page No. 1



IIMA • INDIA
Research and Publications

SCALING SPARSE CONSTRAINED NONLINEAR
PROBLEMS FOR ITERATIVE SOLVERS

Ravindra S. Gajulapalli
Leon S. Lasdon

Abstract

We1 look at scaling a nonlinear optimization problem for iterative solvers
that use at least first derivatives. These derivatives are either computed an-
alytically or by differencing. We ignore iterative methods that are based on
function evaluations only and that do not use any derivative information. We
also exclude methods where the full problem structure is unknown like vari-
ants of delayed column generation.

We look at related work in section (1). Despite its importance as evidenced
in widely used implementations of nonlinear programming algorithms, scal-
ing has not received enough attention from a theoretical point of view. What
do we mean by scaling a nonlinear problem itself is not very clear. In this pa-
per we attempt a scaling framework definition. We start with a description of
a nonlinear problem in section (2). Various authors prefer different forms, but
all forms can be converted to the form we show. We then describe our scal-
ing framework in section (3). We show the equivalence between the original
problem and the scaled problem. The correctness results of section (3.3) play
an important role in the dynamic scaling scheme suggested.

In section (4), we develop a prototypical algorithm that can be used to rep-
resent a variety of iterative solution methods. Using this we examine the im-
pact of scaling in section (5). In the last section (6), we look at what the goal
should be for an ideal scaling scheme and make some implementation sugges-
tions for nonlinear solvers.

1Professor Leon Lasdon holds the David Bruton Jr. Chair in Business Decision Support Systems
at the Department of Information, Risk, and Operations Management, the University of Texas at
Austin. He is the author of several widely used NLP codes, is a co-developer of the Microsoft Excel
Solver, and has published over 100 journal articles and three books.
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1 Related Work

We quote Gill, Murray and Wright [GMW81, page 273]:

The term “scaling” is invariably used in a vague sense to discuss nu-
merical difficulties whose existence is universally acknowledged, but
cannot be described precisely in general terms. Therefore, it is not sur-
prising that much confusion exists about scaling, and that authors tend
to avoid all but its most elementary aspects.

While discussing scaling linear systems, at least broad approaches and some
concordance on issues is seen in published literature. For nonlinear optimization,
we could not find definitive articles similar to Curtis and Reid [CR72] for Gaussian
elimination. Almost two decades since Gill et al. made their observation, we find
that they still seem to be on target with their remark. Even recent textbooks do not
mention it [NS95], others dismiss it cursorily [Fle87, pages 59 and 148]. A recent
second edition, in 2003, of Luenberger [Lue84] has the same coverage on this topic
as the first one. Searching for articles on this topic is of little avail.

Luenberger [Lue84, pages 222 – 225] discusses how the convergence rates of
steepest descent method applied to unconstrained optimization problem is highly
sensitive to eigenvalues of the Hessian of the objective function. In this context he
talks about scaling the variables using a generic linear transformation of the type
Ty = x where T as an invertible matrix. He talks about scale invariance of some
unconstrained optimization methods like the Newton’s method. This is true in
theory with exact arithmetic but in practice, the invariance property may not hold.
We talk about scale invariance in more detail while discussing the scaling frame-
work. Luenberger [Lue84, pages 402 – 403] briefly mentions that scaling variables
does not affect the dual canonical convergence rate while changing the primal rate.
On the other hand, scaling the constraints impacts dual rate with no change in the
primal. The dual being discussed is based on local duality theorem [Lue84, page
399].

As mentioned earlier, good coverage to scaling in the context of constrained
nonlinear optimization is provided by Gill, Murray and Wright [GMW81]. They
motivate the need to transform variables by using a heat exchanger
example [GMW81, pages 273 – 274] where the typical values range from 11, 000

to 5.4 × 10−10. They also suggest that simple diagonal scaling alone may not be
enough in some cases. They recommend an offset scheme that they acknowledge
will fail if the modeler provides too wide a range. We incorporate the offset sug-
gestion but with an additional safeguard. In a large model, their scheme based on
a modeler specifying acceptable ranges for variables is impractical. They look at
some specific cases like nonlinear least squares problems on [GMW81, page 275].
They discuss [GMW81, pages 325–327] how poor function scaling may result in
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insufficient decrease in the merit function. Schemes to scale variables, objective
function and linear constraints are developed in [GMW81, pages 346 – 354]. They
make some suggestions for nonlinear constraints based on the Jacobian matrix of
the constraint functions in the working set. In our unified approach, we look at a
dynamic scaling of constraints and objective function and do not make these dis-
tinctions.

In most of the iterative solvers we consider while developing our framework, a
linear system is solved in each iteration. We presume that some reasonably efficient
scheme like those suggested in [GL06] are used in solving these linear systems.
Hence in this article we ignore that aspect of scaling dependence.

In practice, we have seen source code, user documentation etc associated with
a variety of nonlinear programming solvers to see that scaling is indeed impor-
tant. For instance, established reduced gradient methods like CONOPT2, LSGRG2
as well as augmented Lagrangian methods like MINOS do use scaling or provide
options for it. Among all the robust general purpose solvers, CONOPT2 is proba-
bly the most rigorous about scaling and preprocessing. In INTOPT [GL01], we did
not use scaling for the nonlinear optimization problem itself.

2 Nonlinear Optimization Problem

In this section, we define a nonlinear optimization problem and define the termi-
nology for derivatives etc. We look at associated dual variables and the associated
Lagrangian saddle point conditions.

2.1 Problem Statement and Derivatives

Without loss of generality, a constrained nonlinear problem, Γ , can be expressed
as:

min f(x),

subject to
h(x) = b, (1)
x ≤ u,

x ≥ l,

where x is an n-dimensional vector, i.e., x ∈ �n. The scalar objective function,
f is being minimized and f : �n �→ �. The function h represents m nonlinear
equations, h : �n �→ �m. The constraint right hand sides are represented by a
constant vector b where b ∈ �m. Any inequality constrained problem can be
transformed into this form by adding extra variables to denote slack or surplus.
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The only inequalities present in the nonlinear model are explicit bounds on the
variables. If a variable does not have a bound, its corresponding entry in vectors l
or umay be −∞ or +∞ as the case may be. Without loss of generality, we assume
that the bounds on all variables are finite. This can be accomplished by using a
very large positive number like 1035 for ∞, and its negative counter part for −∞
on cases where the variables have no finite bounds. The following assumption
ensures that variable bounds in the given problem are consistent.

Assumption 2.1 (Consistent variable bounds) We assume that in the nonlinear prob-
lem, Γ , l < u, that is the lower bounds are strictly lower than the upper bounds.

Justification for Consistent variable bounds: We assume that some rudimentary
preprocessing prevents lj > uj for some variable j being posed to the nonlinear
solver. There is no feasible solution in this case. In addition, we are ignoring the
cases where lj = uj because this implies that the variable remains fixed through
out the solution process and hence can be ignored since the gradients etc. will
always be zero with respect to such a variable. �

In addition, we make the following continuity assumption about the problem
functions:

Assumption 2.2 (Continuity of functions) All functions used in problem, Γ , are twice
differentiable, i.e., f, h ∈ C2.

Justification for Continuity of functions: If a function is not continuous then the
solution method may not converge from certain starting points. �

The following assumption highlights constraint violations allowed during a
solution process.

Assumption 2.3 (Variables within bounds) Given a starting point x0 for the nonlin-
ear problem, Γ , such that l ≤ x0 ≤ u, at all iterations, a solution method will respect the
variable bounds.

Justification for Variables within bounds: A nonlinear optimization method may
ensure that all constraints are satisfied at all iterations like reduced gradient meth-
ods or it may allow constraint violations like penalty and barrier methods for the
intermediate iterations. But in the following discussion, we assume that the ex-
plicit bounds are always respected by the algorithm in question. Not making this
assumption, may lead to scenarios where some problem functions like

√
x− amay

be undefined outside the given range. �

For scaling functions, we consider the objective function also as a candidate for
scaling. Hence for notational simplicity, let g denote the combination of objective
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function, f and m constraint functions h. Let gi(x) = hi(x) for the m constraints
and let gm+1(x) = f(x), that is the last function is the objective function. In other
words, g : �n �→ �m+1. We let the matrix J(x) denote the Jacobian matrix of the
nonlinear problem evaluated at point x. We will usually suppress the argument to
reduce notational clutter if there is no ambiguity. The matrix of first partials,

J(x) : �n �→ �(m+1)×n,

hasm+1 rows - one for each function including the last row for objective function
and n columns - one for each variable. An entry in row i and column j of this
matrix signifies:

Ji,j(x) =
∂gi

∂xj
∀i = 1, . . . ,m+ 1, j = 1 . . .n.

We make an assumption about the derivative information used by an iterative
solver.

Assumption 2.4 (Derivative information usage) We assume that an iterative solver
for the nonlinear problem, Γ , will use at least the first partials represented by the Jacobian
matrix.

Justification of Derivative information usage: Without using derivative infor-
mation, termination criterion based on first order necessary conditions cannot be
used. In practice, most algorithms also use it to determine descent directions, step
size determination, scaling etc. �

Optionally, some solvers like those based on barrier methods may either use
the Lagrangian Hessian based on second partials or an approximation of that. Let
H(x) define a rank three tensor of the second partials, i.e.,

H(x) : �n �→ �(m+1)×n×n,

Hence the Hessian of the function gi is an n×n symmetric matrix Hi(x) of second
partials for function gi. An Hessian element corresponding to variables j and k for
function i is given by:

Hi
j,k(x) =

∂2gi

∂xj∂xk
∀i = 1, . . . ,m+ 1, j = 1 . . . n, k = 1 . . .n.

2.2 Dual Multipliers

In this section we look at the Lagrangian and associated dual variables. First order
and second order conditions for optimality are stated and they will be used to find
a corresponding solution in a scaled problem in section (3.3).
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Let yi be the dual multiplier associated with constraint i in the nonlinear prob-
lem, Γ , of equation (1). We call these multipliers constraint duals. To simplify the
notation, with the objective function f, we associate a dual multiplier ym+1 that is
always set to unity. Thus vector of constraint duals has m + 1 components corre-
sponding to each function in g(x). We associate dual multipliers wj and zj with
the upper bound and lower bound constraints respectively on variable xj. We call
these multipliers upper and lower bound duals respectively and collectively refer to
them as bound duals. The Lagrangian associated with the nonlinear problem in
equation (1) can be written as:

L(x;y,w, z) = f(x) +

m∑
i=1

yihi(x) −

n∑
j=1

wj (uj − xj) −

n∑
j=1

zj (xj − lj) .

Using ym+1 = 1 as the multiplier for the objective function, we can write this as:

L(x;y,w, z) = ytg(x) −wt(u− x) − zt(x− l). (2)

In forming the Lagrangian, we took the signs of the variable bound constraints
to ensure that the bound duals remain positive in sign. The first order necessary
conditions of optimality [Lue84, page 314] at a regular point x∗ are given by:

∇f(x∗) +

m∑
i=1

y∗i∇hi(x
∗) +w∗ − z∗ = 0,

w∗
j(uj − x∗j) = 0 ∀ j = 1, . . . , n,

z∗j(x
∗
j − lj) = 0 ∀ j = 1, . . . , n.

We will abbreviate Karush-Kuhn-Tucker conditions as KKT conditions. As men-
tioned earlier, using y∗m+1 = 1, and diagonal matrices W and Z, we can write the
above conditions as:

J(x∗)ty∗ +w∗ − z∗ = 0,
W(u− x∗) = 0, (3)
Z(x∗ − l) = 0,

w∗ ≥ 0,
z∗ ≥ 0.

The n× n diagonal matrices,W and Z are defined using the bound duals w and z
respectively, namely,

W = Diag {w} = Diag {w1, w2, . . . , wn} and
Z = Diag {z} = Diag {z1, z2, . . . , zn} .

The KKT conditions associated with the bound duals are also called complementary
slackness conditions. If a variable xj is not at either of its bound, then both the
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bound duals are zero since the slacks in the bound constraints are non-zero. Let the
set L andU denote the set of active upper and lower bound conditions respectively,
i.e.,

U =
{
j : x∗j = uj, w

∗
j ≥ 0

}
L =

{
j : x∗j = lj, z

∗
j ≥ 0

}
.

Then the tangent subspace of the active conditions can be stated as:

M = {d : ∇h(x∗)d = 0, dj = 0 ∀ j ∈ U ∪ L} .

The second order necessary conditions for a regular point x∗ to be a relative min-
imum point for the problem, Γ , in equation (1) is that the Lagrangian Hessian,
L(x∗) be positive semi-definite on the tangent subspace of the active constraints. The
second order sufficiency conditions [Lue84, page 316] are met if the Lagrangian
Hessian matrix is positive definite on the following subspace:

M ′ = {d : ∇h(x∗)d = 0, dj = 0 ∀ j ∈ (U and wj > 0) ∪ (L and zj > 0)} .

The subspaceM ′ ⊇M and it excludes degenerate bound conditions where a vari-
able is at a bound but the associated dual is also zero. The Lagrangian Hessian is
an n×n symmetric matrix of second partials of the Lagrangian and in terms of the
rank three tensor H(x), it is defined by:

L(x) = ∇2
xxL(x, y,w, z) = ∇2f(x) +

m∑
i=1

yi∇2hi(x) =

m+1∑
i=1

yiH
i(x) = ytH(x). (4)

Thus the Lagrangian Hessian is a product of a vector of m + 1 components and a
rank three tensor.

3 Scaling Framework

We address what we mean by scaling in section (3.1) and develop a scaled problem
in section (3.2). We neither discuss how to obtain the scale factors themselves nor
when to do the scaling. These issues are delved in section (6). We show that the
scaled problem is equivalent to the original problem in section (3.3). This result is
important in guiding the dynamic scaling procedure that we suggest later on.

3.1 Scaling Scheme and Scaled Derivatives

Unlike generic linear transformations suggested in [Lue84], we consider only a
limited set of transformations on variables and functions though some of the results
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we state are applicable to generic linear transformations based on invertible matri-
ces. Examples where nonlinear transformations are more beneficial can be easily
constructed, see [GMW81, page 279] for an example, but we restrict ourselves to
linear transformations.

For variables, the transformations can be interpreted as changing units. For in-
stance, instead of measuring in meters, we measure in kilometers. The idea being
that if all variables are roughly similar in magnitude, we get a more stable numer-
ical behavior like in the case of matrices used in linear systems. More specifically
a variable, xj, is scaled as:

xj =
xj

vj

− aj ∀ j = 1, . . . , n,

where vj is strictly positive scale factor, aj is an offset and xj is the new transformed
variable. In general, we use the notation t to denote a new entity that has been gen-
erated by scaling entity t. If V denotes an n × n diagonal matrix, whose diagonal
element Vjj = vj, then the variable transformation can be expressed as:

x = T (x) = V−1x− a. (5)

Since the matrix is a nonsingular diagonal matrix with strictly positive quantities,
it is also positive definite. Hence the transformation T (x) is a strict one-to-one
mapping and can be reversed.

Similar to variables, we hope that scaling functions results in all functions and
their derivatives being “well” balanced. Thus gi : �n �→ � is equivalently trans-
formed to gi as shown below:

gi(x) = rigi(T −1(x)) ∀ i = 1, . . . ,m+ 1,

where ri denotes function scale factor. Note, we are including the objective func-
tion also in the same scaling scheme. If an (m + 1) × (m + 1) diagonal matrix R is
used to represent the row scale factors, i.e., Rii = ri, then we can express function
transformations, G(y) = Ry, as:

g(x) = G(g(T −1(x))) = Rg(T −1(x)). (6)

Let J(x) be the matrix of first partials of the transformed functions with respect
to the scaled variables. Given scaled variables x, we can use the inverse of the
transformation in equation (5) to get unscaled values, i.e., x = T −1(x) = V(x + a).
Then an entry, Ji,j, for function iwith respect to variable j, is given by:

Ji,j(x) =
∂gi(x)

∂xj
= ri

∂gi(T −1(x))

∂xj
vj ∀i = 1, . . . ,m+ 1, j = 1 . . .n.

In matrix notation, we can write the new Jacobian J(x) in terms of the original
Jacobian evaluated at x = T −1(x) as:

J(x) = R J(x) V. (7)

W.P. No. 2006-08-06 Page No. 11
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Let H
i
(x) denote the transformed Hessian of the function gi. Using the trans-

formations, an Hessian element corresponding to variables j and k gets scaled as:

H
i

j,k(x) =
∂2gi(x)

∂xj∂xk
= ri

∂2gi(T −1(x))

∂xj∂xk
vj vk ∀i = 1, . . . ,m+ 1, j, k = 1 . . .n.

Similar to the Jacobian matrix, a scaled function i’s Hessian matrix H
i
(x), can be

expressed in terms of original Hessian evaluated at x = T −1(x) as:

H
i
(x) = ri V

t Hi(x) V ∀i = 1, . . . ,m+ 1. (8)

Since by assumption (2.2), the functions f, hwere twice differentiable, the scaled
functions are too. This is seen in expressions for first and second order partials in
equations (7) and (8). In other words, f, h ∈ C2.

3.2 Scaled Optimization Problem

To generate a scaled nonlinear problem from the original problem, Γ , in equa-
tion (1), we scale the functions and right hand sides using the row transforma-
tions G. Since the objective function is gm+1 and it has no right hand side, we can
ignore the last row when applying row transformations to generate the equality
constraints’ right hand sides. In other words, the right hand sides are given by

bi = ribi ∀ i = 1, . . . ,m.

For the variables and bounds we use column transformations T . In this case, the
modified upper and lower bounds are given by:

u = T (u) = V−1u− a and
l = T (l) = V−1l − a.

Using these changes, the scaled nonlinear problem, Γ〈V, R〉, can be stated as:

min f(x),

subject to
h(x) = b, (9)
x ≤ u,

x ≥ l,

To emphasize the dependence of the scaled problem on variable and function
scale factors, we use notation Γ〈V, R〉 to denote the scaled problem. Can domain
violations occur for functions like

√
x− c when a solution method is applied to

the scaled problem, Γ〈V, R〉, of equation (9) instead of the original problem, Γ? In
the following lemma we state the conclusion that follows from our choice of linear
transformations.

W.P. No. 2006-08-06 Page No. 12



IIMA • INDIA
Research and Publications

Lemma 3.1 (Variables within bounds) Let a starting point x0 for the scaled problem,
Γ〈V, R〉, be such that l ≤ x0 ≤ u. If a solution method that follows assumption (2.3) is
applied to the scaled problem, then all function evaluations will be inside original variable
ranges l ≤ x ≤ u as well.

Proof of Variables within bounds: Since the method is being applied to scaled
problem, by assumption (2.3), at all iterations the condition l ≤ x ≤ u will hold.
This implies the condition V(l + a) ≤ V(x + a) ≤ V(u + a) is invariant through
out the solution process. In other words, since x = T −1(x) = V(x + a) we get
l ≤ T −1(x) ≤ u and there is no risk of violating explicit variable bounds. �

The “correctness” of solving the scaled problem is addressed in section (3.3) .
All we have stated in lemma (3.1) is that if a solution method can be applied safely,
i.e., without domain violations, to the original problem then it can be applied safely
to the scaled problem too.

3.3 Correctness

We say the scaled problem, Γ〈V, R〉, of equation (9) is equivalent to the original non-
linear problem, Γ , of equation (1) if solving one provides a solution to the other.
Thus we define correctness in terms of equivalence relationships. Solving a scaled
problem is a correct procedure if the solutions are equivalent. The results in this sec-
tion provide a foundation for the dynamic scaling scheme suggested in section (6).
They provide mechanisms:

• To convert a scaled solution to a solution of the original problem.

• To adjust for changes in scaling scheme.

As we have been using earlier, through out this section, a notation t means a
value from the scaled problem, Γ〈V, R〉, while a plain t denotes corresponding value
from the original problem, Γ , for any entity of interest like variables, duals etc.

Sometimes, when we talk about adjustments for scale changes, we need to in-
troduce a new scaled problem and we denote values from the new scaled problems
as t̃. Let T̃ (x) = Ṽ−1x − ã and G̃(y) = R̃y represent a new scaling scheme. A new
scaled problem, Γ〈Ṽ, R̃〉 is defined in an analogous manner as the scaled problem,
Γ〈V, R〉, was defined by equation (9). Hence variables and functions in this new
scheme are scaled as:

x̃ = T̃ (x) = Ṽ−1x − ã and
g̃(x̃) = G̃(g(T̃ −1(x̃))) = R̃g(T̃ −1(x̃)).

What do we mean by equivalence? Given a solution to either the original prob-
lem or the scaled problem we should be able to map it to the other uniquely and
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verify that the mapped point is indeed a solution. The first step is therefore to de-
velop a mapping. By the scaling scheme, we can transform variables uniquely. For
instance, given a vector x in the scaled problem space we can construct a vector
x = T −1(x) for the original problem space and vice versa. A similar scheme needs
to be developed for the dual multipliers. We start with a mapping for the con-
straint and bound duals in the following lemma but prove the results at the end of
this section after all the necessary pieces have been shown to be correct.

Lemma 3.2 (Equivalence of Solutions) Given a solution (x ;y,w, z) to the scaled prob-
lem, Γ〈V, R〉, a solution (x ;y,w, z) to the original problem, Γ , can be constructed as:

x = T −1(x) = V (x + a) ,

y =
1

rm+1
Ry,

w =
1

rm+1

V−1w and

z =
1

rm+1
V−1z.

Conversely, any solution (x ;y,w, z) to the original problem, Γ , can be transformed to
a solution of the scaled problem, Γ〈V, R〉, by using inverse of the transformations shown
above.

Proof of Equivalence of Solutions: We defer the proof until the end of this section.
�

Since we want the dual multiplier of the objective function to be always one,
when we map from the scaled values we need to ensure that post mapping, the
value remains one. This is the motivation for the factor rm+1 in the above mapping
for constraint duals. Thus our choice of constraint dual mapping implies that the
relative importance of individual functions in the Lagrangian is same in both the scaled
problem as well as the original problem. The factor rm+1, used in bound duals’
mapping, arises because the KKT conditions need to be equivalent. The following
corollary addresses how to adjust the scaled problem duals when scaling scheme
changes.

Corollary 3.1 (Scale Adjustment for Solutions) Let Γ〈Ṽ, R̃〉 be a new scaled problem
associated with a new scaling scheme defined by T̃ and G̃ as mentioned earlier. Given a
solution (x ;y,w, z) of the scaled problem, Γ〈V, R〉, we can get a solution (x̃ ; ỹ, w̃, z̃) for
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the new scaled problem, Γ〈Ṽ, R̃〉, as shown below:

x̃ = Ṽ−1V (x + a) − ã,

ỹ =
r̃m+1

rm+1
R̃−1Ry,

w̃ =
r̃m+1

rm+1
ṼV−1w and

z̃ =
r̃m+1

rm+1
ṼV−1z.

Proof of Scale Adjustment for Solutions: We use lemma (3.2) to get a solution to
the original problem, Γ , from a solution (x ;y,w, z) to the scaled problem, Γ〈V, R〉.
Then the converse part of the lemma can be used to construct a solution to the new
scaled problem, Γ〈Ṽ, R̃〉 from the solution to the original problem, Γ .

To illustrate, we first transform x to the original problem solution, x = T−1(x).
Then, a solution, x̃, to the new scaled problem, Γ〈Ṽ, R̃〉 is given by:

x̃ = T̃ (T −1(x)) = Ṽ−1 (V (x+ a)) − ã = Ṽ−1V (x+ a) − ã.

Similarly, the constraint duals are first mapped to the original problem, Γ , and then
to the new scaled problem, Γ〈Ṽ, R̃〉, in the following:

ỹ = r̃m+1R̃
−1y = r̃m+1R̃

−1 1

rm+1
Ry =

r̃m+1

rm+1
R̃−1Ry.

Reader can verify that bound duals can be deduced similarly. �

The corollary shows that the ratio of objective function scale factors under the
two scaling schemes is important for adjustment of all the duals. In addition, the
constraint duals depend on the ratios of individual function scale factors, r̃i/ri un-
der the two scaling schemes. Similarly, the bound duals get adjusted based on
individual variable scale factors ratios, ṽj/vj. The primal variables get adjusted by
reverse of the ratios used for the bound duals, but there is an additional depen-
dence on an offset factor.

3.3.1 Lagrangian Hessian

In the following lemma we establish the relationship of the scaled problem La-
grangian Hessian to the original problem Hessian.

Lemma 3.3 (Lagrangian Hessian Equivalence) The Lagrangian Hessian of the scaled
problem, Γ〈V, R〉, evaluated at any point x such that l ≤ x ≤ u and constraint duals y,
can be stated in terms of the original problem Hessian as shown below:

L(x) = rm+1VL(x)V,
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where x = T −1(x) and the constraint duals y for the original problem are defined by
lemma (3.2). And the converse holds too, i.e., the Lagrangian Hessian of the original
problem, Γ , evaluated at any point l ≤ x ≤ u and constraint duals y can be stated in
terms of the scaled problem as:

L(x) =
1

rm+1
V−1L(x)V−1.

Proof of Lagrangian Hessian Equivalence: Similar to the expression for Lagrangian
Hessian of the original problem in equation (4), we can write one for the scaled
problem as:

L(x) = ytH(x) =

m+1∑
i=1

yiH
i
(x).

The individual scaled function Hessians are expressed in terms of the unscaled
Hessians in equation (8) as:

H
i
(x) = ri V

t Hi(x) V,

where x = T −1(x). The constraint duals defined by lemma (3.2) imply that
riyi/rm+1 = yi or equivalently, riyi = rm+1yi. Hence, combining this with the
expression for scaled individual function Hessians,H

i
, we can rewrite the scaled

Lagrangian Hessian as:

L(x) =

m+1∑
i=1

yiri V
t Hi(x) V = rm+1V

t

(
m+1∑
i=1

yiH
i(x)

)
V = rm+1V

t L(x) V.

This yields first part of the desired result.

To prove the converse based on this is trivial since (a) the diagonal matrix V is
invertible, (b) the mapping T (x) and mappings for constraint duals are one-to-one,
and (c) rm+1 is strictly positive. �

We see that the scaled Lagrangian Hessian is almost independent of the function
scale factors except for a scalar rm+1 that is based on the objective function’s scale
factor. More formally, the following corollary provides a basis for adjusting the
Lagrangian Hessian when the scaling changes. This becomes critical with devices
like quasi-Newtonian approximations of the Lagrangian Hessian.

Corollary 3.2 (Scale Adjustment for Lagrangian Hessian) Let Γ〈Ṽ, R̃〉 be a new scaled
problem associated with a new scaling scheme defined by T̃ and G̃ as mentioned earlier.
Then the new scaled Lagrangian Hessian L̃(x̃) evaluated at x̃ = T̃ (T −1(x)) can be ex-
pressed as

L̃(x̃) =
r̃m+1

rm+1
ṼV−1L(x)V−1Ṽ.
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Proof of Scale Adjustment for Lagrangian Hessian: Let x = T −1(x) and y =

1/rm+1Ry. Then from the converse part of lemma (3.3) we get

L(x) =
1

rm+1
V−1L(x)V−1.

From the lemma we also have that when x̃ = T̃ (x) and ỹ = r̃m+1R̃
−1y the scaled

Lagrangian Hessian is:
L̃(x̃) = r̃m+1ṼL(x)Ṽ.

Combining the two expressions for the Lagrangian Hessian gives the required re-
sult. �

Note, the scale adjustment requires multiplying previously scaled Hessian with
the ratio of objective function factors and ratios of variable factors in the two scal-
ing schemes. Thus allowing a change of scaling scheme is O(n2) and hence is not
expensive.

In the following corollary, we show that if the Lagrangian Hessian of the orig-
inal problem is positive semi-definite on a subspace, then the property holds for
the scaled problem too on a scaled subspace. This is required to establish second
order conditions for a local optimum.

Corollary 3.3 (Positive Definiteness of Lagrangian Hessian) If the Lagrangian Hes-
sian, L(x;y), of the original problem, Γ , is positive definite (or semi-definite) on a subspace
M ⊆ �n, then the Hessian, L(x;y), of the scaled problem, Γ〈V, R〉 evaluated at x and
with constraint duals y as defined in lemma (3.2) is positive definite (or semi-definite) on
a scaled subspaceM defined by:

M =
{
d ∈ �n : Vd ∈M

}
.

The converse holds too, i.e., if the Lagrangian Hessian of the scaled problem L(x;y) is
positive (semi) definite on the subspace M ⊆ �n, then Hessian of the original problem
L(x;y) is positive (semi) definite on the subspaceM defined by:

M =
{
d ∈ �n : V−1d ∈M

}
.

Proof of Positive Definiteness of Lagrangian Hessian: We drop the arguments
for Lagrangian Hessian since they are unambiguous from the context. For any
d ∈ M, positive definiteness implies dtLd > 0 ( for semi-definite case ≥ 0). Using
lemma (3.3), we can express the original problem Lagrangian Hessian in the scaled
problem terms. Hence, for d ∈M,

dtLd =
rm+1

rm+1
dtV−1VLVV−1d =

1

rm+1
dtV−1LV−1d =

1

rm+1
d

t
L d.

The first step follows from rm+1/rm+1 = 1 and V−1V = VV−1 = I. The second step
follows from equivalence of Hessians in lemma (3.3), defining L = rm+1VLV . The
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last step follows from the substitution d = V−1d. Since Vd = d ∈ M we conclude
that d ∈M and the result follows.

Proving the converse is a similar exercise. �

3.3.2 Active Inequalities and Complementary Slackness

The only inequalities present in the nonlinear problem of equation (1) are the sim-
ple bounds on the variables. First we show that the set of active bounds is identical
in both the scaled problem as well as original problem. Then we show that the
complementary slackness conditions are equivalent.

Lemma 3.4 (Equivalence of Active Bounds) For any point l ≤ x ≤ u of the original
problem, Γ , let sets U and L denote variables that are at their upper and lower bounds
respectively. In other words,

U = {j : xj = uj 1 ≤ j ≤ n}

L = {j : xj = lj 1 ≤ j ≤ n} .

Let setsU and L of upper and lower bounded variables be defined analogously at x = T (x)
for the scaled problem, Γ〈V, R〉. Then the sets are identical, i.e., U = U and L = L.
Conversely, the sets of active lower and upper bounds in a scaled problem, Γ〈V, R〉, at x are
identical to those in the original problem at x = T −1(x).

Proof of Equivalence of Active Bounds: Sets U and L are mutually exclusive, i.e.,
L ∩ U = ∅ by consistent bounds assumption (2.1) that assumes l < u. Hence
the bounds for any variable j can never be equal, i.e.,lj = uj. In addition, since
l ≤ x ≤ u, then T (l) ≤ T (x) ≤ T (u). Hence, l ≤ x ≤ u.

For any variable at its upper bound, j ∈ U, the statement xj = uj implies
xj/vj − aj = uj/vj − aj. In other words, xj = uj or j ∈ U. Hence, U ⊆ U.

The reverse is also true by a similar argument. If j ∈ U then xj = uj. This in
turn implies, vj(xj + aj) = vj(uj + aj) or xj = uj. Thus U ⊆ U. This, together with
the previous statement, U ⊆ U, we conclude U = U.

The argument for active lower bounds will be identical with uj and uj replaced
by lj and lj respectively. Hence we conclude that L = L.

The proof also indicates that the converse holds too. �

We examine complementary slackness conditions in the following lemma.

Lemma 3.5 (Equivalence of Complementary Slackness Conditions) Let a solution
to the scaled problem, Γ〈V, R〉 be (x ;y,w, z) and let (x ;y,w, z) be a corresponding point
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for the original problem, Γ , defined in lemma (3.2). Then, complementary slackness condi-
tions for the scaled problem, namely,

W(u− x) = 0,
Z(x− l) = 0.

imply that these conditions hold for the original problem, Γ , and vice versa.

Proof of Equivalence of Complementary Slackness Conditions: We first exam-
ine the complementary slackness conditions associated with upper bounds on the
variables. Since x = T −1(x) and u = T −1(u) we can write the upper bound condi-
tions as:

W (u − x) = W (T (u) − T (x)) = W
(
V−1u − a− V−1x + a

)
= 0.

Since W and V are diagonal matrices, the product WV−1 is same as V−1W. From
the lemma (3.2) we have w = 1/rm+1V

−1W. Hence using the diagonal matrix W
constructed from components of vector w we get:

WV−1 (u− x) = rm+1W (u− x) = 0.

Dividing both sides by the positive scalar 1/rm+1 we see that the complementary
slackness conditions associated with the upper bound constraints are met for the
original problem too. The reader can verify that the lower bound complementary
slackness conditions are also met in a similar manner, i.e.,

Z
(
x− l

)
= 0⇒ Z (x − l) = 0.

Readers can verify that proving the converse is a similar exercise. �

3.3.3 Lagrangian Gradient

We can express the Lagrangian gradient of the scaled problem in terms of gradient
of the original problem and vice versa.

Lemma 3.6 (Lagrangian Gradient Equivalence) The Lagrangian gradient of the scaled
problem, Γ〈V, R〉, can be expressed in terms of gradient of the original problem, as:

∇L (x ;y,w, z) = rm+1V ∇L (x ;y,w, z) ,

where x and original problem duals are defined according to lemma (3.2). Conversely,

∇L (x ;y,w, z) =
1

rm+1

V−1 ∇L (x ;y,w, z) ,

expresses original problem Lagrangian gradient in terms of the scaled problem gradient.
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Proof of Lagrangian Gradient Equivalence: The Lagrangian gradient of the scaled
problem with respect to x is given by:

∇L (x ;y,w, z) = J(x)ty+w− z.

Equation (7) defines the scaled problem Jacobian in terms of the original Jacobian,
using x = T −1(x), as:

J(x) = RJ(x)V.

Thus we get an expression involving only the original Jacobian:

∇L (x ;y,w, z) = Vt J(x)t Rty+w− z = V J(x)t Ry+w− z.

The last step follows because diagonal matrices are symmetrical, hence for V and
R the transpose operation results in no change, i.e., V = Vt and R = Rt. From
lemma (3.2) we can replace Ry with rm+1y, w with rm+1Vw and z with rm+1Vz to
get:

∇L (x ;y,w, z) = rm+1V
(
J(x)t y+w− z

)
= rm+1V ∇L (x ;y,w, z) .

The scale factors are strictly positive, rm+1 �= 0 and V is invertible. Hence the
converse can be proved easily. �

Similar to the Lagrangian Hessian, the gradient is almost independent of the
function scale factors except for the objective function scale, rm+1. In the following
corollary we state an obvious conclusion that if Lagrangian gradient is zero in the
scaled problem, then the original problem gradient for a point mapped according
to lemma (3.2) is zero.

Corollary 3.4 (Equivalence of Vanishing Lagrangian Gradient) If the Lagrangian
gradient ∇L (x ;y,w, z) of the scaled problem, Γ〈V, R〉, is zero then so is the gradient
∇L (x ;y,w, z) of the original problem, Γ , when evaluated at a corresponding point as
defined in lemma (3.2) and vice versa.

Proof of Equivalence of Vanishing Lagrangian Gradient: Trivially established
using lemma (3.6). The matrix V is nonsingular and rm+1 �= 0. �

We show adjustment of Lagrangian gradient for scaling scheme changes in the
following corollary that is similar to the result about adjusting Lagrangian Hessian
in corollary (3.2).

Corollary 3.5 (Scale Adjustment for Lagrangian Gradient) Let Γ〈Ṽ, R̃〉 be a new
scaled problem associated with a new scaling scheme defined by T̃ and G̃ mentioned earlier.
The new scaled Lagrangian gradient ∇L̃ evaluated at x̃ = T̃ (T −1(x)) can be expressed as

∇L̃(x̃; ỹ, w̃, z̃) =
r̃m+1

rm+1
ṼV−1L(x;y,w, z).
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Proof of Scale Adjustment for Lagrangian Gradient: The proof is almost iden-
tical to the result shown for Hessians in corollary (3.2). Let x = T −1(x) and
y = 1/rm+1Ry. Then from the converse part of lemma (3.6) we get

∇L (x ;y,w, z) =
1

rm+1
V−1 ∇L (x ;y,w, z) ,

From the lemma we also have that when x̃ = T̃ (x) and ỹ = r̃m+1R̃
−1y the scaled

Lagrangian gradient is:

∇L̃ (x̃ ; ỹ, w̃, z̃) = r̃m+1Ṽ ∇L (x ;y,w, z) ,

Combining the two expressions for the Lagrangian gradient gives the result. �

3.3.4 Regular Points and Tangent Subspaces

We establish regularity conditions by showing that a regular point in the scaled
problem maps to a regular point in the original problem and vice versa. This also
leads to the conclusion that the associated tangent subspaces are equivalent. Tan-
gent subspaces assume significance for second order conditions of local optimality.
We need to show that the Lagrangian Hessian is positive (semi) definite on the tan-
gent subspace for these conditions to hold. We first establish an obvious result that
row or column scaling does not change the rank of a matrix using singular value
decomposition in the following lemma.

Lemma 3.7 (Matrix Rank under Scaling) Given a real m × n matrix A with a rank
r ≤ min{m,n}, its rank does not change if its rows or columns are multiplied by non-zero
values.

Proof of Matrix Rank under Scaling: We use singular value decomposition to
prove the result. Since A has rank r, by [Wat91, Theorem 7.1.12, page 395], there
exist isometries U ∈ �m×r and V ∈ �n×r and an r × r diagonal matrix Σ with
singular values of A as its main diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σr > 0 such that

A = UΣVt.

Multiplying each row by a non-zero is equivalent to premultiplying matrixA by an
m×m diagonal matrixD1 whose diagonal entries are the non-zero row multipliers.
Similarly, multiplying each column by a non-zero is equivalent to post multiplying
matrixAwith an n×n diagonal matrixD2 whose diagonal entries are the non-zero
multipliers of the columns. Let Â = D1AD2. Using singular value decomposition,
we will show that its rank does not change.

Â = D1AD2 = D1UΣV
tD2 = (D1U)Σ (D2V)t = ÛΣV̂.
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If Û = D1U and V̂ = D2V are isometries, then the rank of matrix Â is still r by the
theorem. Let ui and uj be any two distinct columns i and j of the isometry U. Since
U is an isometry, ut

iuj = 0 ∀ i �= j. Let d1
i and d1

j be the corresponding non-zero
diagonal entries in D1. Then the corresponding columns in Û are given by ûi =

d1
iui and ûj = d1

juj. But d1
id

1
ju

t
iuj = d1

id
1
j .0 = 0 ∀ i �= j. Hence, ûi

tûj = 0 ∀ i �= j in
matrix Û. In other words, Û is an isometry. By similar reasoning, V̂ is an isometry.
Hence rank of matrix Â is the same because Σ has not changed. �

If it was possible to change a matrix rank by scaling rows or columns, then rank
deficiency would never pose a problem to solvers. We were unable to solve some
difficult problems because of this issue in [Gaj95].

A point x ∈ �n is a regular point of the nonlinear problem, Γ , defined in equa-
tion (1) if it satisfies all the constraints, namely, nonlinear equations h(x) = b, ex-
plicit variable bounds l ≤ x ≤ u and in addition, the gradients of active constraints
are linearly independent. A constraint is active or binding if it holds as an equality.
Hence, the set of active constraints will always include h(x) = b. In addition, some
of the variables that are at their bounds, either lower or upper, also form part of the
active set. In the following lemma we show that the regular point of the original
problem can be mapped to a regular point of the scaled problem and vice versa.

Lemma 3.8 (Equivalence of Regular Points) If x is a regular point of the original non-
linear problem, Γ , defined by equation (1) then x = T (x) is a regular point of the scaled
problem, Γ〈V, R〉, defined by equation (9) and vice versa, i.e., given a regular point x of the
scaled problem, x = T −1(x) is a regular point of the original problem.

Proof of Equivalence of Regular Points: Objective function can be ignored while
discussing regularity conditions. Let anm×m diagonal matrix R′ be a restriction
of the row scale factors matrix R where the m + 1 row and column related to the
objective function has been omitted. Similarly, let an m × n matrix J′(x) = ∇h(x)
denote the gradients of constraint functions only. Hence, J′ is the same as problem
Jacobian J(x) without the last row of objective function gradients.

We first show that the scaled nonlinear constraints are satisfied. Given x is a
regular point of the original problem, Γ , let x = T (x) be its corresponding equiv-
alent for the scaled problem, Γ〈V, R〉. Since x is regular, the nonlinear equations,
h(x) = b, are satisfied. Since x = T −1(x) by the reverse transformations and we
can multiply both, left hand side, h(x), and right hand side, b, by nonsingular R′,
we can write:

h(x) = b =⇒ R ′h(x) = R ′h(T −1(x)) = h(x) = R ′b = b.

In other words, for the scaled problem h(x) = b.

Similarly, l ≤ x ≤ u implies, T (l) ≤ T (x) ≤ T (u) and hence we conclude that
l ≤ x ≤ u. Thus the scaled point x satisfies the constraints of the scaled problem,
Γ〈V, R〉,.
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To show that x is a regular point given x is, we need to show that gradients
of active constraints form a linearly independent set. As mentioned earlier, the
nonlinear equations h(x) = b are always included in the set of active constraints.
Hence the equality constraint gradients, J′(x) should be included in determining
the linear independence of the active set.

The sets of active upper and lower bounds are identical in both the scaled prob-
lem and the original problem from lemma (3.4). Hence, we will use setsU and L to
denote active upper and lower bounds of the scaled problem also. For any variable
j ∈ U, the active constraint implies xj = uj and similarly, for any variable j ∈ L, we
have xj = lj in the original problem. In the scaled problem same conditions hold
but for scaled values of corresponding quantities. Hence, the gradient of an active
bound is the appropriate row of an n× n identity matrix In.

Let b = |U ∪ L | be the total number of variables at their bounds, hence b ≤ n.
Let IB be a b×n sub-matrix of identity matrix In that has been formed by selecting
only rows that correspond to a variable at its bound. That is, IB has a row ej of the
identity matrix if and only if j ∈ U∪ L. Matrix IB is of full rank b since its rows are
linearly independent.

Given that x is a regular point of the original problem, Γ , then the (m + b) × n
matrix A of gradients of the active set of constraints defined by

A =

[
J ′(x)
IB

]
,

has full rank. We need to show that corresponding matrix,A, of gradients of active
set of constraints in the scaled problem, Γ〈V, R〉, also has full rank. Analogous to
the scaled problem Jacobian in equation (7) we can express the scaled problem’s
constraint gradients in terms of the original gradient, using x = T (x). This allows
us to write A as:

A =

[
J
′
(x)
IB

]
=

[
R ′ J ′(x) V

IB

]
.

By lemma (3.7), the rank of R ′ J ′(x) V is same as rank of J ′(x). Hence we conclude
that if A has full rank, then so does A. Thus if x is a regular point, then so is
x = T (x).

The converse holds in a similar manner. Instead of R ′, V and the mapping x =
T (x), we use R ′−1, V−1 and the inverse mapping x = T −1(x). �

At a regular point the tangent subspace is the same as the null space of the
gradients of the active constraints [Lue84, page 298]. For the original problem, Γ ,
the tangent subspaceM at a regular point x is defined by:

M = {d ∈ �n : ∇h(x)d = 0 ∧ dj = 0 ∀j ∈ U ∪ L} . (10)

Note, components corresponding to variables at their bounds are zero. The fol-
lowing lemma shows the relationship between tangent subspaces of the original
problem and the scaled problem.
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Lemma 3.9 (Equivalence of Tangent Subspaces) Let x be a regular point of the orig-
inal problem Γ , with the associated tangent subspace M, defined by equation (10). Hence,
by lemma (3.8) x = T (x) is the regular point of the scaled problem, Γ〈V, R〉. Let its tan-
gent subspace M be defined as in equation (10). Then for any vector d ∈ M, the vector
V−1d ∈M. Conversely, for every vector d ∈M, the vector Vd ∈M.

Proof of Equivalence of Tangent Subspaces: The set of active bounds is identical
in both the original and scaled problems from lemma (3.4). Hence, using equa-
tion (10), we can write the tangent subspace of the scaled problem as:

M =
{
d ∈ �n : ∇h(x)d = 0 ∧ dj = 0 ∀j ∈ U ∪ L

}
.

As was shown in the proof of lemma (3.8), similar to expression for scaled problem
Jacobian in equation (7), we can write

∇h(x)d = R ′∇h(x)Vd = 0 =⇒ ∇h(x)Vd = 0.

The implication follows by multiplying both sides by R′−1 . This allows us to sim-
plify the tangent subspace for the scaled problem as:

M =
{
d ∈ �n : ∇h(x)Vd = 0 ∧ dj = 0 ∀j ∈ U ∪ L

}
.

In both the scaled problem as well as the original problem, the same components
corresponding to active bounds have to be zero. Hence if d ∈M, then

∇h(x)d = ∇h(x)VV−1d = ∇h(x)V
(
V−1d

)
= 0,

implying, d = V−1d ∈M. Similarly, if d ∈M, we see that Vd ∈M. �

We alluded to scaled subspaces in corollary (3.3) while discussing positive semi-
definiteness property of the Lagrangian Hessian. We can interpret corresponding
tangent subspace of the scaled problem as a scaled version of tangent subspace of
the original problem.

3.3.5 Equivalence of Solutions

We provide proof of equivalence of solutions that was deferred earlier. The proof
is just a summarization of the results shown earlier.

Proof of Equivalence of Solutions in lemma (3.2): We will show that a solu-
tion (x ;y,w, z) to the scaled problem, Γ〈V, R〉, implies that (x ;y,w, z) obtained by
the transformations of lemma (3.2) is a solution to the original problem, Γ . The
converse also holds since each step listed in the following holds in both directions.

Since x is a regular point of Γ〈V, R〉, by equivalence of regular points in
lemma (3.8), x is also a regular point of Γ .
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Since, x is a solution of Γ〈V, R〉, Lagrangian gradient ∇L (x ;y,w, z) = 0 and by
the vanishing gradients corollary (3.4), ∇L (x ;y,w, z) = 0 for Γ too.

Since complementary slackness conditions hold for Γ〈V, R〉, at (x ;y,w, z), by
the equivalence of complementary slackness conditions in lemma (3.5), they hold
at (x ;y,w, z) for Γ too.

Thus we have shown that the first order KKT conditions for the scaled problem,
Γ〈V, R〉, imply they are met for the original problem, Γ , too.

From equivalence of tangent subspaces in lemma (3.9), for every vector d in
the tangent subspace M of Γ〈V, R〉, the vector Vd ∈ M where M is the tangent
subspace of Γ . From the equivalence of positive (semi) definiteness property in
corollary (3.3), we have that positive (semi) definiteness of Lagrangian Hessian of
Γ〈V, R〉 implies the same for Γ . Thus second order sufficient (necessary) conditions
of the scaled problem imply the same for the original problem.

As mentioned earlier, each step listed above holds for the converse. Hence, the
converse holds too. �

4 Solution Methods

We use a generic nonlinear programming algorithm to represent a variety of so-
lution methods like successive quadratic programming, barrier methods, reduced
gradient methods etc. Our objective is to identify important steps that would be
affected by scaling the nonlinear problem. Since our emphasis is on the numerical
behavior, we ignore critical steps like manipulating sparse data structures used for
managing derivative data. Needless to say, the generic algorithm is an abstraction
and actual implementations will be far more complex.

In the following algorithm, not all steps need to be used by a method. For in-
stance, only successive quadratic programming (SQP) type of methods would be
approximating the Lagrangian Hessian Lwith L̂. These methods would not be us-
ing second derivatives to compute the true Hessian. Barrier methods may operate
with true Hessian or may approximate it slightly differently. We have used inte-
rior point methods with both variants [GL01]. The quasi-Newtonian approxima-
tion used by barrier methods uses gradients of the barrier problem’s Lagrangian
unlike the SQP method. Hence the termsw−z do not appear in the gradients used
to update the approximate Hessian.

For Newton like methods, to prevent divergence from poor starting points we
have used line search based on merit functions, but trust region methods are also
commonly used. In trust region methods, instead of adjusting step length, size of
the trust region (a sphere for the L2 norm and an n-cube for L1 norm) is reduced if
the actual function values are not predicted well by model, usually a quadratic, of
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the function. Thus the step length remains one but the direction changes. In prac-
tice, one often ends up using a hybrid approach. For instance, in [GL01], whenever
we did not meet sufficient slope or step size criteria, we added a trust region con-
straint dtd ≤ ∆.

For merit function, in SQP and interior point methods L1 exact penalty is often
used. Other choices include the differentiable L2 penalty method. For reduced
gradient methods, since feasibility is always maintained, the objective function
serves as a good candidate for merit function.

For reduced gradient methods, finding a descent direction and step size deter-
mination are not independent as algorithm (1) seems to suggest. For a full rank
constraint gradients matrix J′(x) = ∇h(x), null space of J ′, and range space of
J ′t span the complete space �n. Hence the direction vector can be construed as
a component in the null space of J ′ and another component in the range space of
(J ′)t. First a component, d1, in the null space is constructed based on a reduced
system which requires finding factors of an m × m basis matrix. Then a system
h(x+αd1 +d2(α)) = b needs to be solved for each step size to findm components
of d2. Thus the movement is not along a straight line x + αd as in SQP or interior
point methods, but along a surface defined by d1 and the problem constraints.

In most of the nonlinear programming methods that we are discussing, each it-
eration of a method involves one or more linear systems. For example, in a method
that is solving a quadratic subproblem by active set strategy in each iteration, the
first order conditions involve a linear system. There may be as many linear sys-
tems generated as different active sets are used by the quadratic solver. On the
other hand, in a barrier problem, only one linear system may be solved per itera-
tion. In reduced gradient methods, factors of anm×m basis matrix are generated
to find the direction in the null space of the J′ and also a system of nonlinear equa-
tions in terms ofm basic variables need to be solved for each step size tried. While
discussing scaling effects in section (5), we would like to focus on nonlinear opti-
mization issues primarily. Hence we make the following unrealistic assumption:

Assumption 4.1 (Perfect Linear System Solver) We assume that a linear system is
solved using exact arithmetic with a device that can represent real numbers and incurs no
floating point operation errors.

Justification for Perfect Linear System Solver: We want to look at scaling effects
only as far as it impacts preparing data for a linear system. By making this assump-
tion, we ignore propagation of errors that happen in practice from the nonlinear
method to the linear system solver and vice versa. In most implementations, lin-
ear systems are often scaled before each solve and this scaling is independent of
the scaling adopted by the nonlinear method. For instance, schemes suggested
in [GL06] may be used for such a purpose. �
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Algorithm 1 Nonlinear Solver Algorithm
Require: (l ≤ x0 ≤ u) ∧ (l < u)

1: (x;y,w, z)← (x0; 1, 1, 1) { Prefer non-zero duals initially }
2: L̂← In { Approximate Lagrangian Hessian }
3: for i = 1 to 300 do {Main iteration loop}
4: q−← Jty+w− z { Current duals but old Jacobian J(x) when i > 1 }
5: J← ∇g { Jacobian }
6: L← ytH = yt∇2g { Lagrangian Hessian }
7: q← Jty +w− z { Lagrangian gradient }
8: Check for termination

9: Update L̂with (x−, x) and (q−, q) { BFGS type of rank 2 update when i > 1 }
10: Method specific adjustments { Like barrier parameter µ }
11: for p = 1 to 5 do {Descent direction d}
12: Find direction d and new duals (y+, w+, z+) { Trial values of duals }
Ensure: l ≤ x+ αmaxd ≤ u
13: ρ+← max {ρ, 1.5 |y+ |} {Trial penalties}
14: if φ ′(0) < −εφ then {Sufficient slope}
15: α← αmax { Largest step size }
16: for l = 1 to 10 do {Line search}
17: if φ(α) ≤ φ(0) + εAαφ

′(0) then {Armijjo’s test: sufficient decrease}
18: exit Line search
19: end if

20: Find new α ∈ (0, αmax]

21: end for
22: if α > εα then {Sufficient step size}
23: exit Descent direction d
24: end if

25: end if{ Sufficient slope }
26: end for

27: x−← x { Previous value for quasi-Newton approximations }
28: (x;y,w, z; ρ)← (x+ αd;y+, w+, z+; ρ+) { Commit }
29: end for

30: return (x;y,w, z)
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5 Scaling Effects

Using algorithm (1) we identify critical steps that would be influenced by scaling.
We look at termination criteria, behavior of merit functions, Hessian approxima-
tions and derivative calculations when differencing is used. Analytical derivatives
are available to the same precision as function evaluations.

5.1 Termination Criteria

Before getting into criteria commonly used to terminate the solution process, we
suggest that L∞ should be used for medium to large problems, where typically the
number of constraints is more than 5,000 and number of variables is more than
10,000. We have seen some authors use L1or L2 norms [LPY95]. For instance, if
we were to test ‖d ‖1 ≤ ε with a tolerance ε = 10−5, and if each component was
bounded ε1 ≤ |di | ≤ ε2, then nε1 ≤ ‖d ‖1 ≤ nε2. Thus, if ε1 = 10−7, for a
thousand variable problem we will not able to meet the tolerance criterion. To get
around this, some authors use scaled values of norms for tests where the scaling
is a function of the dimension n. We believe that a simpler solution is to use L∞
norm and it works well in practice [GL01]. Nash and Sofer [NS95, page 375] also
suggest this.

We focus on only three criteria commonly used for termination checks men-
tioned in step (8) of algorithm (1). In actual implementations, because a variety
of exceptions that need to be handled, termination tests are rarely simple. For in-
stance, we [Gaj95] keep track of the best solution found so far, have to handle reset
operations that involve starting back from previous commit point for some types
of failures. More than 18 different causes for termination have been used in [GL01].

To test feasibility, we examine only the equations h(x) − b. Since by assump-
tion (2.3) a solution method always respects explicit variable bounds, we are as-
sured that step size calculation and descent direction estimation ensure this. Hence
to test feasibility of constraints, a common test used is:

|hi(x) − bi | ≤ εf(1+ |bi |).

Typically, a value of εf = 10−4 would be used. This test becomes unreliable when
|bi | is small compared to operations defining hi(x). For example, in the function
hi(x) = x2

1 − x2/x3 = 0, the test becomes an absolute test from a relative test since
bi has vanished. If the two operands involved in the subtraction are large, say
order of 108, then the test is looking for a relative precision of about 10−12. In
this case, looking at relative sizes of operands involved in defining a constraint
becomes important. Thus under the proposed scaling scheme, though bi = 0, it
is hoped that the function scaling factor ri and variable scaling factors v1, v2 and
v3 will make magnitudes of the operands relatively smaller. When two points are

W.P. No. 2006-08-06 Page No. 28



IIMA • INDIA
Research and Publications

infeasible, we use the count of infeasibilities and if these are equal, then we look
at the largest magnitude of infeasibility, ‖h(x) − b ‖∞ to decide which of the two
points is better. This criteria becomes important in comparing the current best
solution with a proposed solution.

For feasible points, the second criterion used is based on residuals of KKT con-
ditions. Many authors, especially in interior point methods literature, use com-
plex strategies that emphasize the three components of the residuals, namely, La-
grangian gradient, constraints and complementary slackness conditions in differ-
ent ways. We had experimented with some of these termination criteria in [Gaj95],
but we saw only marginal difference. A priori, we do not know what should be
the correct weights for each component. In keeping with our philosophy of using
L∞ norm we have successfully used the following simpler criterion:

max {‖∇L(x;y,w, z) ‖∞ , ‖h(x) − b ‖∞ , ‖W(u− x) ‖∞ , ‖Z(x− l) ‖∞} ≤ ε0.

The last two components related to complementary slackness conditions are unaf-
fected by scaling except for a constant factor rm+1 as seen while proving equiva-
lence of complementary slackness conditions in lemma (3.5). Scaling factor for a
bound dual is a reciprocal of that used for the corresponding primal variable. The
residuals of Lagrangian gradient get scaled by rm+1V as shown in equivalence of
gradients in lemma (3.6) while the constraint residuals get scaled by R from the
definition of scaled problem in equation (9).

The third important criterion we use is based on detecting no progress for fea-
sible iterations. If for k = 5 consecutive iterations, the solution remains feasible
but no change in the objective function value then a termination is called for. The
test is of the type:

| f(x) − f(x−) | ≤ ε0(1+ | f(x) |).

This test is going to be impacted by scale factor rm+1 associated with the objective
function.

For infeasible cases, we let a solution run to its iteration limit of 300. Often in
such cases, their is no change in the solution since the solver is unable to either
determine a downhill direction or step size is not sufficient. A criterion preferred
by other authors that we would like to use in future is sensitive to variable scale
factors and is of the type:

‖ x− x− ‖∞ ≤ εx(1+ ‖ x ‖∞ .

5.2 Hessian Approximation

Quasi-Newton approximations of the Lagrangian Hessian are based on rank two
updates. A common method used is based on Powell’s variant of the BFGS method
for constrained problems. According to Luenberger [Lue84, page 269] the BFGS
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method has been empirically observed to be better than the DFP method. The
update is shown step (9) of algorithm (1)

We use s for the displacement vector and p for gradient difference that are used
in the updates. The vector s = x− x− denotes change in position between current
iteration and previous one. Previous values of the variables, x−, are saved just be-
fore committing in step (27) of algorithm (1). Hence vector s is sensitive to variable
scaling.

Similarly, vector p = q− q− is used for change in the Lagrangian gradient and
is shown in steps (7) and (4) of algorithm (1). From the equivalence of Lagrangian
gradients lemma (3.6), we see that vector p is sensitive to variable scaling as well
as scale factor associated with objective function.

The true Lagrangian Hessian itself is sensitive to variable scaling as seen in
equivalence of Lagrangian Hessians lemma (3.3). The scaled Hessian is given by
L = rm+1VLV . Hence we expect that in the limit, the approximation L̂ will also be
similarly sensitive.

5.3 Merit Functions

As mentioned earlier, merit functions are used to prevent divergence when a New-
ton type method is started from poor starting points. Since reduced gradient meth-
ods maintain feasibility through out the solution process, the objective function is
a good candidate. Hence, slope of the merit function and the function values will
be influenced by scale factor, rm+1, associated with objective function and variable
scale factors, V , in a manner similar to what has been discussed earlier. In the re-
mainder, we focus on merit functions for methods that allow constraint violations
at intermediate points.

We consider two candidates for the merit function, φ(α), based on either the L1

exact penalty or the L2 quadratic penalty. Merit function’s slope, ∇φ(0), is used to
test if the given direction is a descent direction in step (14) of algorithm (1) while
Armijjo’s criterion or some other suitable criteria is used in step (17) to ensure suf-
ficient decrease in the merit function. Thus, line search, to find a step size requires
calculation of slope once and one or more merit function evaluations for each step
size tried.

A merit function is defined based on a penalty function, π(x; ρ, γ, β) : �n �→ �,
that penalizes constraint violations. The penalty weights, ρ > 0 are associated
with equality constraints, γ > 0 and β > 0 are associated with upper and lower
bound conditions respectively. For an equality constraint i, hi(x) − bi measures
constraint violation while max {0, xj − uj} and max {0, lj − xj} measure upper and
lower bound violations for variable j respectively. The quadratic loss penalty func-
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tion, based on the Euclidean metric, is defined by:

π(x; ρ, γ, β) = f(x) +
1

2

m∑
i=1

ρi (hi(x) − bi)
2
+ (11)

1

2

n∑
j=1

γj (max {0, xj − uj})
2 +

1

2

n∑
j=1

βj (max {0, lj − xj})
2
.

The exact penalty function, based on the Manhattan metric, is similarly defined by:

π(x; ρ, γ, β) = f(x) +

m∑
i=1

ρi |hi(x) − bi | + (12)

n∑
j=1

γj max {0, xj − uj} +

n∑
j=1

βj max {0, lj − xj} .

A merit function , φ(α; x, d) : �+ �→ �, measures progress along a direction
d ∈ �n from a given point x based on a step size α > 0. It is defined in terms of
the penalty function as:

φ(α; x, d) = π(x+ αd; ρ, γ, β).

If there is no ambiguity, we may refer to a merit function simply as φ(α) since
we are talking about it in the context of a line search along a direction d from the
current point. We are also interested in its slope, ∇α(0), for judging sufficient de-
crease condition in step (14) of the algorithm (1). Before we can discuss sensitivity
of merit function and its slope to scaling, we first develop simplified expressions
for these values.

To write merit function expressions in matrix notation, for the equality con-
straint penalty weights, we define an (m + 1) × (m + 1) diagonal matrix Λ with a
weight of one for the objective function row defined by:

Λi,i =

{
ρi ∀ i = 1, . . . ,m

1 i = m + 1
.

We modify slightly the function g : �n �→ �m+1 to include the constraint right
hand sides:

gi(x) =

{
hi(x) − bi ∀ i = 1, . . . ,m

f(x) i = m+ 1
.

The problem Jacobian J(x) : �n �→ �(m+1)×n is same as before and it includes
objective function gradient. When we want to exclude objective function, we use
g ′(x) to denote just the equality constraints h(x) − b and similarly, the restricted
Jacobian that excludes the objective function gradient by J′(x). Individual function
gradients are row vectors to conform to the function row of the Jacobian.
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In the following lemma under the assumption that a solution method respects
explicit variable bounds, we develop simplified expressions for the merit function
based on quadratic loss penalty. Penalties associated with variable bound viola-
tions can be ignored by the following lemma.

Lemma 5.1 (Merit Function based on Quadratic Loss Penalty) For the merit func-
tion based on the quadratic loss penalty function of equation (11), under the assump-
tion (2.3) that explicit variable bounds hold for a solution method, if there exists αmax > 0

such that l ≤ x + αmaxd ≤ u after step (12) of algorithm (1) then for the range α ∈
[0, αmax], the merit function can be simplified as:

φ(α) =
1

2

(
g ′(x+ αd)

2

)t

Λ g(x+ αd),

and its slope is given by

∇αφ(0) =

(
g ′(x)
1

)t

Λ J(x)d.

Proof of Merit Function based on Quadratic Loss Penalty: By assumption (2.3),
the explicit variable bounds, l ≤ x ≤ u, hold always for the solution method,
and by the conditions of the lemma, l ≤ x + αmaxd ≤ u. Hence, for the range,
α ∈ [0, αmax], we can ignore the penalty terms related to variable bounds in the
penalty function of equation (11) and write it as:

φ(α; x, d) = π(x+ αd; ρ) = f(x) +
1

2

m∑
i=1

ρi (hi(x+ αd) − bi)
2
.

This yields the simplified expression stated in the lemma for the merit function. To
calculate the slope, we look at the gradient of the penalty function of equation (11).
Its gradient, see [NS95, page 539], is given by:

∇xπ(x; ρ, γ, β) = ∇f(x) +

m∑
i=1

ρi (hi(x) − bi)∇hi(x) +

n∑
j=1

γj (max [0, xj − uj]) −

n∑
j=1

βj (max [0, lj − xj]) .

Since gradient of lj−xj is −1, the last summation term has a minus sign in the slope
calculation. Again by assumption (2.3), the explicit variable bounds hold at each
iteration of the solution method, hence we can simplify the gradient row vector as:

∇xπ(x; ρ) = ∇f(x) +

m∑
i=1

ρi (hi(x) − bi)∇hi(x).
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But the slope, ∇αφ(0; x, d) = ∇xπ(x; ρ)d. Hence from the above we get the desired
result for the slope. �

Using the merit function based on L1 penalty is a similar exercise except for
the fact that the penalty function is not differentiable everywhere. When explicit
variable bounds hold by assumption (2.3), then the bound related terms can be
removed from the penalty function definition as shown in the following lemma.

Lemma 5.2 (Merit Function based on Exact Penalty) Let the merit function,φ(α; x, d)

be based on the exact penalty function of equation (12). Let an m dimensional vector σ be
defined as:

σi =

⎧⎪⎪⎨
⎪⎪⎩

1 if hi(x) > bi

−1 if hi(x) < bi

1 if hi(x) = bi ∧ ∇hi(x)d > 0

−1 if hi(x) = bi ∧ ∇hi(x)d < 0

∀i = 1, . . . ,m.

Under the assumption (2.3) that explicit variable bounds hold for a solution method, if
there exists αmax > 0 such that l ≤ x + αmaxd ≤ u after step (12) of algorithm (1) then
for the range α ∈ [0, αmax], the merit function can be simplified as:

φ(α) =

(
σ

1

)t

Λ g(x)

and its slope is given by

∇αφ(0) =

(
σ

1

)t

Λ J(x)d.

Proof of Merit Function based on Exact Penalty: Similar to the quadratic loss
penalty case, by assumption (2.3), the explicit variable bounds, l ≤ x ≤ u, always
hold, and l ≤ x + αmaxd ≤ u by the lemma. Hence, for the range, α ∈ [0, αmax],
leaving out the penalty terms related to variable bounds in equation (12) we get:

φ(α; x, d) = π(x+ αd; ρ) = f(x) +

m∑
i=1

ρi |hi(x+ αd) − bi |

= f(x) +

m∑
i=1

σiρi (hi(x + αd) − bi) .

Hence the merit function can be expressed in matrix notation as shown in the
lemma.

For slope calculations, we cannot use the scheme used earlier for quadratic
loss penalty in ignoring the bound terms. The exact penalty function does not
meet the criterion for a differentiable penalty function in equation (21) of Luen-
berger [Lue84, page 372]. If we use p+ = max{0, x} for the bound terms, then the
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exact penalty is ψ(s) = s. But ∇ψ �= 0 when s = 0. The slope is always one. For
quadratic loss penalty, the function ψ(s) = s2 and the derivative at s = 0 is indeed
zero as required.

Hence instead of gradient of the penalty function ∇xπ, we only state the direc-
tional derivatives based on [Fle87, page 298]. For the upper and lower bounds we
define n dimensional vectors µ and τ respectively as follows:

µj =

⎧⎪⎪⎨
⎪⎪⎩
1 if xj > uj

0 if xj < uj

1 if xj = uj ∧ dj > 0

0 if xj = uj ∧ dj < 0

∀j = 1, . . . n,

τj =

⎧⎪⎪⎨
⎪⎪⎩
1 if xj < lj
0 if xj > uj

1 if xj = lj ∧ dj < 0

0 if xj = lj ∧ dj > 0

∀j = 1, . . . n.

Then the directional derivative can be defined by:

Dπ(x; ρ, γ, β ;d) = ∇f(x)d+

m∑
i=1

σiρi∇hi(x)d +

n∑
j=1

µjγjdj +

n∑
j=1

τjβjdj.

Since by the lemma conditions, if there is an αmax > 0 such that l ≤ x+ αmaxd ≤ u,
then for any variable already at its upper bound, j ∈ U, the direction component
dj ≤ 0 and similarly for a variable at its lower bound j ∈ L, its direction component
dj ≥ 0. This together with the condition that l ≤ x ≤ u by the assumption on
explicit bounds implies µj and τj will always be zero for the solution methods we
are discussing and the bound terms can be ignored from the directional derivative
calculations. Hence the directional derivative can be written as:

Dπ(x; ρ ;d) = ∇f(x)d+

m∑
i=1

σiρi∇hi(x)d.

Since the slope of the merit function is given by ∇αφ(0; x, d) = Dπ(x; ρ ;d), writing
the above in matrix notation, we get the desired result. �

From lemma (5.1) and lemma (5.2), it is clear that both the merit function and
its slope at zero are sensitive to scaling. The merit function is more influenced by
function scaling while the slope is impacted by variable scaling in addition because
of the Jacobian term. From equation (7) we have the scaled problem Jacobian as
J(x) = R J(x) V . The computations of slope for merit functions based on both
types of penalties get simplified for Newton type methods where the constraint
∇h(x)d = b− h(x) is satisfied by the direction vector d.

For exact penalty function, as shown in Luenberger [Lue84, page 389], having
ρi ≥ |y∗i | ensures that the local minimum of the exact penalty is same as the orig-
inal nonlinear problem in equation (1). Since the optimal duals are not known
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before the solution is obtained, the update rule suggested by Powell is used in
step (13) of algorithm (1) with a slight modification. The factor 1.5 used in the ad-
justment differs from Powell’s value of 1. It has been found to be more effective in
our tests. Some similar scheme may be used for the quadratic penalty too.

For a scaled problem, since ρi ≥ |y∗i |, it can be shown easily that the rela-
tion between scaled and original penalties should mirror the relation between the
scaled and original constraint duals that was proved in equivalence of solutions
lemma (3.2). Hence, whenever scaling changes, we can use the constraint duals
adjustment mechanism of corollary (3.1) for merit function penalties.

5.4 Derivatives by Differencing

Given the relation between scaled and original Jacobian in equation (7) and a simi-
lar one for Hessians in equation (8) the obvious value dependence on scaling exists.
This value dependence is true whether derivatives were computed analytically to
the same precision as the function evaluations or they were based on finite differ-
encing. But in differencing, an additional source of error creeps in because of the
approximations being used. We would like to investigate if scaling could mitigate
these errors. We have [GL01] used differencing when analytic derivatives were
not available or only first derivatives were available analytically. Our scheme is
similar to a scheme that was used in [LPY95] with some additional safeguards.

For first derivatives, when no analytic derivatives are available, we allow both
forward and central differences. The perturbation interval h is given by:

h = (1+ | xi |) δ1

where δ1 = 1.05 × 10−8 is the default value. For the central differencing option,
using ei for column i of the identity matrix, In, we compute the derivative of a
function f : �n �→ � according to:

∂f

∂xi
≈ f(x+ hei) − f(x − hei)

2h
.

Hence central differencing requires 2n function evaluations for the gradient of a
function ∇f. For forward differencing option we require only n + 1 function eval-
uations. The computation in this case is:

∂f

∂xi

≈ f(x+ hei) − f(x)

h
.

When first derivatives are available analytically, from interfaces of modeling
systems like GAMS, AMPL, etc., we use forward or central differencing for second
derivatives. The perturbation interval, h, is same as before and the first partials
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replace the function evaluations in the computations as shown for central differ-
encing option below:

∂2f

∂xi∂xj
≈ 1

2h

[
∂f(x+ hei)

∂xj
−
∂f(x− hei)

∂xj

]
.

Similarly, the forward differencing computation is:

∂2f

∂xi∂xj
≈ 1

h

[
∂f(x+ hei)

∂xj
−
∂f(x)

∂xj

]
.

When no analytic derivatives are available and the solution method needs sec-
ond derivatives, then we compute larger perturbation intervals, h1 and h2, corre-
sponding to the two variables i and j, as:

h1 = (1+ | xi |) δ2 and
h2 = (1+ | xj |) δ2.

where δ2 = 1.0 × 10−4 is the default value. Since this depends on differenced
first derivatives where already some precision is lost, we do not allow forward
differencing option. In this case, the second partials are given by using central
differencing the first partials:

∂2f

∂xi∂xj
≈ 1

2h1

[
∂f(x+ h1ei)

∂xj
−
∂f(x− h1ei)

∂xj

]

and this can be computed as:

a = f(x+ h1ei + h2ej) + f(x− h1ei − h2ej),

b = f(x− h1ei + h2ej) + f(x+ h1ei − h2ej),

∂2f

∂xi∂xj
≈ a− b

4h1h2
.

When i = j, the expression gets simplified and only three function evaluations
instead of four are needed. Thus for n2/2 terms in a function Hessian, we need
roughly 2n2 function evaluations.

Since the perturbation intervals are based on variable values, variable scaling
is important. Gill et al. [GMW81, pages 128 – 130] describe how each computation
of a first derivative is subject to truncation error that is proportional to the second
derivative and a condition error that is dependent on the function value and the
first derivative that is being computed. In this regard we would like to investigate
various schemes for computing the intervals that take function and derivative val-
ues also into account rather than just relying on the variable being scaled.
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6 Goal and Suggestions

Suggestions made in this section need to be validated empirically. The correctness
results only show us the mechanics of scaling and as we saw in section (5), it affects
behavior of the nonlinear method significantly. Much more work needs to be done
in quantifying these impacts and using them as a criterion in selection of scale
factors similar to what we did for linear systems scaling [GL06]. We discuss goals,
when to do scaling and how to do scaling in this section.

6.1 Goals?

Before we discuss scaling a nonlinear problem, we would like to reiterate a point
we made in justifying our unrealistic assumption (4.1) of a perfect linear system.
We have empirically observed that a good scaling of the linear system before a
solve is always beneficial. Hence we strongly recommend scaling the linear system
independently before each solution irrespective of whether scaling is used or not for
the nonlinear problem itself. Even when the nonlinear problem is scaled, the com-
plexities and requirements of the nonlinear problem are quite different from the
linear system. In short, scaling the nonlinear problem is not a substitute for scaling
the linear system and vice versa.

Based on the correctness results in section (3.3) we recommend a dynamic scal-
ing mechanism that scales problem functions and variables in each iteration. Static
scaling employed by many algorithms in practice is typically based on the Jacobian
matrix at the start of the solution process. In a nonlinear problem, the Jacobian may
change significantly as the solution progresses and hence the static scaling scheme
may make the matters worse. We use the Jacobian matrix of the original problem
at the current point to generate scale factors. This ensures that the scaled Jacobian
entries are well balanced.

A second strategy we would like to explore is to use the Jacobian matrix of the
original problem for function scaling and initial variable scales. We then adjust
variable scale factors based on the Lagrangian Hessian of the original problem. As
we have mentioned earlier after proving equivalence of scaled Lagrangian Hessian
in lemma (3.3), the Hessian is almost independent of function scaling. Since the
second derivatives are less likely to change fast, this may make the scaling more
stable. The mechanisms we are suggesting in this section will work with either
strategy.

W.P. No. 2006-08-06 Page No. 37



IIMA • INDIA
Research and Publications

6.2 Generating Scale Factors

We use machine base, typically β = 16, to determine scale factors as integer powers
of β as suggested in [GL06]. This allows the scaled value to be generated by an
adjustment of the exponent of the original value. Using unrestricted scale factors
will lead to floating point operations while generating scaled values and hence
introduce a new source of errors.

We first discuss how to determine the offsets a in the mapping

x = T (x) = V−1x− a.

To compute the offsets, we determine t ∈ �n from the original problem infor-
mation, mainly related to bounds. The offset is defined in terms of this vector as
a = V−1t for the first scaling scheme. Since this information is not based on a spe-
cific scaling scheme, we would like to keep t = Va invariant through all scaling
schemes. Each iteration uses a different scaling scheme. In the following lemma
we show that offsets can be ignored while updating primal variables when the
invariance property holds.

Lemma 6.1 (Scale Adjustments for Primal Variables under Offset Invariance) Let
a solution of the scaled problem, Γ〈V, R〉, be (x ;y,w, z) where the offset is defined by
a = V−1t for some vector t ∈ �n. Let Γ〈Ṽ, R̃〉 be a new scaled problem associated with
a new scaling scheme defined by T̃ and G̃ as mentioned earlier that also defines its offset
by ã = Ṽ−1t. Then the primal variables, x̃ for the new scaled problem, Γ〈Ṽ, R̃〉, can be
obtained by ignoring the offsets as shown below:

x̃ = Ṽ−1Vx

Proof of Scale Adjustments for Primal Variables under Offset Invariance: Using
the invariance, based on adjustment of solutions corollary (3.1), we can write the
change of primal variables as:

x̃ = Ṽ−1V (x + a) − ã

= Ṽ−1Vx + Ṽ−1Va− ã.

For the scaled problem, Γ〈V, R〉, Va = t. Hence we get

x̃ = Ṽ−1Vx + Ṽ−1t− ã

= Ṽ−1Vx + ã− ã

= Ṽ−1Vx.

The second step follows from the assumption in lemma that the new scaled prob-
lem, Γ〈Ṽ, R̃〉, also defines offsets by ã = Ṽ−1t. The updates for x and by the same
token, the bounds l and u are simplified. �
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Thus, by lemma (6.1), it suffices if the offsets for the first iteration scaling scheme
are a = V−1t and ignored there after in all iterations. To find t, we suggest the fol-
lowing procedure:

• If the lower bound is not finite, lj = −∞, then it is ignored by setting tj = 0.

• If the lower bound is finite but upper bound is not finite, uj =∞ then tj = lj.

• If both bounds are finite and uj − lj > β
2 then this is too big a range, ignore

by letting tj = 0.

• Otherwise both are finite bounds and uj − lj ≤ β2 hence use the mid-point of
the range as an offset, i.e., tj = (uj + lj)/2.

Thus, the above offset scheme is based on Gill et al. [GMW81, page 274] with
an additional safeguard. If the user has provided realistic ranges, then we want to
keep the scaled variables with in [−1, 1] range if possible. In practice, user often
does not know what a realistic range is, especially for large models with thousands
of constraints and variables.

The variable scale factors are based on the ranges alone in [GMW81, page 274].
In our case, they depend on the functions the variables appear in. At each iteration,
new scale factors are generated from the original problem Jacobian, J(x), that is an
(m + 1) × n matrix and it is scaled using Gauss-Seidel iterative scheme suggested
in [GL06].

6.3 Mechanics of Scaling

We discuss initializations related to scaling and dynamic scaling adjustments. We
show that most of the steps are of time and space complexity O(max{m,n}). Only
generation of scale factors R and V by Gauss-Seidel iterations that is of time com-
plexity O(mn), and updating the approximate Hessian that is O(n2) are relatively
expensive operations. The time requirements are of the same order as a matrix
vector multiplication.

6.3.1 Initialization

The scale factors should be initialized before the main iterations begin using identity
matrices and offsets defined in section (6.2). Following scaling related initializa-
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tions need to be done after step (1) of algorithm (1):

R ← Im+1,

V ← In,

x0 ← x0 − t,

u ← u− t and
l ← l− t.

The initializations are O(m) or O(n). The diagonal matrices R and V can be
represented by integer vectors since the scale factors are integral powers of β. The
offsets a are never stored explicitly. We only keep the float vector t and the off-
sets can be generated any time by a = V−1t. Thus the space complexity is also
O(max{m,n}) .

6.3.2 Scale Adjustments for Nonlinear Problem

In each iteration, immediately after step (5) of algorithm (1) the Jacobian matrix at
the current point becomes available. Using the Jacobian, new scale factors R+ and
V+ should be computed. By adjustment of primal variables lemma (6.1), since the
initialized scaling scheme with scale factors of unity, ensures a = V−1t = Int = t,
new offsets a+ can be ignored in updates of primal variables and variable bounds.

To reduce computations we introduce the following temporary entities:

c ← r+m+1

rm+1
objective correction,

∆R ← (R+)−1R function corrections and
∆V ← (V+)−1V variable corrections.

Since the scale factors are integral powers of machine base β, divisions and mul-
tiplications are just integer subtractions and additions for the temporary entities.
These operations are O(max{m,n}). Space requirements are two integer vectors
for the diagonal matrices ∆R and ∆V , hence O(max{m,n}). In procedure shown in
algorithm (2), we generate new scale factors and compute the corrections.

The current point (x, y,w, z) should be adjusted for the new scale factors. Based
on adjustment of primal variables lemma (6.1), using the temporary entities de-
fined above, we can write the adjustments to change of scaling for primal variables
and the bounds as:

x ← (∆V) x,

u ← (∆V)u and
l ← (∆V) l.
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Algorithm 2 Generate Scale Factors and Corrections
1: (∆R,∆V)← (R, V) { Save old values }
2: Gauss-Seidel Iterations, refer to [GL06] { Reuse (R, V) for output}
3: (R, V)← (R+, V+)

4: c← rm+1/∆rm+1 { objective correction }
5: ∆R← R−1∆R { function corrections }
6: ∆V ← V−1∆V { variable corrections }

The above step is an O(n) operation.

In constraint duals we also include a dual for the objective function that always
has unity as its value, ym+1 = 1. This is maintained as an invariant by the scaling
adjustments. The adjustments for the constraint duals and bound duals based on
adjustment of solutions corollary (3.1) are:

y ← c (∆R)y,

w ← c (∆V)
−1
w and

z ← c (∆V)−1
z.

The above step is an O(max{m,n}) operation.

We need to adjust the constraint right hand sides too. For this, we restrict our-
selves to only the firstm entries of the diagonal matrix ∆R. Like earlier, we use the
notation, ∆R ′ to indicate a sub-matrix with the lastm+1 row and column removed
corresponding to the objective function. Since the right hand sides were multiplied
by R ′ earlier and now they need to be multiplied by (R+) ′, the adjustment for right
hand sides is reverse of the one employed for constraint duals.

b← c (∆R ′)−1
b.

This is an O(n) operation.

6.3.3 Adjustments for Merit Functions

For solution methods using merit functions based on penalty functions, the penalty
multipliers need to be adjusted. As mentioned in section (5.3), the requirement that
these weights be at least as large as the dual multipliers, translates to an update
mechanism similar to constraint duals. Like the constraint duals, using weight of
unity for the objective function weight, ρm+1 = 1, we can write this as:

ρ← c (∆R)ρ.

This is anO(m) operation.
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6.3.4 Updating Quasi-Newton Approximations

For solution methods that approximate the Lagrangian Hessian, previous values
of primal variables x−, previous Lagrangian gradient q− and the approximate Hes-
sian L̂ need to be adjusted.

Previous Lagrangian gradient is computed in step (4) of algorithm (1) before
scaling is performed because one needs values of gradients at the previous point
and the new Jacobian has not yet been computed. But the new scale factors are
available only after step (5). Hence the requirement for adjustment. Using La-
grangian gradient adjustment corollary (3.5) we can update the previous gradient
in an O(n) operation as:

q−← c (∆V)
−1
q−.

Similarly, previous values of primal variables are saved in step (27) of algo-
rithm (1). Similar to the primal variables adjustment suggested in lemma (6.1), we
can adjust them as:

x−← (∆V) x−.

As mentioned toward the end of section (5.2), quasi-Newton approximations in
the limit will behave like true Lagrangian Hessian and hence have same sensitivity
to scaling. Hence we use scale adjustments of corollary (3.2) for true Lagrangian
Hessians for the approximations too that is an O(n2) operation.

L̂← c (∆V)−1
L̂ (∆V)−1

.
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