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Abstract

We present a general method of constructing a test of multivariate normality using any given
test of univariate normality of complete or randomly incomplete data. A simulation study
considers multivariate tests constructed using the univariate versions of the Shapiro-Wilk,

Kolmogorov-Smirnov, Cramer-Von-Mises, and Anderson-Darling tests.
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1. Introduction

Many tests of multivariate normality exist. Reviews by Gnanadesikan (1997) and Mardia
(1980) outline many of these procedures. However, there is yet no single test of multivariate
normality which is sensitive to all types of violation of multivariate normality. The aim of this
paper is to demonstrate that given a test for univariate normaility which is sensitive to all kinds
of violation of univariate normality, one can construct a test of multivariate normality that is
sensitive to all kinds of multivariate normality. Section 2 demonstrates the general procedure of
constructing such a multivariate test and gives a general result concerning the Type I error and

the power of the multivariate test thus constructed and applied to complete multivariate data.
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Section 3 extends the methodlogy of Section 2 to the case of randomly incomplete (MAR)
multivariate data. Section 4 presents a simulation study wherein the Type 1 error and power of
multivariate tests constructed using four widely used tests of univariate normality: the Shapiro-
Wilk, Kolmogorov-Smirnov, Cramer-Von-Mises, and Anderson-Darling tests. Simulations are

performed for both complete and randomly incomplete multivariate data.

2. General methodology for complete data
Suppose X is a one-dimensional random variable whose distribution is unknown. Consider the
following null and alternative hypotheses:

H, : X is normally distributed and H, : X is not normally distributed (1)

Suppose that W is a statistic for testing the above hypotheses. Let « € (0, 1) denote any fixed
significance level of the test; n, a given sample size; S(n), the function of sample size giving the
true Type 1 error of the test for sample size n when H, is true; and P(n) € [0, 1], also a function
of n giving the true power of the test for sample size n when H, is false. Furthermore, suppose
that

lim S(n)=a«a ifH,istrueand lim _ P(n)=1if H, is true (2)
n— 0o n— 0o

Now suppose X = (X1, Xs,...,X,) is a p-dimensional (p 1) random vector whose
distribution is unknown and such that the distribution is continuous and defined over all of R”.
Consider the following hypotheses:

H, : X is normally distributed and H, : X is not normally distributed 3)

Suppose that we have a sample of random realizations of X, namely, X,, where



We wish to test the null hypothesis in (3) using the significance level « stated above. Before we
proceed to construct a test of the null hypothesis in (3), we establish some useful notation. Note

that under the null hypothesis, the density of the (normal) distribution of X with mean

= (p1, ..., pp) and covariance matrix
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may be written as
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where

g,(X,) is the density of N (u1,0?)

and

gL(XL|X1, ceey Xi—l) is the density OfN(hL(XL|X1, ceey Xi—1)7 Qz); 1= 2, N B

In the expression above,
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In the expressions above, 33; ;1 is the submatrix of 3 corresponding to the covariances of X;
with Xy, ... X;_1, and 3;_1 ;1 is the submatrix of 3 equal to the covariance matrix of

Xy, Xiy. Letp = (4y, ..., 11,) and
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be the maximum likelihood estimates of g and 3 under the null hypotheses in (3). For
t=2,...,p, let f)i,ifl and f)ifl,ifl be the maximum-likelihood estimates of 33; ; ;1 and

3Ji—1,—1, respectively. Finally, fori = 2,...,pand j = 1,...,n, let
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Now we proceed to construct a stepwise test of the null hypothesis in (3). Let o, = o/ p.
Consider the following stepwise procedure with a maximum of p possible steps:
Step 1: Using statistic W, test the null hypothesis in (1) using the univariate sample
(z11, oo ,Z15, ... T )'. Let k; equal to the p-value obtained as a result
of the test. If k1 < «,, then reject the null in (3), and stop the testing procedure at
this step. Else, proceed to the next step.

Step i, ¢ > 1: Consider the transformation
Yij = xij — hi(zijloey, ..., 2i1y), j=1,...,n,and (4)
Using statistic W, test the univariate sample (yi1, ... ,%ij, --- Yin )/ for

normality. Let k; be the resulting p-value. If k; < o,/(1 — )", then stop the

procedure and reject the null hypothesis in (3); else go to step ¢ + 1.



Let S*(n) denote the function of n which is equal to the Type I error of the above step-wise
test for sample size n when H, is true. Let P*(n) denote the function of n which is equal to the
power of the above step-wise test for sample size n when H, is false. Then we have the
following fundamental result
Theorem 1. Suppose (X1, ..., X,) is a random vector having a continuous distribution defined
over all of RY'. Then under assumption (2), it follows for the above step-wise test that

nlzg}z ooS (n) <« if H, is true and HZ@OOP (n) = 1if H, is true

Proof. Suppose that H,, is true. Then let A;, i = 1,..., p, be indicator variables whose values
are set to 0 prior to beginning the step-wise testing procedure. Moreover, each A; is updated if
and only if the testing procedure reaches step ¢. The updating is as follows:

4= { 1if the null is rejected in Step i

0 otherwise
If the null hypothesis is true, then (z11, ... ,x1, ... ,Tip )/ is a random sample from
N(:ulu O-%) (5)
Moreover, when H, is true, then fori, 1 < i <p, (yi1, --- ,Yijs --- Yin )/ represents a

sample of size n from the distribution of a random variable Y™ such that, because of (4),

Thus, it follows that when H,, is true

S*(n) = Pr(A; =1lor Ay =1lor...or4,=1) = Z Pr(4;,=1)<a”

where

Now suppose that H, is true. Then (5) and/or (6) are violated for some j,1 < j < p.



Let j* be the smallest such j. Let Pj-(n) denote the function of n which is equal to the power of
the test conditional on the event that H, is rejected at step 5° of the above step-wise test for

sample size n. Then, since H, is true, (2) implies that

nl'li)n OOPj* (TL) =1.

Note that

Therefore, (7) implies that

lim _P*(n) =1 if H, is true O
n— 00

3. General methodology for randomly incomplete data (MAR)

When X, is randomly incomplete, the first step is to find the estimates 1z and 3. Unlike in
the case of complete data, this estimate may not have an analytical form. However,z and > may
be obtained by using an iterative algorithm such as the EM or Newton-Raphson algorithms to
maximize the likelihood of 32 and u given the observed data. To avoid problems of non-
estimability of parameters, we assume that the probability of a/l the p components being
observed is greater than 0, but may be less than 1. The methodology of section 2 is then easily
extended to the MAR case:

Step 1: Same as Step 1 in section 2, except that we use only the observed values among
Z11,...,%1,. Let ki equal to the p-value obtained as a result of the test. If k1 < «, then

reject the null in (3), and stop the testing procedure at this step. Else, proceed to the next

step.
Step ¢, ¢ > 1: For j = 1,...,n, repeat the following process. If x;; is missing then set y;; to a
missing value. If z;;is observed and x4, ..., z;,_1 ; are all missing then let

i — 7
Yij = (%)



where ;I;, is defined as in Section 2. If If z;; is observed and some but not all of
x1j,...,Ti—1,; are observed, then let z;_1 ops denote the observed subvector of

T1jy -, o1, and fh; ;1 o5, be the row vector of corresponding entries in zz. Let
f)i,i_l,obs be the submatrix of 3 corresponding to the covariance of z;; with 2;_1 ops-

~—1 —~
Let 32, 4 ; 1.0ps D€ the submatrix of 33 equal to the (estimated) covariance matrix of

ZT;_1,0s- Then let
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Using statistic W, test the observed values among y;,, ..., v, for

i-1
normality. Let k; be the resulting p-value. If k; < «,/ (1 — %) , then stop the

procedure and reject the null hypothesis in (3); else
go tostep ¢ + 1.

Then we have the following general result. Let S*(n) denote the function of n which is equal to
the Type I error of the above step-wise test for sample size n when H, is true. Let P*(n) denote
the function of n which is equal to the power of the above step-wise test for sample size n when
H, is false. Then we have the following fundamental result
Theorem 2. Suppose X = (X1, ..., X,) is a random vector having a continuous distribution
defined over all of RY . Suppose that X is subject to random missingness such that the
probability of all the p components of X being observed is greater than 0, but may be less than
1. Then under assumption (2), it follows for the above step-wise test that

nlzg}z ooS (n) <« if H, is true and HZ@OOP (n) = 1if H, is true

The proof of the above theorem is very similar to that of Theorem 1, and hence is not

repeated here. The only difference in this case is that the asymptotic law (6) becomes

y® 2 N0, 1)



4. Simulation

4.1 Complete Data Case
Complete data sets of different sizes were simulated from a tri-variate normal distribution
with parameters
1 —-0.3 0.5
pw=1(0,0,0/,2=1 —0.3 1 0.5 | and o = 0.05
0.5 0.5 1
For testing the null hypothesis in (3), four multivariate tests were constructed by applying the
methodology presented in Section 3 to four different statistics for assessing univariate normality,
namely, the Shapiro-Wilk (SW), Kolmogorov-Smirnov (KS), Cramer-Von-Mises (CVM), and
Anderson-Darling (AD) statistics. For each sample size considered, 1000 simulations were run.
The rates of rejection of H, in (3) when H, is true are given in Table 1.

To investigate power, we considered a considered a bi-variate random variable (X, Y') such
that X and Y are independent, X is distributed as standard normal, while Y is distributed as
Student's ¢ with 4 degrees of freedom. Thus the distribution of (X, Y') is symmetric but non-
normal. Once again, for each sample size considered, 1000 simulations were run. The rates of
rejection of H, in (3) when H, is false are given in Table 2.

Table 1 and Table2 suggest that of the 4 multivariate tests, the one based on Kolmogorov-
Smirnoff statistic is the most conservative, while the one based on Shapiro-Wilk statistic is the
most anti-conservative, though all four tests exhibit the asymptotic properties outlined in

Theorem 1.

4.2 The Case of Randomly Incomplete (MAR) Data

To investigate Type I error when the null hypothesis H, in (3) is true and when data is missing at
random, random missingness was created in the trivariate normal data simulated in section 4.1.
Note that since p = 3, there are 8 possible missingness patterns. Each pattern may be described

using a 3-dimensional indicator vector Y such that a given component of Y is 1 if the



corresponding component of X is observed, and is 0 otherwise. The missingness patterns were
generated using the probabilities in T'able 3. For each sample size considered, 1000 simulations
were run with a = 0.05. The Type 1 errors under H, and random missingness are given in Table
4. Note that none of the rejection rates in Table 4 is significantly different from 0.05 at the 5%
significance level. Table 4 illustrates that, just as in the complete-data case, the Type 1 error of
each of the 4 tests approaches o = 0.05 as the sample size increases, albeit somewhat faster than
in the complete-data case.

To investigate power, the same bivariate random vector (X, Y") was considered as in the
investigation of power in Section 4.1. Missing data were simulated using the missingness
probabilities in Table 5. For each sample size considered, 1000 simulations were run. The rates
of rejection of H, in (3) when H, is false are given in Table 6. It is clear from Table 6 that, just
as in the complete-data case, the power of each of the 4 tests approaches 1 as the sample size
increases, albeit more slowly than in the complete-data case. Furthermore, Tables 4 and 6
underscore the afore-mentioned observation that the test based on the Kolmogorov-Smirnoff
statistic is the most conservative, whereas the test based the Shapiro-Wilk statistic is the most

anti-conservative.



References

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Hoboken: Wiley.

Gantz, B. J. et al. (1988). Evaluation of five different cochlear implant designs: Audiologic
assessment and predictors of performance. Laryngoscope 98, 1100-1106.

Gnanadesikan, R. (1997). Methods for statistical data analysis of multivariate observations.
New York: Wiley

Johnson, R. A., Wichern, D. W. (2002). Applied Multivariate Statistical Analysis.
Upper Saddle River: Prentice Hall

Mardia, K. V., 1980. Tests for univariate and multivariate normality. In Handbook of
Statistics, Vol 1: Analysis of Variance, P. R. Krishnaiah (ed.), 279-320, Amsterdam: North

Holland.



Table 1 : Rates of rejection of H, when H,, is true and data is complete

Sample size

Underlying statistic

SW | KS CVM | AD
n=>5 0.048 | 0.050 | 0.041 | 0.042
n =15 0.049 | 0.058 | 0.052 | 0.051
n = 30 0.060 | 0.059 | 0.059 | 0.056

Table 2 : Rates of rejection of H, when H, is false and data is complete

Sample size

Underlying statistic

SW KS CVM | AD
n = 100 0.635 | 0.349 | 0.634 | 0.632
n = 250 0.939 | 0.716 | 0.942 | 0.941
n = 500 0.999 | 0.966 | 0.995 | 0.993

Table 3: Probabilities of missingness patterns under H,,
Pattern Y’ Pr(Y)

(1,1,1) 0.70

(1,1,0) 0.08

(1,0,1) 0.08

(1,0,0) 0.02

(0,1,1) 0.08

(0,1,0) 0.02

(0,0,1) 0.02

(0,0,0) 0.00

Table 4 : Rates of rejection of H, when H, is true and data is randomly incomplete

Sample size

Underlying statistic

SW | KS CVM | AD
n =10 0.054 | 0.044 | 0.049 | 0.050
n =15 0.049 | 0.048 | 0.048 | 0.049
n = 30 0.056 | 0.053 | 0.057 | 0.053




Table 5 : Probabilities of missingness patterns under H,

Pattern Y Pr(Y)
@1 0.70
(1,0) 0.15
(0,1) 0.15
(0,0) 0.00

Table 6 : Rates of rejection of H, when H,, is false and data is randomly incomplete

Sample size

Underlying statistic

SW KS CVM | AD
n = 100 0.483 | 0.250 | 0.482 | 0.480
n = 250 0.838 | 0.555 | 0.841 | 0.840
n = 500 0.984 | 0.869 | 0.980 | 0.978




