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Abstract 

We consider the estimation of finite population proportions of categorical survey responses 

obtained by probability sampling. The customary design-based estimator does not make 

use of the auxiliary data available for all the population units at the estimation stage. We 

adopt a model-based predictive approach to incorporate this information and make the 

estimates more efficient. In the first part of our paper we consider a multinomial logit type 

model when logit function is a known parametric function of the covariates. We then use it 

for the prediction of non-sampled responses. This together with sampled responses is used 

to obtain the estimates of the proportions. The asymptotic biases and variances of these 

estimators are obtained. The main drawback of this approach is, being a parametric model 

it may suffer from model misspecification and thus, may lose it’s efficiencies over the usual 

design-based estimates. To overcome this drawback, in the next part of this paper we 

replace the multinomial logit type model by a nonparametric model using recently 

developed random coefficients splines models. Finally, we carry out a simulation study. It 

shows that the nonparametric approach may lead to an appreciable improvement over both 

parametric and design-based approaches when the regression function is quite different 

from multinomial logit. 
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1. Introduction 
 

We consider the analysis of survey data obtained from a finite population of size 

consisting of a single categorical response  along with a vector of covariates N d x  that 

may include design variables. The value of the response d  is observed for the sampled 

units. The values of x  are assumed to be known for all the units of the population. The 

customary design-based estimator of the finite population proportions does not make use 

of the auxiliary data available for all population units at the estimation stage. To utilize 

this extra information in the estimation stage we adopt the model-based predictive 

approach (Sarndal and Wright (1984), Firth and Bennett (1998)). We assume that the 

finite population responses  represent a random sample from a superpopulation 

described by a model (Royall (1970)). In the following we propose estimators based on 

two models. The first is a multinomial logit type model. It differs from the usual 

multinomial logit model by assuming that the logit function is a known function of the 

covariates and is not necessarily linear. The other is based on a purely nonparametric 

model.  

Ndd ,...,1

 

We now introduce the following notations. Suppose each population unit belongs to 

exactly one of the p categories. The categorical response is for i-th unit 

where , if it belongs to the h-th (

T
ipii ddd ),...,( 1=

1=ihd ph ,...,1= ) category and = 0, otherwise. 

Also ,  is the vector of auxiliary variables corresponding to i-th 

unit and is assumed to be the same for all categories. Let be a subset of of size 

denoting the set of indices of sampled units and

T
iqii xxx ),...,( 1= 1≥q

S },...,1{ N

n S , the set of nonsampled units. We let 

. Thus  denotes the finite population proportion of -th category.  ∑
=

−=
N

k
khh dNP

1

1
hP h
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2.1 Estimator Based on Multinomial Logit Type Model 

We assume that ’s are independent with  id

phxxdP ihiih ,...,1 ),;()|1( === βπ                                                                          (1)                  

  

where, 

∑
−

=

−+==
1

1

1)}];(exp{1)}[;(exp{)();(
p

u
uiuhihihih xgxgx βββπβπ ,                        (2) 

1)(
1

=∑
=

p

h
ih βπ , ,),...,( 1 hhah

T
h βββ = 1,...,1 −= p TT

p
T ),...,( 11 −= βββh , and  (.),hg

h =1,…,p-1are known but arbitrary functions of . Thus for any realization of the 

response variable, we obtain  

ix id

∏
=

=
p

h

d
ihii

ihxd
1

)}({};|{P βπβ .             

A standard choice for is linear that is , for all . This gives 

the well-known multinomial logit model.  

(.)hg h
T
ihih xxg ββ =);( hi  and 

The log-likelihood for the sample is given by S

∑∑
∈ =

=
Si

p

h
ihihdl

1
)(ln)( βπβ .                                                                                             (3) 

Denoting by  the maximum likelihood estimator (MLE) based on sample observations, 

the multinomial type model-based predictive estimator of  is 

β̂

hP

])ˆ([ˆ 1
, ∑∑

∈∈

− +=
Sj

jh
Si

ihmh dNP βπ ,                                                                                 (4)  

where  is the predictor of ,the h-th 

component of the

ββββπ ˆ1 ];,...,},:{|[)ˆ( =∈= Nijhjh xxSiddE jhd

j -th non sampled unit; is the expectation with respect to the 

superpopulation model. 

(.)E
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2.2. Design-based Estimator 
The design-based estimator for this problem is given by 

∑∑
∈

−−

∈

−=
Si

ihi
Si

idh dP 111
, )(ˆ ττ ,                                                                                        (5) 

where )0(>iτ is the inclusion probability for the i-th sampled unit. In (5), the auxiliary 

information available through ’s cannot be incorporated into the estimation process. In 

theory this is achieved at the survey design stage using appropriate definition of inclusion 

probabilities; for example, in stratified random sampling, stratification may depends on 

the known design variable. In multipurpose survey, this is not always possible and one 

might also like to introduce the auxiliary information at the estimation stage.  

ix

On the other hand, assuming some standard design conditions ( N
Si

i =∑
∈

−1τ ), the above 

estimator may shown to be asymptotically design unbiased irrespective of any model 

assumption. This raises the question: could we protect the model based estimator   

from the model uncertainty? We follow up it by proposing a nonparametric predictive 

estimator of categorical proportion  which is obtained  to (4) except that ’s are 

now unknown and additive smooth functions of the form and 

’s are estimated from data by using  splines (Brumback et al. (1999)).  

mhP ,ˆ

hP (.)hg

∑
=

=
q

ihih xgxg
1

)()(
α

αα

(.)αhg

The model is thus given by 

11 ,)}](exp{1)}[(exp{)(
1

1

1 −=+= ∑
−

=

− ,...,phxgxgx
p

u
iuihihπ                                          (6) 

subject to the usual constraint . Letting the estimate of 

and writing 

xx
p

h
h every for  ,1)(

1
=∑

=
π (.)ˆhg

(.)hg

,)}](ˆexp{1)}[(ˆexp{)(ˆ
1

1

1∑
−

=

−+=
p

u
iuihih xgxgxπ  
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the estimate of becomes hP

])(ˆ[ˆ 1
, ∑∑

∈∈

− +=
Sj

jh
Si

ihnph xDNP π .                                                                               (7) 

 

In Section 2, without loss of generality we obtain the expressions for asymptotic bias and 

asymptotic variance of assuming mhP ,ˆ (.)(.) ggh = for all h. The assumption is made to 

simplify the presentation avoiding unnecessary notational complexity. The estimator is 

found to be asymptotically model unbiased as well as model consistent. We also derive 

expression for the asymptotic variance of the model-based estimator (4) and its consistent 

estimator. Simultaneous confidence intervals for the population proportions based on 

asymptotic normality are proposed. We introduce the random coefficients splines model 

in Section 3. To obtain we adopt the likelihood approach. We discuss this approach 

in detail in Section 3. But finding maximum likelihood estimate (MLE) by direct 

maximization of the likelihood function is simply not practical in our setup. It involves 

too many integrals.  In Section 4 we adopt and extend the EM methodology developed by 

Steele (1996) to our set up for finding MLE. Steele (1996), in fact, develops it for finding 

MLE in generalized linear mixed models (GLMM). This could be used directly in our set 

up if we had only binary responses, an application of which is considered by French and 

Wand (2004) in a different context. In Section 5, we extend our methods for multiple 

auxiliary variables. We present simulation studies in Section 6 to compare the 

performances of the three estimators given by (4)-(5) and (7). The results show marked 

improvements in some cases. Finally, in Section 7, we give the concluding remarks. 

(.)ˆhg

 

2. Properties of  h,mP̂

In order to find asymptotic bias and variance of  we make the following 

assumptions. Our assumption

mhP ,ˆ

hrahgg hh  allfor   entails  allfor  (.)(.) == ; r is some 

positive integer. 
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A1. The parameter space is a compact subset of , whereΘ )1( −ℜ pr ),( ∞−∞=ℜ .  

A2. , )1(||||
1

1 OxN
N

i
i =∑

=

− δ 2,1=δ . 

A3. Consider a sequence of finite populations of size and corresponding samples of 

sizes , indexed by

νN

νn ν . Assume that as ∞→ν , both and νn ∞→− νν nN such that 

sampling fraction )1,0[/ ∈→= ρννν Nnf .  

For simplicity, we drop the suffix ν  in the rest of the paper. We now define 

,/)()( ββπβπ ∂∂=′ jhjh
T

jhjh βββπβπ ∂∂∂=′′ /)()( 2 , ∑
∈

− ′−=′
Sj

jhh nN )()()( 1 βπβπ , 

∑
∈

− ′′−=′′
Sj

jhh nN )()()( 1 βπβπ .                                                                                   (8) 

The assumptions A2 and A3 then imply that )(βπ h′ and )(βπ h′′ are . )1(O

A4. The sample and nonsample design points have a common asymptotic distribution 

function G; that is,  

∑ ∑
∈ ∈

−− →≤−→≤
Si Sj

ji xGxxInNxGxxIn )()()(  ),()( 11  for all x . 

 

Assuming the maximum likelihood estimator  exists, the above assumptions (A2-A4) 

entail 

β̂

n  consistency of . Now we state the following theorems. The proofs are given 

in the appendix. 

β̂

 

Theorem1. Under assumptions (A2)-(A4), the bias of  is mhP ,
ˆ

)()ˆ( 1
,

−=− nOPPE hmh , . ph ,...,1=

Letting  

TT
p

T SSS ))(),...,(()( 11 βββ −= , 1,...,1,))(()( −=′′= phhhhII ββ  

where  

∑
∈

−=∂∂=
Si

ihihihh dxlS ))((/)()( βπβββ , 1,...,1 −= ph ,                                              (9)  
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⎪
⎪
⎩

⎪⎪
⎨

⎧

′≠−

′=−

=∂−∂=
∑

∑

∈
′

∈
′′

Si
hiih

T
ii

Si
ihih

T
ii

hhhh
hhxx

hhxx

SI
, ),()(

, ,))(1)((

/)()(
βπβπ

βπβπ

βββ                                 (10) 

we write 

∫∑∑
∈

−

∞→∈

−

∞→

−

∞→
==== )()()(lim)(lim)(lim)( 11

111 udGuGxGnInInI
Si

i
nSi

i
nn

βββ , 

∑
∈

−

∞→
−−=

Sj
jhjh

n
hh nNV ))(1)(()(lim)( 1 βπβπβ  

             ∫∑ =−=
∈

−

∞→
)()()()(lim ,2,2

1 udGuGxGnN hh
Sj

jhh
n

, 

∑
∈

−

∞→
−−=

Sj
jhjh

n
hh nNV )()()1()(lim)( '

1
' βπβπβ  

             = ∫∑ =−
∈

−

∞→
)()()()(lim ',2',2

1 udGuGxGnN hh
Sj

jhh
n

, 

∑
∈

−

∞→∞→
′−=′=

Sj
jh

n
h

n
h nND )()(lim)(lim)( 1 βπβπβ  

            ∫∑ =−=
∈

−

∞→
)()()()(lim 33

1 udGuGxGnN
Sj

j
n

, 

where )()( 1 ii xGI =β , say, is the contribution of the -th observation to i )(βI . Similarly, 

we define and . Moreover we define (.)(.), ',2,2 hhhh GG (.)3G

)(βhhv = and  )ˆVar( , hmh PP −

)(' βhhv = ,)ˆ,ˆ(Cov ',', hmhhmh PPPP −− 'hh ≠ . 

 

Theorem 2. Under assumptions (A2)-(A4), 

(a).  the asymptotic variance of the prediction error for the -th category is given by  h

)()()1()()()()1()ˆ(Var 11121
,

−−−− +−+−=− noVnDIDnPP hhh
T

hhmh βρρβββρ , 

ph ,...,1= , and 
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(b). the asymptotic covariance )(' βhhv is given by 

)ˆ,ˆ(Cov ',', hmhhmh PPPP −−  

= )()()1()()()()1( 1
'

1
'

121 −−−− +−+− noVnDIDn hhh
T

h βρρβββρ , 

1,...,1)'(', −=≠ phhhh . 

 

Theorem 3. Under assumptions (A1)-(A4), a consistent estimate of the asymptotic 

variance (asymptotic covariance) ( ) in 

Theorem 2 is given by 

)ˆ(Var , hmh PP − )ˆ,ˆ(Cov ',', hmhhmh PPPP −−

)ˆ()1()ˆ()ˆ()ˆ()1()ˆ( 1121 βββββ hhh
T

hhh VffnDIDfn −+−= −−−v , 

( )ˆ()1()ˆ()ˆ()ˆ()1()ˆ( '
1

'
121

' βββββ hhh
T

hhh VffnDIDfn −+−= −−−v ) 

ph ,...,1= ( 1,...,1)'(', −=≠ phhhh ). 

Further, let  

T
pPPP ),...,( 11 −= , and the asymptotic variance-covariance 

matrix 

T
mpmm PPP )ˆ,...,ˆ(ˆ ,1,1 −=

( ) 1,...,1',' )()( −== phhhh ββ vv . Following theorem gives asymptotic normality of 

.  PPm −ˆ

 

Theorem 4.  Under assumption (A2)-(A5), the vector of finite population proportion 

estimators satisfies  mP̂

)1,0()ˆ()( 2/1 NPP d
m ⎯→⎯−−βv  for all Θ∈β . 

 

Corollary 1. Under the assumptions (A1)-(A4), from theorems 3 and 4, we have 

)1,0()ˆ()ˆ( 2/1 NPP d
m ⎯→⎯−−βv . 

The proof of the above corollary is obvious from theorems 3 and 4. 

From the corollary1, we can find the simultaneous confidence intervals for the finite 

population proportion estimators s’. mhP ,ˆ
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3. Random coefficients splines model  
From a model-based perspective, design unbiasedness property of an estimator lacks 

appeal. This property holds over repeated sampling. The survey statistician has only one 

sample and one set of sampled data. The worry is how to protect against incorrect 

inference given this data. Why should then dividing by the sample inclusion probabilities 

protect one against model uncertainty in this special case? A natural alternative, first 

suggested by Kuo (1988), is to adopt a nonparametric model-based approach, that is, 

replace the parametric working model by a nonparametric working model linking 

)(xhπ to x . In binary case, it is tantamount to replacing a parametric link function by a 

nonparametric link function. As noted in the literature (Chiou and Muller (1998), Carroll, 

Gijbels and Wand (1997), Weisberg and Welsh (1994)) parametric specification is quite 

inadequate in many data applications leading to the biased estimates of regression 

parameters and thus resulting in incorrect inference. We consider now a nonparametric 

formulation of the model introduced in (6). 

 

 

We let  

1
1

1
]))(exp(1)}[(exp{)( −

−

=
∑+=
p

h
hhh xgxgxπ                                                                    (11) 

where  is an unknown smooth function of x. In what follows we confine our 

discussion to a single covariate x. In Section 5, we discuss the extension of our approach 

to multiple covariates assuming an generalized additive model (GAM) for (Hastie 

and Tibshirani (1986)). 

)(xgh

)(xgh

                                                                                       

In generalized linear model (GLM) set-up there are a number of mixed model 

representations of smoothing that can be used to subsume the into GLMM (Chen 

and Ibrahim (2006), French and Wand (2004), Verbyla et al., (1999), Lin and Zhang 

(1999), Brumback et al., (1999), Brumback and Rice (1998), Wang (1998)). Here we 

consider a generalization of similar smoothing technique for the multinomial logit model. 

)(xgh
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The random coefficients splines model that we use for obtaining a smooth estimate of 

is given by  )(xgh

       ,)(...)(
1

10 ∑
=

+−++++=
h

hh
h

K

k

r
hkhk

r
hrhhh xbxxxg κβββ                                    (12) 

where  , ),0( is ),...,( 2
1 hh Kh

T
hKhh INbbb σ= at=+

a(t) if  and 0 otherwise,  is 

the degree of spline and 

0>t hr

hkκ ’s are the knots. Typically,  is fixed and low, usually 

. We assume  to be fixed but sufficiently large (e.g. 25) to ensure the desired 

flexibility in the choice of knots. Note that the unknown variance component  controls 

the amount of smoothing; larger the value of  smoother is the function and = 0 

corresponds to the case of no smoothing.    

hr

3≤hr hK

2
hσ

2
hσ 2

hσ

 

4. Likelihood Estimation  

We obtain an estimate of using the likelihood estimate of the model parameters. 

For writing the likelihood function we need to introduce the following notations:   

)(xgh

.),2)(1( ,,),...,(),(

),,...,( ,),...,(,)exp(,ln

 ,),...,(,),...,(,),...,(,),...,(

1

1

1

1
1

1111
2

110111

∑∑
−

=

−

=

−−

−−

=+−====

ΣΣ=Σ==Σ=

====

p

h
h

p

h
h

T
R

TTT

p
T

pKhhhh

TT
p

TT
hrhh

TT
p

TT
hKhh

KKrpRrr

diagIθ

bbbbbb

h

hh

ννθβν

θθθθσ

ββββββ

     

Thus the likelihood function is given by 

   )
2
1),;(lnexp()2()( 1

1

2/12/0 db bbbxdl T

Si

p

h
ihih

K −

∈ =

−− Σ−Σ= ∑∑∫ βππν                 (13)            

where ),;( bxih βπ is related to by equation (11) and  is given by equation 

(12).      

)(g ih x )(g ih x

 

In most cases vis-à-vis our application the above integral is intractable. Thus we cannot 

find the maximum likelihood estimate using observed data likelihood. One option to 

overcome this problem could be to use the penalized quasi-likelihood that essentially 

replaces (13) by a first order Laplace approximation. Another approach to finding 
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maximum likelihood estimate of ν  is to use EM algorithm (Dempster et al.(1977)) by 

making use of a second order Laplace approximation at E-step (Steele (1996)). EM 

algorithm is a general purpose algorithm for finding the mode of the likelihood or 

posterior density function. Viewing the random effects b as latent variables, the EM 

algorithm iterates between calculating the conditional expectation of the complete-data 

log likelihood given the observed data and maximizing this expected value as a function 

ofν . Dempster et al. (1977) have shown that EM algorithm will lead to maximum 

likelihood estimates based on the observed data likelihood given in equation (13). In fact, 

since the observed-data likelihood )(νl is log concave, the EM algorithm will work quite 

well and will not get stuck in local modes.  

 

 

4.1 Implementation of EM Algorithm 

Let and }:),{( SixD iio ∈=D },{ boc DD = represent the observed and complete data 

respectively if we consider b as missing. The kernel of the complete data log-likelihood 

is given by 

bbbxdl T

Si

p

h
ihihcc

1

1
)2/1(ln)2/1(),;(ln)|( −

∈ =
Σ−Σ−= ∑∑ βπν D                                  (14)  

Note that the observed data log-likelihood is ),(ln)|( νν ll cc =D  where )(νl    

is given by (13).                                                                                                                                                    

 

EM algorithm iterates between two steps viz., E-step and M-step. Start with an initial 

value of the parameterν , say, .)0(ν  At the )1( +t -th iteration:  

 

E-step: Compute conditional expectation  

dbbfllEQ t
o

t
o

t );|()|(];|)|([);( )()()( νννννν ∫== DDDD cccc , 

where conditional density of is given by 

. 

b

∫= dbllbf o )}|(exp{/)}|(exp{);|( cccc DDD ννν
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M-step: Maximize the conditional expectation  with respect to );( )(tQ νν ν over the 

parameter space to obtain an updated estimate )1( +tν . 

 

Iterate between E-step and M-step until convergence.  

 

Implementation of E step requires computation of  which involves a high 

dimensional integral. To overcome this problem some authors use Monte Carlo EM 

(MCEM) algorithm (Wei and Tanner (1990), Walker (1996), McCulloch (1997), Booth 

and Hobert (1999), Ibrahim et al.(2001)) which replace these integrals by its monte carlo 

approximation based on samples from . However, the method is 

computationally intensive and more suited for smaller number of random effects and 

sample sizes.  In our case, even for three categories and a single covariate the number of 

random effects may be 50 or more and the sample sizes may be prohibitively large. 

MCEM algorithm does not seem to be practical and an approximation to the integral 

seems to be in order.  

);( )(tQ νν

),|( )(t
obf νD

 

Steele (1996) describes an EM algorithm that alternates between calculating 

 a second order Laplace approximation to and solving 

 where  represents the derivative of  with 

respect to ν. Assuming that the differentiation under the integral sign is permissible, a 

standard assumption of the EM algorithm, we obtain 

);(ˆ )(tQD ννν );( )(tQD ννν

0);(ˆ )( =tQD ννν );( )(tQD ννν );( )(tQ νν

∫= dbbflDQD t
o

t );|()|();( )()( νννν νν DDcc .                                                            (15) 

Regularity conditions allow the fully exponential Laplace approximation (Tierny et al. 

(1989)) to the complete expected data score vector (15), but not the expected complete 

data log-likelihood (Steele (1996)). The Laplace approximation to is given 

by  

);( )(tQD ννν

);(ˆ )(tQD ννν = )(~ )()}|()|({ tbbc ClD νν νν =+ cc DD  ,                                                   (16) 
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where 

)|(maxarg)(~
cc

b
Dlb νν ≡ , 

and the term  T
pp CCCCC ))|(),...,|(),|(),...,|(()|( 1111 ccccc DDDDD ννννν θθββ −−=

is an adjustment factor that allows to differ from by  );(ˆ )(tQD ννν );( )(tQD ννν ).( 2−nO

The exact expressions for 1,..,1, and −= plCC ll θβ and the detailed derivation of 

)|( cDνC are given in the appendix. 

 

Steele (1996) notes that a useful first-order approximation to is obtained by 

ignoring the last term in (16). Laplace EM algorithm (Steele (1996)) with this first order 

approximation leads to the estimating equations for

);( )(tQD ννν

β  that are identical to PQL algorithm 

(Breslow and Clayton (1993)). The two algorithms essentially differ in the manner in 

which θ  is estimated. However, when the estimates of θ  are similar, the Laplace EM 

algorithm should yield more accurate estimates of the fixed effects since they are based 

on a second-order approximation rather than a first-order approximation (Steele (1996)).   

The details of the M-step are given in the appendix.  

Givenν , Laplace approximation entails 

 )())(~,;()|),;(( 1−+= nObxbxE PhOh νβπβπ D                                                           (17) 

and hence the nonparametric estimator of )(xhπ is ))(~,;( νβπ bxh . Thus the model-based 

predictive estimator of finite population proportion is given by (cf. (7))  

])ˆ,ˆ;([ˆ 1
, ∑∑

∈∈

− +=
Sj

jh
Si

ihnph bxDNP βπ ,                                                                      (18) 

where )ˆ(~ˆ νbb = . 

 

5. Splines model for multiple auxiliary variables 
In Section 4, we consider random coefficient splines model for a single auxiliary 

variable. An advantage of using this model is that, its extension to multiple auxiliary 

variables is conceptually quite straight forward. For q auxiliary variables , we qxx ,..,1
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consider a generalized additive model (GAM) (Hastie and Tibshirani (1990)) with 

in (2) being replaced by , where are unknown smooth 

functions.  For every choice of h and 

 )( ih xg ∑
=

q

α
ihα xg

1
)( α  (.)'sghα

α  ( 1,...,1 −= ph  and q,...,1=α ), we use a random 

coefficient splines model  for . The model is thus given by     )(xghα

∑∑
==

++=
q

ih
T
h

q

ih
T
hhih ZbXxg

11
0)(

α
αα

α
αααα ββ ,                                                         (19) 

where is a fixed vector of regression coefficients,  = 

, a random vector of spline coefficients and 

. Also we assume that  

T
rhhh h ),...,( 1 αααα βββ = αihX

Tr
ii
hxx ),...,( α
αα

T
Khhh hbbb ),...,( 1 αααα =

Tr
Ki

r
iih

h
h

h xxZ ))(,...,)(( 1
α

α
α

ααα κκ ++ −−= , ihb α αhKi ,..,1=

are independently and normally distributed random variables with mean 0 and unknown 

variance and as before we note that larger the values of )0(2 >ασ h ασ h ’s smoother the 

functions are. We now introduce the following notations:  (.)'sghα

 ,),...,(,),...,(,),...,(,),...,( 111111
TT

p
TTT

hq
T
hh

TT
p

TTT
hq

T
hh bbbbbb −− ==== ββββββ    

TT
p

T
hqhhKhhhh hIθ ),...,( ,),...,(,)exp(,ln 1

T
11

2
−===Σ= θθθθθθθσ ααααα , 

, T
R

TTT
phqhh diagdiag ),...,(),(),,...,(),,...,( 1111 ννθβν ==ΣΣ=ΣΣΣ=Σ −

∑∑∑∑
−

==

−

==
==+−===

1

11

1

11
 ,),2)(1( , ,

p

h
h

q

hh

p

h
h

q

hh KKKKrpRrrrr
α

α
α

α . 

With the above notations the likelihood becomes exactly equal to (13). Then to find the 

likelihood estimates of the parameters we apply EM algorithm. The E and M steps are 

exactly similar to that of the single auxiliary variable case given above but the notations 

would become more involved. Finally our estimate of the finite population proportions 

would be given by (18).  
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6. Simulation study   
Here we report the results of two limited simulation experiments. First, we consider a 

simple logit model to generate the data and compare the performance of the model-based 

estimator (4) relative to the design-based estimator (5). Also in the same set-up we study 

the performance of the estimator of the variance of (4) given by Theorem 3.  

The steps of the simulation study are as follows: 

1. We draw , i = 1,…,1000 randomly from uniform (0, 1).  For each  we find the 

trinomial probabilities 

ix ix ,

2,1),( =hxihπ  using a simple logit model with link functions 

=  and =)(1 xg x13.0031.0 + )(2 xg x043.0012.0 + . Given these probabilities a trinomial 

trial is carried out to generate the response , i = 1,…,1000 . These responses 

along with the corresponding values constitute the set of observations of a finite 

population of size N=1000.  

),,( 321 iii ddd

ix

2. A simple random sample of size 100=n  is drawn from this finite population     

without replacement 

3. We then compute , and , h=1,…,3 on the basis of the sample observations. dhP ,ˆ mhP ,ˆ hv

4. We repeat step 1 to generate an independent set of finite population observations of 

size 1000 and then compute  on the basis of it. We then compute based on a 

sample of size 100 generated from it. To make it distinct from generated at step 3, 

we refer to it as   

hP mhP ,ˆ

mhP ,ˆ

.ˆ *
,mhP

The steps 1-4 are repeated B=1000 times and let , , , and  be the 

values of  , , , and obtained at the -th (b=1,…,1000) repetition. 

b
hP dhP ,ˆ b

mhP ,ˆ b
mhP*

,
ˆ b

hv

hP dhP ,ˆ mhP ,ˆ *
,ˆ mhP hv b

The performances of the estimators  and are compared by computing their 

relative biases (RB), relative root mean squares (RRMSE) and finally finding the 

efficiency of one relative to the other. We define, 

dhP ,ˆ mhP ,ˆ
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Then the relative biases and relative root mean squares of are obtained as mhdh PP ,, ˆ and ˆ
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we compute the following entities: 

∑
=

−=
B

b

b
hh vBv

1

1 , ∑ ∑
= =

−− −=
B

b

B

b

b
h

b
mhh PBPBV

1

2

1

1*
,

1 )ˆ( , ∑
=

− −=
B

b
h

b
hh VvBvVar

1

21 )()(  

Then we compute the relative bias (RB) and instability (INST), which are defined as 

RB hhh VVv )/( −=  and INST= . Table 1 reports the results of the above 

simulation experiment. 

hh VvVar /)(

 

Table 1 
 

RB    

 

RRMSE 
 

RE 
 

 

Category  
dhP ,ˆ  mhP ,ˆ  hv  dhP ,ˆ  mhP ,ˆ  )ˆ,ˆ( ,, dhmh PPE

 
 

1 

2 

3 
 

 

-0.00888 

0.00452 

0.00510 

 

-0.00645 

0.00309 

-0.00391 

 

0.43400  (0.44077)* 

0.48071  (0.48931)* 

0.34960  (0.36140)*

 

0.13601 

0.14401 

0.15083 

 

0.10745 

0.11356 

0.11875 

 

1.6022 

1.6082 

1.6133 

* represents the figures for INST 
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In table 1, the relative bias of the analytical estimator is found to be considerable and 

also the estimator always leads to an overestimate. This seems to be natural implications 

of the following facts: (i) the true variance itself is extremely small, (ii) the analytical 

expression is valid up to O (n

hv

-1) and (iii) n is only 100. In fact, we check by running a few 

simulation experiments with larger population and sample sizes that the estimate 

becomes reasonable even with a sample size of 1000. Thus, for small sample sizes the 

analytical estimator leads to substantial overestimate.  

The choices of the functions along with the x-values make the category probabilities 

varying between 0.25 to 0.4; ensuring sufficient no of observations for each category in 

the finite population. In terms of both relative bias and efficiency, the model based 

estimator clearly dominates over the usual design-based estimator. 

Now we carry out a simulation experiment for studying the performance of 

nonparametric estimator (18) compared to the model-based and design-based estimators 

given by (4) and (5). Here we consider a set-up exactly similar to the above except that 

the probabilities 2,1),( =hxihπ  are linked to non-linear logit models with different 

choices of the smoothed functions and (cf. Breidt and Opsomer (2000) and 

Breidt et al. (2005)).  

(.)1g (.)2g

For, different choices of ’s are: ]1,0[∈x (.)hg

xxm 05.0475.0)(  :(L)Linear 11 += , xxm 05.0525.0)(12 −= , )5.0(21)(13 −+= xxm  

2
2 )5.0(21)( : (Q) Quadratic −+= xxm  

))5.0(200exp()5.0(2)( : (B) Bump 2
31 −−+−= xxxm ,        

  ))5.0(200exp()5.0(2)( 2
32 −−−−= xxxm

}65.0{4 ))5.0(235.0()( : (J) Jump ≤−+= xIxxm  

Exponential (E)  )8exp()( :  5 xxm −=

Cycle (C) : )2(Sin2)(6 xxm π+= . 

These choices, in a limited way, allow us to evaluate and compare the performance of the 

nonparametric estimator relative to the others. We consider five combinations of 

and in our simulation study, viz.,  (.)1g (.)2g
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Linear-Linear (L-L):  and   11m 12m

Linear-Quadratic (L-Q):  and    13m 2m

Bump-Exponential (B-E): and   31m 5m

Jump-Cycle (J-C): and   4m 6m

Bump-Bump (B-B): and . 31m 32m

We report the results of our simulation study in Table 2. 

 

 

Table 2 

Category Models 
dhmh PP ,, ˆ,ˆE  

dhnph PP ,, ˆ,ˆE  

 
 
 

1 

L-L  
 

L-Q  
 

B-E  
 

J-C  
 

B-B  
 

1.6075 
 

0.9740 
 

1.0558 
 

1.0159 
 

1.0211 

1.5321 
 

1.2834 
 

1.2043 
 

1.1759 
 

1.1849 

 
 
 

2 

L-L  
 

L-Q  
 

B-E  
 

J-C  
 

B-B  
 

1.6233 
 

0.9468 
 

0.9580 
 

1.0536 
 

0.9921 

1.4375 
 

1.3833 
 

1.5224 
 

1.1364 
 

1.2216 
 

 
 
 

3 

L-L  
 

L-Q  
 

B-E  
 

J-C  
 

B-B  
 

1.5884 
 

1.0290 
 

1.0167 
 

1.0237 
 

1.0576 

1.6516 
 

1.3586 
 

1.4473 
 

1.1486 
 

1.4095 
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Table 2 clearly shows that  always dominates for all choices of the link 

functions. However, as expected when at least one of and  is nonlinear, the 

estimator  is more efficient than uniformly over all categories. For some of the 

categories the gain is substantial.   

nphP ,ˆ dhP ,ˆ

(.)1g (.)2g

nphP ,ˆ mhP ,ˆ

 

7. Concluding remarks 
In this paper we use a predictive approach to improve upon the standard estimates of 

finite population proportions based on both parametric and nonparametric models 

incorporating the population information on the auxiliary variables. The question that 

may arise at this stage is: given a survey data set, how should one decide whether to use 

multinomial logit model or nonparametric model for modeling the category probabilities? 

In a recent work Goeman and Le Cessie (2006) propose a score test for testing the 

goodness of fit of multinomial logit model against the alternatives that nonlinearities or 

interaction effects may be present. This seems to be appropriate in our set-up for deciding 

which model should be used.  

 

In survey literature this is possibly the pioneering attempt to estimate the population 

proportions using multinomial logit model following a predictive approach. More 

importantly, we are able to generalize this approach to nonparametric models by using 

the recently introduced random coefficients splines models. We also implement EM 

algorithm for finding likelihood estimates using second order Laplace approximation. 

Finally, we are able to come up with an asymptotic formula for its variance and then 

propose a re-sampling based estimate of it.  
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