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Abstract

We study a duopoly market in which customers are heterogeneous in their sensitivity
to price and leadtime, and can be segmented as price sensitive or time sensitive. Each
firm tailors (differentiates) its products/services for the two customer classes solely based
on price and the corresponding guaranteed leadtime. Our objective is to understand
how competition affects price and leadtime differentiation of the firms since the extant
literature reports very contradicting results. Our results suggest that when firms use
dedicated resources to serve the two market segments, pure price competition always
tends to decrease individual prices as well as price differentiation, irrespective of the
market behavior. Further, the effect of competition is more pronounced when customers
are allowed to self-select, thereby introducing substitutability between the two product
options. On the other hand, when firms compete in time, in addition to price, the effect of
competition on product differentiation depends crucially on the behavior of the market.
We further use our model to study the effects of asymmetry between the competing firms
on their product differentiation. Our results suggest that the firm with a larger market
base should always maintain a larger price and leadtime differentiation between the two
market segments. Similarly, the firm with a capacity cost advantage should also maintain
a larger leadtime differentiation.

Keywords: Operations strategy, competition, price, leadtime, product differentiation

1. Introduction

The importance of time as a competitive priority is now well established, especially in
make-to-order and service industries. Shorter leadtime guarantee can have a major impact
on both demand as well as price. Blackburn (1991) and Maltz and Maltz (1998), besides
others, have empirically shown the impact of leadtime on customer demand. In fact,
many firms today use leadtime guarantee in their promotion campaigns. For example, Cat
Logistics, a subsidiary of Caterpillar, promises to ship service parts within 24 hours to its
clients (Schmidt and Aschkenase, 2004). Some firms even exploit customers’ sensitivity
to time to extract price premium for the same product by promising them a shorter
leadtime. Amazon.com, for example, charges more than double the shipping costs to
guarantee a delivery in two days against its normal delivery time of around a week (Ray
and Jewkes, 2004). Such firms exploit customers’ heterogeneity in their preferences for
price and time to charge different prices from different market segments (and promise
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them different leadtimes) in an attempt to capture a greater fraction of the surplus that
uniform pricing leaves with the consumers (Tirole, 1998).

Different firms in an industry may compete with each other by offering better deals,
either in the form of lower prices, better leadtime guarantees or both to their customers.
Attractive price and leadtime can generate demand. Failure to meet the guaranteed
leadtimes may, however, result in penalties, either in the form of a discount or partial
refund, denting a firm’s margin. A striking example in this context is the case of seven
online retailers, including Macys.com, Toysrus.com and CDNOW, that paid fines to the
tune of $1.5 million to settle a Federal Trade Commission lawsuit over late deliveries made
in 1999 (Pekgun, 2007). Firms, therefore, target to meet their guaranteed leadtimes with
at least a given level of reliability. In a make-to-order or service industries, this usually
translates into a better (server) capacity management, an operations related decision.
Marketing and operations managers of such firms, therefore, need to jointly decide on the
optimal prices and leadtimes for the different market segments, and the required capacity
levels.

Ours is not the first work to take into account for such a linkage between a firm’s mar-
keting decision of price and leadtime differentiation and its operation’s capacity related
decision. Boyaci and Ray (2003), Boyaci and Ray (2006), Zhao et al. (2008) and Jayaswal
et al. (2011) have done a related study, but in a monopolistic setting. Businesses in real
world, however, rarely operate as monopolists. To the best of our knowledge, ours is
the first attempt to model the linkage between a firm’s product differentiation decision
and its capacity decision in a competitive setting. The problem of product differentiation
has been studied extensively in Industrial Organization literature (see Tirole (1998) for
an extensive review of the literature). However, the literature in Industrial Organization
does not model the linkage between product differentiation and capacity related decisions,
which so crucially exists.

Keeping the above discussion in mind, we study a market with two competing firms.
Each firm sells a menu of products/services, differentiated only in their prices and lead-
time guarantees, to exploit customers’ heterogeneity in their preferences for time and
price. The main issue that a firm faces in such a market is how to optimally differentiate
its products, based on their prices and guaranteed leadtimes, for customers with different
preferences, and accordingly decide its optimal capacity levels. In a competitive market,
it also needs to take into account the reaction from other firms, and its impact on its own
demand.

The objective of this paper is to study the effect of competition on firms’ price and
leadtime differentiation decisions. While it is well known that competition, in general,
drives prices down, its effect on price differentiation (price discrimination, as is popularly
termed in Economics literature) is not clear, all the more so when the price discrimination
is based on some endogenous category such as the leadtime guarantee. The traditional
theory on price discrimination, which predicts that market competition decreases a firms
ability to use price discrimination, has often been challenged by very contrasting empiri-
cal results (Gerardi and Shapiro, 2007). Further, different empirical studies on the effects
of competition on price discrimination have themselves so far produced very conflicting
results. For example, the theoretical results of Gale (1993) suggest that price discrimina-
tion increases with competition. So does the empirical research by Borenstein and Rose
(1994) for the airline industry, which is in sharp contrast to the observations made by
Gerardi and Shapiro (2007). Further, a more complex analysis is necessary when firms
must price discriminate on the basis of some endogenous category such as the leadtime
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preference (Varian, 1989). Moreover, the effect of competition on leadtime differentia-
tion between different customer segments itself has not been studied. Through our rich
model, which takes into account the important link between marketing and operations,
we try to shed more light into the effect of market competition on price and leadtime
differentiation. Further, a competing firm may either use separate (dedicated) resources
(capacities) for the the different market segments or may share them across the market
segments. For example, FedEx uses separate facilities for its express and ground services.1

UPS, in contrast, delivers express and ground services using one integrated network.2 By
modelling both the dedicated as well shared capacity strategy used by competing firms,
we try to understand the role played by a firm’s capacity strategy on price and lead-
time differentiation strategy in a competitive market. Specifically, we try to address the
following issues: (1) How does competition affect the price and leadtime differentiation
decisions of a firm relative to a monopolistic setting? Traditional theory suggests compe-
tition should result in lower prices; should it result in lower price discrimination as well?
How does the result change if firms compete in time, in addition to price? (2) How does
the operations strategy, specifically the capacity strategy (dedicated versus shared capac-
ities), used by competing firms affect the equilibrium price and leadtime decisions? (3)
How does asymmetry in firms’ operating conditions (in terms of capacity cost or market
penetration) affect the equilibrium price and leadtime differentiation decisions?

In the first part of the paper, we study a setting where both the competing firms
use dedicated capacity strategy. Such a problem setting leads to analytical results. We
show that a Nash Equilibrium solution always exists for such a setting, and devise an
iterative procedure to compute it. In the later part of the paper, we study (numerically)
different settings where each of the competing firms may operate in a dedicated or a
shared capacity setting. Some of the important managerial insights we draw from our
analysis are: (1) Price competition not only tends to decrease individual prices, but it also
decreases price differentiation between the different market segments. Further, the effect
of competition is more pronounced in presence of product substitution (second degree
price discrimination). (2) When firms compete in time, in addition to price, the precise
effect on price and leadtime differentiation depends crucially on the market behavior. (3)
Price differentiation at equilibrium is always larger for the firm that shares its capacities
compared to the other firm that dedicates its capacities for different market segments.
However, sharing capacities results in larger leadtime differentiation only when capacity
cost is small. (4) When asymmetry exists between competing firms, the firm with a larger
market base should always maintain a larger price and leadtime differentiation between
the different market segments. Similarly, the firm with a capacity cost advantage should
also maintain a larger leadtime differentiation. However, whether it should maintain a
larger or a smaller price differentiation depends on whether the firms use dedicated or
shared capacities and also on their capacity cost level.

Rest of the paper is organized as follows. In Section 2, we provide a review of the
related literature. We present our mathematical model and the underlying assumptions
in Section 3. In Section 4, we describe the best response of a firm, both for dedicated
and shared capacity settings, given its competitor’s price and leadtime decisions. Section
5 discusses the Equilibrium solution for the duopoly problem, followed by analysis of
important results. The paper concludes with a summary of our main results and directions

1http://www.fedex.com/us/about/express/pressreleases/pressrelease011900.html?link=4
2http://sec.edgar-online.com/1999/10/20/11/0000940180-99-001230/Section2.asp

3



for future research in Section 6.

2. Literature Review

The work in this paper relates closely to price discrimination, which has been studied
extensively in the Economics (Industrial Organization) literature, and to price and/or
time competition in Operations Management (OM) field. We briefly review each of these
two areas of research separately.

The traditional theory in Industrial Organization suggests that uniform pricing leaves
some surplus with the consumers. Firms, therefore, use discriminatory pricing for the
same product/service in an attempt to capture a greater fraction of consumers’ surplus
when customers are heterogeneous in their preferences (Tirole, 1998). Earlier works on
price discrimination (e.g., Varian (1985)) have focused on its effect on social welfare.
Some of the more recent works have started to focus on the effect of competition on
price discrimination. However, there still is no agreement in the literature on whether
competition increases or decreases price discrimination.

The textbook theory argues that competitive firms cannot price discriminate since
they are price takers, while monopolists can price discriminate to the extent that there
exists both homogeneity in consumers’ demand elasticities and a useful sorting mecha-
nism to distinguish between consumer types (Gerardi and Shapiro, 2007). The textbook
theory, therefore, predicts that competition should decrease price discrimination. This
is further corroborated by the theoretical model of Rochet and Stole (2002) on second
degree price discrimination. However, the theoretical models of Gale (1993) and Stole
(1995) produce exactly the opposite results. As there is no overarching theoretical model,
the relation between competition and price discrimination becomes an empirical question.
However, different empirical studies have again produced very contrasting results. Boren-
stein (1989) and Borenstein and Rose (1994) found evidence of increasing price dispersion
with competition in airline industry, thereby suggesting that competition increases price
discrimination. However, a more detailed empirical study by Gerardi and Shapiro (2007)
found a negative relation between market competition and price dispersion, thereby sug-
gesting that competition decreases price discrimination.

Literature in OM on price and/or time competition model a firm’s operations in
detail. These papers can mostly be classified into (Cachon and Harker, 2002) (i) papers
on inventory games, and (ii) those on queueing games. Papers on inventory games are
relevant in a make-to-stock setting where firms use inventory as their strategic tool to
compete in the market. Papers on queueing games are pertinent to make-to-order or
service industries, where firms use better (server) capacity/queue management to adjust
their price and leadtime decisions, and thus compete in the market. Since our model is
relevant to make-to-order or service industries, our focus is on the latter category.

Literature on queueing games can further be categorized into (i) papers that aggregate
price and waiting time into a single measure called “full price”, and (ii) those that model
price and delivery/waiting time as independent explanatory variables. Levhari and Luski
(1978), Loch (1991), Lederer and Li (1997), Chen and Wen (2003) and Armony and Haviv
(2003) belong to the former category. All these papers assume that customers associate
a specific cost rate with their waiting time, and that they make their selection of a firm
based only on their “full price”, which is the sum of the actual price charged and the
expected delay cost, disregarding any other service attributes. Further, they assume that
all customers are in a position to assess the equilibrium steady state waiting times they
will experience.
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The second category of papers, which model price and leadtime as independent ex-
planatory variables, include So (2000), Pekgun et al. (2006), Allon and Federgruen (2007),
Allon and Federgruen (2008). These papers model customers’ aggregate demand for a
firm’s service as a function of its price, leadtime and/or other service attributes, each of
which is explicitly advertised by the firm. We position our work in this category since
we treat price and leadtimes as independent variables announced by a firm. Although
our demand model bears some similarity with those used by Pekgun et al. (2006) and
Allon and Federgruen (2007), it is fundamentally different from them in that these mod-
els consider only a single customer class, and thus there is no market segmentation. To
our knowledge, Loch (1991), Lederer and Li (1997), Armony and Haviv (2003) and Allon
and Federgruen (2008) are the only works to have addressed the phenomenon of market
segmentation. As noted earlier, these papers, except for Allon and Federgruen (2008),
assume that customers aggregate the price and leadtime into a full price, and that they
select the service provider on the basis of this full price only. In doing so, they assume
that all customers are in a position to assess the equilibrium steady state waiting times
they will experience, while in our model, waiting time standards are advertised to the
different classes. Moreover, they consider the firms’ capacity levels as exogenously given,
and not a decision variable.

Thus, Allon and Federgruen (2008) appears to be the closest to our model, although
effect of competition on price discrimination is not their focus. However, they study
completely segmented markets, which means that each customer is strictly assigned to
a specific class, and she cannot switch between different classes. This is tantamount
to saying that the specific service package (price and leadtime combination) offered to a
given customer class is not available to any other class, and hence is non-substitutable. In
marketing/economics parlance, their work is pertinent to third degree price discrimination
(see Talluri and Ryzin (2004) for a definition). Our demand model is more generalized,
which also captures product substitution. Our model, therefore, allows us to study both
second and third degree price discrimination. Moreover, Allon and Federgruen (2008)
use a service level that is based on expected leadtimes. In other words, they assume that
firms select their capacity levels so that customers from each segment are served within
their promised leadtimes on average. This does not provide any bound on instances of
unusually long leadtimes. It is quite possible then that a large portion of the demands
are actually not served within their promised leadtimes, even if the promised leadtimes
are met on average. We, therefore, assume that firms select their capacity levels so as
to fulfill their promised leadtimes with a high level of reliability (generally 99%). This
makes the leadtime guarantees more attractive, although it makes the problem a lot more
challenging to solve.

3. Decision Model

We consider a service or a make-to-order manufacturing industry with two firms, in-
dexed by i ∈ {1, 2} and j = 3−i, competing in a market that is segmented into 2 customer
classes, indexed by c ∈ {h, l}. Class h customers are high priority/express customers who
are more time sensitive and are willing to pay a price premium for a shorter leadtime.
Class l customers are low priority/regular customers who are more price sensitive and are
willing to accept a longer leadtime for a price discount. Firm i competes for its market
share by selecting its prices pic and guaranteed leadtimes Lic offered to market segment
c ∈ {h, l}. Firm i faces a demand from class c, generated according to a Poisson process
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with rate λic (pic, L
i
c, c ∈ {h, l}, i ∈ {1, 2}), which depends on the decisions of both firms

in the following way: (i) each firm’s expected demand from a given market segment is
(i) decreasing in its price and leadtime offered to that segment, (ii) increasing in its price
and leadtime offered to the other market segment, and (iii) increasing in the price and
leadtime offered offered by the other firm to the same segment. We model this using the
following system of linear equations:

λih = ai − βhp pih + θp(p
i
l − pih)− βhLLih + θL(Lil − Lih) + γp(p

j
h − p

i
h) + γL(Ljh − L

i
h) (1)

λil = ai − βlppil + θp(p
i
h − pil)− βlLLil + θL(Lih − Lil) + γp(p

j
l − p

i
l) + γL(Ljl − L

i
l) (2)

where,
2ai : market base of firm i
βcp : sensitivity of class c demand to its own price
βcL : sensitivity of class c demand to its own guaranteed leadtime
θp : sensitivity of demand to inter-class price difference
θL : sensitivity of demand to inter-class leadtime difference
γp : sensitivity of demand to inter-firm price difference
γL : sensitivity of demand to inter-firm leadtime difference

2ai parameterizes firm i′s market base. Mathematically, it is the demand faced by firm i
when price and leadtime offered by each firm to each customer class is zero. It captures
the aggregate effect of all the factors such as a firm’s brand image, service quality, etc
other than price and leadtime on demand. Hence, the firm offering the lowest price
and the shortest leadtime to a market segment need not capture its entire demand. The
relative values of ai and aj can be loosely used to describe comparative advantage in terms
of a firm’s market penetration. This may reflect the underlying preferences of customers
for one firm over the other, which may be due to customers’ appeal for a brand.

The above demand model generalizes the demand model used by Jayaswal et al. (2011)
to a competitive setting. It also generalizes the demand models used by Tsay and Agrawal
(2000) and Pekgun et al. (2006) to segmented markets. Further, it generalizes the demand
model used by Allon and Federgruen (2008) by taking into account product substitution
(θp and θL). The total market size (

∑
i∈{1,2}

∑
c∈{h,l} λ

i
c) in our model is invariant to

any changes in inter-firm or inter-class sensitivities, which only affects the distribution of
the total demand among the firms and the customer classes. However, the pricing and
leadtime decisions of the two firms affect both the total market size as well as the resulting
demand for each firm and from each market segment. By definition, βcp > 0, βcL > 0,
θp ≥ 0, θL ≥ 0, γp ≥ 0, γL ≥ 0, βhp < βlp and βhL > βlL. θp > 0, θL > 0 signifies product
substitution, while γp > 0, γL > 0 signify the presence of price competition and leadtime
competition in the market. γp = γL = 0 makes the demand of two firms independent,
and hence decouples their decision making, resulting in a monopolistic setting.

We use a reliability level αi with which firm i tries to meet its leadtime guarantee.
In our model, we restrict our discussions only to cases where the service reliability for
each firm is the same, i.e., αi = α. This is applicable in situations where there exists
some industry standard and published reports (like those published by the Aviation
Consumer Protection Division of the U.S. Department of Transportation, and Expedia
for airline industry) such that the delivery performance of each firm is readily available
to customers. In this way, firms are discouraged from performing below the standard
such that the market share is then mainly affected by their promised times and prices,
as depicted by our demand model. Of course, our model and analysis also allows for
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different service reliabilities for different firms.
We assume the time firm i takes to serve a customer from class c is exponentially

distributed with a rate µic. Firm i, therefore, behaves like an M/M/· queuing system.
Customers within each class are served on a first-come-first-serve (FCFS) basis. The firm
can invest in its installed capacity to increase its processing rate µic. We assume there
are no economies of scale in investing in capacity. So a unit increment in µic always costs
$Ai3. We also assume that firm i incurs the same operating cost of $mi in serving a
customer of either class.

The industry is assumed to have established a standard leadtime for regular customers,
and hence Lil = Ljl = Ll

4. Firm i selects and announces its express leadtime and the two
prices (Lih, p

i
h, p

i
l) so as to maximize its profit. Firm i does so taking into account the

leadtime and prices (Ljh, p
j
h, p

j
l ) selected by firm j = 3− i since they have an impact on

firm i′s demands, and hence on its profit. It also needs to simultaneously select its optimal
service rates (i.e., installed capacities) µic in order to meet the guaranteed leadtimes with
at least a minimum level of reliability αi.

Notations
i, j : indices for firm; i ∈ {1, 2}, and j = 3− i
c : index for customer class; c ∈ {h, l}
λic : mean demand rate for firm i from customer class c

(units/unit time)
µic : mean processing rate of firm i for customer class c

(units/unit time)
pic : price charged by firm i to customer class c ($/unit)
Lic : leadtime quoted by firm i to customer class c (time units)
W i
c : steady state actual sojourn (waiting + service) time of

customer class c at firm i (time units)
α : target service level set by either firm (no unit).
Sic(L

i
c) : actual service level achieved by firm i for quoted leadtime

Lic, i.e., P(W i
c ≤ Lic)

mi : unit operating cost of firm i ($/unit)
Ai : marginal capacity cost of firm i ($/unit)

In the next section, we describe the best response of a firm, given its competitor’s
price, leadtime and capacity decisions.

4. A Firm’s Best Response

Given the price, leadtime and capacity decisions (pjh, p
j
l , L

j
h, µ

j
h, µ

j
l ) of firm j = 3− i,

firm i ∈ {1, 2} tries to selects its own corresponding decisions (pih, p
i
l, L

i
h, µ

i
h, µ

i
l) that

maximize its profit and also ensure that its leadtime commitments are met reliably. As
clear from the demand model ((1) - (2)), the demands for firm i ∈ {1, 2}, and its decisions

3Ai may be different for different customer classes if they are served by different service capaci-
ties. Using the same marginal capacity cost for the two customer classes, however, allows a meaningful
comparison between the dedicated and the shared capacity settings.

4Although we make this assumption mainly for the tractability of the model, this is still a reasonably
realistic representation of certain business settings. For example, in most of the online retail web hosting
services, any updating of content, if not done in express fashion, must be done within one day (Boyaci
and Ray, 2003).
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in turn, depend on the price and leadtime decisions made by firm j = 3 − i. Firm i′s
demand and its decisions, however, do not depend on the capacity level (µjh, µ

j
l ) selected

by firm j. While competing with the other firm, each firm, therefore, possesses only
two types of essential strategic instruments: prices and the leadtimes. Firm i′s strategy
can be defined as a vector of its strategic decision variables si := (pih, p

i
l, L

i
h), which

it uses to compete against the other firm j. The best response of firm i to firm j′s
strategy, sj := (pjh, p

j
l , L

j
h), is thus a strategy si∗ := (pi∗h , p

i∗
l , L

i∗
h ) such that πi(si∗, sj) =

maxsi π
i(si, sj), i ∈ {1, 2} and j = 3 − i. Firm i′s best response is the solution to

the following optimization problem (called the pricing and leadtime decision problem
[PLDP i]):

[PLDPi] :

max
pih,p

i
l ,L

i
h,µ

i
h,µ

i
l

πi = (pih −mi)λih + (pil −mi)λil − Ai(µih + µil) (3)

s.t. Lih < Lil (4)

pih, p
i
l, λ

i
h, λ

i
l, µ

i
h, µ

i
l ≥ 0 (5)

Stability condition (6)

Sih(L
i
h) = P (W i

h ≤ Lih) ≥ α (7)

Sil (L
i
l) = P (W i

l ≤ Lil) ≥ α (8)

where λih and λil are given by (1) and (2) respectively. The objective function (3) is
the profit per unit time. Constraint (4) requires that the guaranteed leadtime for high
priority customers be shorter than that for the other class. Constraint set (5) is needed
to define a realistic problem setting. Constraint (6) is the stability condition for the
queuing system, which models the service facility at the firm. Constraints (7) and (8)
are leadtime reliability constraints (also called service level constraints), which require
that the steady state actual leadtime W i

h (resp., W i
l ) of a customer should not exceed its

guaranteed leadtime Lih (resp., Lil) with a probability of at least α.
Note that a firm’s best response problem has a form very much similar to a firm’s

optimal decision in a monopolistic setting, discussed by Jayaswal et al. (2011). Difference
still arises between the two due to the strategic interaction between the competing firms,
which is captured in the demand model (1) - (2). Therefore, the best response of a
firm can also be solved by adapting the solution method developed by Jayaswal et al.
(2011) for the monopolistic setting. In what follows, we adapt [PLDP i] for a firm using
dedicated or shared capacity strategy by specifying the form of constraints (6)-(8).

4.1. Dedicated Capacity Setting

For a dedicated capacity setting, where each customer class is served by a separate
M/M/1 server, the sojourn time distribution for either class of customers is known to be
exponential (Ross, 2010). In this case, there is a separate stability condition for each of
the queues. Hence, constraints (6), (7) and (8) can be expressed as:

λic − µic < 0, c ∈ {h, l} (6DC)

Sih(L
i
h) = P (W i

h ≤ Lih) = 1− e(λih−µih)Li
h ≥ α (7DC)
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Sil (L
i
l) = P (W i

l ≤ Lil) = 1− e(λil−µil)Li
l ≥ α (8DC)

Proposition 1. For a given strategy sj := (pjh, p
j
l , L

j
h) by firm j = 3− i, the best response

express leadtime Li∗h of firm i ∈ {1, 2} using dedicated capacities is given by the unique
root of (9) in the interval [0, Lil)

∂πi(Lih)

∂Lih
=−

(
βhL + θL + γL

) (
pi∗h (Lih)−mi −Ai

)
+ θL

(
pi∗l (Lih)−mi −Ai

)
− A ln(1− α)

(Lih)2

(9)

where pi∗h (Lih) and pi∗l (Lih) are the optimal prices for a fixed express leadtime of firm i,
given by:

pi∗h (Lih) =
(βlp + 2θp + γp)a

i − {βlp(θL + γL) + βhL(βlp + θp + γp) + θpγL + γLγp + θLγp}Lih
2D

+{(βlp + γp)θL − (βlL + γL)θp}Lil + (βlpγp + γpθp + γ2p)pjh + (θpγp)p
j
l

2D

+(βlpγL + γLγp + θpγL)Ljh + (θpγL)Ljl
2D

+
Ai +mi

2
(10)

pi∗l (Lih) =
(βhp + 2θp + γp)a

i − {βhp (θL + γL) + βlL(βhp + θp + γp) + θpγL + γLγp + θLγp}Lil
2D

+{(βhp + γp)θL − (βhL + γL)θp}Lih + (θpγp)p
j
h + (βhpγp + γpθp + γ2p)pjl

2D

+(θpγL)Ljh + (βhpγL + γLγp + θpγL)Ljl
2D

+
Ai +mi

2
(11)

and D = βhpβ
l
p + βhp θp + βlpθp + βhpγp + βlpγp + 2θpγp + γ2p .

The corresponding optimal price differentiation is then:

pi∗h (Lih)− pi∗l (Lih) =
{(βlp − βhp )ai + (βhp + βlp)θL + (γL + 2θL)γp}(Lil − Lih)

2D

−(βlpβ
h
L + βlpγL + βhLγp)L

i
h + (βhpβ

l
L + βhpγL + βlLγp)L

i
l + (βlp + γp)γpp

j
h

2D

−(βhp + γp)γpp
j
l + (βlp + γp)γLL

j
h − (βhp + γp)γLL

j
l

2D
(12)

Proof. See Appendix A.

(10) and (11) suggest that in pricing its product for a given customer segment, a firm
should take into account the price quoted by the other firm not only to the same customer
segment but also to the other customer segment. This, at first thought, sounds surprising.
This is because our demand functions (1) and (2) suggest that a firm’s demand from a
given segment is not influenced by what is offered to the other segment by the other firm.
To make things clear, our demand function (1), for example, suggests that the demand
faced by firm 1 from the express segment depends on the price charged by firm 2 to the
express segment, but is not influenced by what firm 2 charges to the regular customers.
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However, (10) suggests that in pricing its product for express customers, firm 1 should
keep in mind not only the price charged by firm 2 to the express customers but also
the price charged by firm 2 to the regular customers. This is because firm 2′s price to
regular customers influences its demand from express customers as well. So, in pricing
its product for express customers, firm 1 should take into account the other factors that
influence its express customers’ decision, which includes the price charged by firm 1 to
its regular customers.

Proposition 2. Given a strategy sj := (pjh, p
j
l , L

j
h) of firm j = 3 − i, a decrease in

the express leadtime Lih by firm i ∈ {1, 2} using dedicated capacities results in: (a) an
increase in pi∗h (b) a decrease in pi∗l if θL/(β

h
L + γL) > θp/(β

h
p + γp); an increase in pi∗l if

θL/(β
h
L + γL) < θp/(β

h
p + γp).

Proof. Follows directly from Proposition 1.

Proposition 2 suggests that given the decisions of the other firm, a firm’s best response
express price always increases with a decrease in its own express leadtime. The effect of
any change in its express leadtime on the regular price, however, depends on the behavior
of the market. Specifically, the regular price decreases with any decrease in its express
leadtime if the relative sensitivity of customers to the inter-class leadtime difference (with
respect to their own leadtime and inter-firm leadtime difference) is greater than their
relative sensitivity to the inter-class price difference (with respect to their own price and
inter-firm price difference), such that θL/(β

c
L+γL) > θp/(β

c
p+γp), c ∈ {h, l}. We call such

a market as Time Difference Sensitive (TDS). On the other hand, a decrease in its express
leadtime increases its regular prices if the relative sensitivity of customers to the inter-class
leadtime difference (with respect to their own price and inter-firm leadtime difference) is
smaller than their relative sensitivity to the inter-class price difference (with respect to
their own price and inter-firm price difference), such that θL/(β

c
L + γL) < θp/(β

c
p + γp),

c ∈ {h, l}. We call such a market as Price Difference Sensitive (PDS).

4.2. Shared Capacity Setting

The firm’s choice of shared capacity is modelled using a single server, which serves
both customer classes employing a simple fixed priority scheme that always gives priority
to time-sensitive customers. Customers within each class are served on a first-come-first-
served (FCFS) basis. In this paper, we use a preemptive priority scheme, but the analysis
can be extended to a non-preemptive priority discipline.

For a shared capacity setting, the sojourn time distribution Sih(·) for high priority
customers in a preemptive priority queue is known to be exponential (Chang, 1965).
Hence, the leadtime reliability constraint (7) has an analytical closed-form representation,
similar to that for the dedicated capacity setting. We assume the single server serves
customers of either class at the same rate µih = µil = µi. Constraints (6) and (7) in a
shared capacity setting can then be expressed as:

λih + λil − µi < 0 (6SC)

Sih(L
i
h) = P (W i

h ≤ Lih) = 1− e(λih−µi)Li
h ≥ α (7SC)

However, a closed form expression for the sojourn time distribution Sil (·) for low priority
customers, appearing in constraint (8), is not known (see Jayaswal et al. (2011) for a
detailed discussion). Further, even an analytical characterization of the sojourn time
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distribution or a good approximation will not produce an analytical solution similar to
that for the dedicated capacity setting since it cannot be guaranteed at the outset which
of the constraints will be binding at optimality. So, the model in a shared capacity
setting does not lend itself to an easy solution using conventional optimization methods.
We resolve this difficulty by solving it in two stages. We first solve the problem for a
fixed Lih (we term it as pricing decision problem [PDP i

SC ]) numerically using the matrix
geometric method in a cutting plane framework (see Appendices B, C and D). Solution
to [PDP i

SC ] is then used to solve the pricing and leadtime decision problem [PLDP i
SC ]

using the golden section search method. In the following, we discuss the solution method
very briefly, and refer our readers to Jayaswal et al. (2011) for the details.

4.2.1. The Pricing Decision Problem [PDP i
SC]

On substituting (1) and (2) into (3), the objective function for [PDP ] is quadratic.
All constraints are linear, except for (8), which does not have a closed form expression.
Although the exact form of Sil (·) in constraint (8) is unknown, we exploit its special
structure, determined numerically using the matrix geometric method (see Appendix A).
Plots of Sil (·) vs. (pih, p

i
l), and Sil (·) vs. µi are shown in Figure 1. These plots suggest

that Sil (·) is concave in (pih, p
i
l) and separately in µi. However, this does not necessarily

show the joint concavity of Sil (·) in (pih, p
i
l, µ

i). We will, therefore, integrate into our
solution method a mechanism to ensure that the concavity assumption is not violated.
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Figure 1: Service level vs. prices and capacity

Assuming Sil (·) is concave, it can be approximated by a set of tangent hyperplanes at
various points (pikh , pikl , µik), ∀ k ∈ K, that is:

Sil (·) = min
k∈K

{
Sikl (·) + (pih − pikh )

(
∂Sikl (·)
∂pih

)
+ (pil − pikl )

(
∂Sikl (·)
∂pil

)
+ (µi − µik)

(
∂Sikl (·)
∂µi

)}

where Sikl (·) denotes the value of Sil (·) at a fixed point (pikh , p
ik
l , µ

ik).
∂Sik

l (·)
∂pih

,
∂Sik

l (·)
∂pil

and

∂Sik
l (·)
∂µi

are the partial gradients of Sil at (pikh , p
ik
l , µ

ik), which can be obtained using the

finite difference method, described in Appendix C. Constraint (8) in a shared capacity
setting can thus be replaced by the following set of linear constraints:

Sikl (·)+(pih−pikh )

(
∂Sikl (·)
∂pih

)
+(pil−pikl )

(
∂Sikl (·)
∂pil

)
+(µi−µik)

(
∂Sikl (·)
∂µi

)
≥ α ∀k ∈ K (13)

Substituting the above set of constraints in place of (8), and the expressions (1) and
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(2) for λih and λil results in the following quadratic programming problem (QPP) with
a finite but a large number of constraints, which makes it suitable for the cutting plane
method (Kelley, 1960).

[PDPi
(K)] :

max
pih,p

i
l ,µ

i
πi = −(βhp + θp + γp)(p

i
h)2 − (βlp + θp + γp)(p

i
l)
2 + 2θpp

i
hp
i
l

+
{
−βhLLih + θL(Lil − Lih) + γL(Ljh − L

j
l ) + γpp

j
h +mi(βhp + γp) + ai

}
pih

+
{
−βlLLil + θL(Lih − Lil) + γL(Ljl − L

i
l) + γpp

j
l +mi(βlp + γp) + a

}
pl −Aiµ

+ (βhL + γL)miLih + (βlL + γL)Lilm
i − γL(Ljh + Ljl )m

i − γp(pjh + pjl )
i − 2miai (14)

subject to:

pih, p
i
l, µ

i ≥ 0 (15)

− (βhp + θp + γp)p
i
h + θpp

i
l ≥ (βhL + θL + γL)Lih − θLLil − γpp

j
h − γLL

j
h − a

i (16)

θpp
i
h − (βlp + θp + γp)p

i
l ≥ −θLLih + (βlL + θL + γL)Lil − γpp

j
l − γLL

j
l − a

i (17)

− (βhp + γp)p
i
h − (βlp + γp)p

i
l − µi

< (βhL + γL)Lih + (βlL + γL)Lil − γp(p
j
h + pjl )− γL(Ljh + Ljl )− 2ai (18)(

∂Sikl (·)
∂pih

)
pih +

(
∂Sikl (·)
∂pil

)
pil +

(
∂Sikl (·)
∂µi

)
µi ≥ α− Sikl (·)+(

∂Sikl (·)
∂pih

)
pikh +

(
∂Sikl (·)
∂pil

)
pikl +

(
∂Sikl (·)
∂µi

)
µik ∀k ∈ K (19)

− (βhp + θp + γp)p
i
h + θpp

i
l − µi

≤ ln(1− α)

Lih
− ai + (βhL + θL + γL)Lih − θLLil − γpp

j
h − γLL

j
h (20)

It is easy to verify that the Hessian of (14) is negative semidefinite. Therefore, [PDP(K)]
has a quadratic concave objective function. Moreover, all its constraints are linear. Hence,
Karush-Kuhn-Tucker (KKT) conditions are both necessary and sufficient for its global
optimal solution (Luenberger, 1984). [PDP i

(K)] can be solved using any of the standard

algorithms like Wolfe’s Algorithm (Wolfe, 1959).
We use the matrix geometric method to numerically evaluate the sojourn time dis-

tribution, Sikl (·), at a given point (pikh , pikl , µik) (see Appendix B). We refer the reader
to Neuts (1981) for details of the matrix geometric method. Once Sil (·) is evaluated at
a point (pikh , pikl , µik), its gradients are obtained using the finite difference method, de-
scribed in Appendix C. The gradients are used to generate cuts of the form (19), which
are added iteratively in the cutting plane algorithm (see Appendix D).

4.2.2. The Pricing and Leadtime Decision Problem [PLDP i
SC]

The pricing and leadtime decision problem [PLDP i
SC ] adds an additional dimension

to [PDP i
SC ] by treating Lih as a decision variable, which the firm tries to jointly optimize

along with pih, p
i
l and µi for a given set strategy of firm j 6= i. This makes constraint (7SC)

non-linear, and the model substantially more challenging to solve. We use the solution to
[PDP i

(K)] and the golden section search method (Luenberger, 1984) to solve [PLDP i
SC ],
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which can be rewritten as:

max
Li
h∈ [0, Li

l)
f(Lih)

where f(Lih) is a [PDP i
SC ] for a fixed Lih. We have shown in a dedicated capacity setting

that f(Lih) has a unique maximum when ai is high (see Appendix A). Our extensive
numerical experiments with f(Lih) suggests that a sufficiently large ai guarantees that
f(Lih) has a unique maximum in a shared capacity setting as well, and hence [PLDP i

SC ]
can be solved efficiently using the golden section search method. At each step, the
algorithm solves a [PDP i

(K)] to evaluate f(Lih) for a given value of Lih.

5. Duopoly Problem

We now study the price and leadtime decisions for a duopoly problem. One basic
question is to investigate whether an equilibrium exists, and if so, how will the equilibrium
change under different operational settings and market characteristics. To investigate
the effect of capacity strategy on equilibrium price and leadtime decisions, we study the
following three scenarios: (1) DD: both firms using dedicated capacities; (ii) SS: both
frims using shared capacities; (iii) DS: firms 1 using dedicated capacities while firm 2
using shared capacities. However, we study the DD scenario in a greater detail as it
allows us to obtain analytical results.

Under competition, both firms simultaneously announce their price and leadtime deci-
sions. We assume that firm i ∈ {1, 2} has full knowledge of the operational setting of firm
j = 3− i, including its capacity strategy and also its parameters A, m and a. Firm i can
thus correctly anticipate the best response of firm j to its own moves, and can hence strate-
gically plan its own strategy. Nash Equilibrium is reached when none of the firms can do
better by unilaterally deviating from its decisions. A Nash equilibrium is thus a vector
of strategies (si∗, sj∗) such that for each firm i, πi(si∗, sj∗) = maxsi π

i(si, sj∗), i ∈ {1, 2}
and j = 3 − i. In other words, the strategy used by either firm is the best response to
the strategy chosen by the other.

We first study the equilibrium results under pure price competition in a DD scenario.
Pure price competition is relevant to situations where the industry may face a significantly
higher stickiness for the leadtime decisions compared to its ability to vary prices. A
relatively higher stickiness for leadtime decisions may arise, for example, when the services
are partly outsourced to a third party. In such a situation, the firms may not be able
to revise their leadtime decisions as frequently as they can revise its prices, and may
compete primarily based on prices, treating their delivery times as given. Other factors
contributing to stickiness in leadtime decisions can be found in (Allon and Federgruen,
2007).

5.1. Pure Price Competition in a DD Setting

Proposition 1 gives the best response prices of a firm. Thus, when the leadtime
decisions are fixed, such that firms compete purely using prices, equilibrium prices can
be obtained in closed-form by the simultaneous solution of the 4 linear equations given
by (10) and (11) (2 equations corresponding to each i ∈ {1, 2}).
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Proposition 3. Pure price competition in a DD setting has a Nash equilibrium. Further,
if the firms are identical, then the equilibrium prices are symmetric, given by:

p∗h(Lh) =
(2βlp + 4θp + γp)a− {βhL(2βlp + 2θp + γp) + (2βlp + γp)θL}Lh

D1

+{(2βlp + γp)θL − 2βlLθp}Ll
D1

+(2βhpβ
l
p + 2βhp θp + βhpγp + 2βlpθp + 2βlpγp + 4θpγp + γ2p)(A+m)

D1
(21)

p∗l (Lh) =
(2βhp + 4θp + γp)a+ {(2βhp + γp)θL − 2βhLθp}Lh

D1

−{βlL(2βhp + 2θp + γp) + (2βhp + γp)θL}Ll
D1

+(2βlpβ
h
p + 2βlpθp + βlpγp + 2βhp θp + 2βhpγp + 4θpγp + γ2p)(A+m)

D1
(22)

where D1 = 4βhpβ
l
p + 4βhp θp + 2βhpγp + 4βlpθp + 2βlpγp + 4θpγp + γ2p .

Proof. See Appendix E.

The corresponding price differentiation for a given Lh is then:

p∗h(Lh)− p∗l (Lh) =
2(βlp − βhp )a+ 2(βlp + βhp + γp)θL(Ll − Lh) + βlL(2βhp + γp)Ll

D1

−(2βlp + γp)β
h
LLh + (βlp − βhp )γp(A+m)

D1
(23)

5.1.1. Effect of Pure Price Competition in a DD Setting

We now study the effect of price competition on a firm’s price and leadtime decisions
in a dedicated capacity setting. We know competition generally drives prices down. But
how does competition affect price differentiation/discrimination? To answer this, we
compare the optimal prices of a monopolist with its equilibrium prices when it faces price
competition from an identical firm. A monopolist setting can be represented using a
competitive model for two identical firms, each with a market base 2a, but with γp =
γL = 0. This represents two identical firms operating in (geographically or otherwise)
different markets such that they do not poach each other’s market share. In contrast, a
competitive setting represents a situation in which two firms operate in the same market,
each with a market base 2a, such that each firm’s demand is affected by the relative prices
of the two firms. Mathematically, this corresponds to γp > 0, γL > 0 in our competitive
model.

Proposition 4. Pure price competition in a dedicated capacity setting always results
in: (a) a lower express price p∗h, (a) a lower regular price p∗l , and (c) a lower price
differentiation (p∗h− p∗l ). Further, the effects are more pronounced in presence of product
substitution.

Proof. See Appendix F
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The effect of competition on individual prices is not surprising. In fact, it is well
established in theory that competition always decreases prices (Varian, 1989). A practical
example is the ongoing price war between Amazon.com, Apple, Barnes & Noble, and
Sony for their e-readers (Miller, 2010). However, as pointed out earlier in Section 1, the
extant literature in Industrial Organization has very contradicting results on the effect
of competition on price differentiation. Our model, with an important linkage between
marketing decision of price discrimination and operation’s capacity related decisions,
provides results that concur with the traditional theory on price discrimination, which
predicts that market competition decreases a firms ability to use price discrimination.
Further, our results suggest that the effects of competition on individual prices as well as
price discrimination are more pronounced in the presence of product substitution. This
suggests that the degree of price discrimination (second degree in the presence of product
substitution, and third degree in absence of product substitution) further plays a role in
deciding the intensity of the effect of price competition.

5.2. Price and Leadtime Competition in a DD Setting

We now consider a more general situation where firms have flexibility in quoting
the leadtimes to their express customers. We still assume there is a standard leadtime
for regular customers established by the industry (Section 3 discusses the situations in
which a standard leadtime for regular customers is justified). In such a situation, firms
compete by strategically selecting the express leadtime in addition to the two prices. The
equilibrium express leadtimes are given by the simultaneous solution of the system of 2
non-linear equations, given by (9) = 0 for i = 1, 2. In absence of a closed-form solution
for this system of non-linear equations, we design an iterative procedure, described in
Figure 2, that always converges to the equilibrium solution. We solve for an equilibrium
solution assuming the game is played dynamically, starting at an initial solution, until
none of the firms has an incentive to deviate from its decision unilaterally.

1. Initialization: For each firm i, set pih = pil = mi, Lih = 0 or
Lih = Ll.

2. Iterative step: Start with i = 1. Use the best response obtained
for Firm i problem. Repeat this for i = 2.

3. Convergence criteria: Repeat step 2 until each firm’s decision
values differ from their previous values by less than some prede-
termined tolerance level ε.

Figure 2: Iterative Algorithm for Nash Equilibrium

Proposition 5. The iterative algorithm given in Figure 2 converges to a Nash Equilib-
rium for a DD setting.

Proof. See Appendix G.

5.2.1. Effect of Price and Leadtime Competition

When firms use leadtime, in addition to price, as a strategic tool to attract demand
and compete in the market, this leads to another question of interest: how does com-
petition affect both price and leadtime differentiation? To answer this, we compare the
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equilibrium prices and leadtime decisions in a competitive setting with that under a mo-
nopolistic setting. The effect of competition on price and leadtime differentiation, in
general, depends on the relative intensities of price competition (γp) and leadtime com-
petition (γL), as well as other demand parameters. The following proposition summarizes
the effect of competition for special cases.

Proposition 6. Price and leadtime competition in a dedicated capacity setting: (a) de-
creases both leadtime differentiation and price differentiation when γL = 0; (b) increases
both leadtime differentiation and price differentiation when γp = 0.

Proof. See Appendix H

The above proposition suggests that price and leadtime competition may increase
or decrease price and leadtime differentiation, depending on customers’ behavior. This
is intuitive. When γL = 0, customers’ choice of a firm is not influenced by the relative
leadtimes but by the relative prices offered by the two firms. In such a situation, firms tend
to cut prices to attract customers. At the same time, they increase their express leadtime
(and hence decrease their leadtime differentiation) in order to cut their capacity cost and
maintain their profit. It further follows from (23) that a smaller leadtime differentiation
(and hence larger express leadtime) also results in a smaller price differentiation. On the
other hand, when γp = 0, customers’ choice of a firm is not influenced by the relative
prices but by the relative leadtimes offered by the two firms. In such a situation, firms try
to cut their leadtimes to attract customers. This results in a smaller express leadtime,
and hence a larger leadtime differentiation. Again, it follows from (23) that a larger
leadtime differentiation also allows the firms to maintain a larger price differentiation.

5.3. Effect of Capacity Strategy

We have thus far studied competition between firms that use dedicated capacities for
different market segments. However, as discussed in Section 1, different firms, even in
the same industry, use different capacity strategies. A natural question then is: how does
firms’ capacity strategy affect equilibrium price and leadtime decisions? Jayaswal et al.
(2011) have addressed the same question but in a monopolistic setting. In this paper,
we pose the same question in a competitive setting. To answer this, we compare the
equilibrium decisions of otherwise symmetric firms under the three scenarios, described
in Table ??. The best response of a firm in a shared capacity setting, however, lacks
an analytical characterization. Therefore, it is not possible to derive analytical results
for equilibrium decisions when at least one of the competing firms uses shared capacities
for its different market segments. We, therefore, test our models numerically under
different combinations of parameter values. Our numerical results suggest that the price
and leadtime competition always has a unique equilibrium, obtained using the algorithm
described in Figure 2. Generalizations based on observable patterns that emerge from
these numerical experiments are reported as observations.

Table 1: Market parameters used in numerical examples

Market Type ↓ βhp βlp θp βhL βlL θL γp γL
TDS 0.55 0.75 0.15 0.9 0.7 0.5 0.4 0.4
PDS 0.5 0.7 0.4 0.9 0.7 0.1 0.4 0.4
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Table 2: Firm-specific parameters used in numerical examples

Firm 1 Firm 2
a1 m1 α1 L1

l a2 m2 α2 L2
l

10 3 0.99 1 10 3 0.99 1

We present a small sample from our extensive numerical experiments to illustrate
the effect of capacity strategy on equilibrium decisions. We use the parameter setting
described in Tables 1 and 2 for two levels of capacity cost: (i) A = 0.01 (for small
capacity cost) and (ii) A = 0.25 (for large capacity cost). A comparison of the equilibrium
prices and leadtimes in an SS versus a DD setting is shown in Table 3, and for a DS
setting is shown in Table 4. Results from the numerical experiments are summarized
in the following Observation. It suggests that the effect of firms’ capacity strategy in a
monopolistic setting, as studied by Jayaswal et al. (2011), also extends to the competitive
setting.

Table 3: Numerical Results for DD and SS settings

A = 0.01 A = 0.25
PDS TDS PDS TDS

DD SS DD SS DD SS DD SS
L∗h 0.079835 0.07984 0.075916 0.075927 0.40887 0.375944 0.393785 0.382392

Ll − L∗h 0.920165 0.92016 0.924084 0.924073 0.59113 0.624056 0.606215 0.617608
p∗h 8.48642 8.4861 8.487575 8.487409 8.475324 8.496719 8.397922 8.407862
p∗l 7.4262 7.42033 6.748059 6.742129 7.536979 7.410724 6.933531 6.790338

p∗h − p
∗
l 1.06022 1.06577 1.739516 1.74528 0.938345 1.085995 1.464391 1.617524

Table 4: Numerical Results for DS setting

A = 0.01 A = 0.25
PDS TDS PDS TDS

D S D S D S D S
L∗h 0.079836 0.079838 0.075915 0.075928 0.409076 0.375427 0.393641 0.381862

Ll − L∗h 0.920164 0.920162 0.924085 0.924072 0.590924 0.624573 0.606359 0.618138
p∗h 8.486179 8.486345 8.48746 8.487527 8.469203 8.502327 8.395587 8.410847
p∗l 7.425453 7.42108 6.747257 6.742933 7.520666 7.426818 6.914207 6.809853

ph − p∗l 1.060726 1.065265 1.740203 1.744595 0.948537 1.075509 1.481381 1.600994

Observation 1: - Price and leadtime competition under SS, compared to DD, results in:
(a) a larger price differentiation at equilibrium, and (b) a larger leadtime differentiation
at equilibrium if capacity cost is high, but a smaller leadtime differentiation when capacity
cost is small.
- Price and leadtime competition under DS results in: (a) a larger price differentiation at
equilibrium for the firm using shared capacities, and (b) a larger leadtime differentiation
at equilibrium for the firm using shared capacities if capacity cost is high, but a smaller
leadtime differentiation for the firm using shared capacities when capacity cost is small.

5.4. Effect of Asymmetry Between Firms

We have thus far studied competition between firms that are symmetric with respect
to their market base a, capacity cost A and operating cost m. When the competing firms
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are asymmetric, they will try to exploit their competitive advantage of a lower capacity
cost A, or a higher market base a. We study the effects of such asymmetries on their
equilibrium decisions.

5.4.1. Asymmetry in Capacity Cost

Observation 2: If one of the firms, which are otherwise identical, has a higher capacity
cost, then compared to the other firm at equilibrium:
- in a DD setting, it has (a) a smaller leadtime differentiation, and (b) a smaller price
differentiation (Refer to Figure 3).
- in an SS seting, it has (a) a smaller leadtime differentiation, and (b) a smaller price dif-
ferentiation if the absolute capacity costs are very small, but a larger price differentiation
if the absolute capacity costa are high (Refer to 4).
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Figure 3: Effects of capacity cost asymmetry on product differentiation decisions in a DD setting

Figure 3 shows the equilibrium price and leadtime differentiations of the two firms
in a DD setting that differ in their capacity costs but are otherwise identical. Figure 4
shows similar plots for an SS setting. We show these plots for market parameter values
shown in Table 1 corresponding to a PDS type market, although the qualitative results
are independent of the specific market parameters. Firm-specific parameters are as shown
in Table 2. In one set of experiments, we fix the capacity cost of firm 1, A1, at 0.01 and
vary that for firm 2, A2, from 0.01 to 0.10. In another set of experiments, we fix A1 at 0.25
and vary A2 from 0.25 to 1.0. This helps us capture the effect of a larger capacity cost
incurred by firm 2 on the decisions of the two firms at equilibrium. As evident from the
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Figure 4: Effects of capacity cost asymmetry on product differentiation decisions in an SS setting

plots, when the firms are symmetric (A2 = A1), the leadtime and price differentiations
of both firms coincide. Any increase in firm 2′s capacity cost (A2) always decreases its
leadtime differentiation at equilibrium, irrespective of the capacity settings used by the
two firms. An increase in A2 also decreases firm 2′s price differentiation at equilibrium in
a DD setting. In an SS setting, an increase in A2 decreases firm 2′s price differentiation
only when A1 and A2 are still small (≤ 0.1); when A1 and A2 are high (≥ 0.25), an
increase in A2 increases firm 2′s price differentiation. However, the effect of an increase
in firm 2′s capacity cost A2 may have a similar or a contrasting effect on firm 1, depending
on the market parameters and the level of the capacity cost. Whatever be the effects on
individual firms, when A2 > A1, firm 2 always has a smaller leadtime differentiation and
a smaller price differentiation in a DD setting, but a higher price differentiation for larger
absolute capacity costs in an SS setting.

5.4.2. Asymmetry in Market Base

Observation 3: If one of the firms, which are otherwise identical, has a larger market
base, then compared to the other firm at equilibrium:
- it always has (a) a larger leadtime differentiation, and (b) a larger price differentiation,
irrespective of the capacity strategy of either firm (Refer to Figures 5 and 6).

We illustrate this result using a sample from our numerical experiments. We consider
two firms that have different market bases (a1 6= a2), but are otherwise identical. Differ-
ence in the market bases of the two firms means that one firm always has a higher mean
demand even if they both offer the same leadtimes at the same prices. This may be the
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Figure 5: Effects of asymmetry in market base on product differentiation decisions in a DD setting
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Figure 6: Effects of asymmetry in market base on product differentiation decisions in an SS setting

result of a difference in their brand appeal to the customers or due to a more convenient
locations or a better customer experience at one of the firms. We assume the market is
PDS type (parameter values shown in Table 1), although the generalizations drawn are
independent of the specific market parameters. Firm specific parameters are as shown
in Table 2. The market base a1 for firm 1 is now fixed at 10, while that for firm 2 (a2)
is varied. Figures 5 and 5 show the equilibrium price and leadtime differentiations of
the two firms in a DD and an SS setting, respectively. This helps us capture the effect
of a larger market base of firm 2 on the decisions of the two firms at equilibrium. As
evident from the plots, when the firms are symmetric (a2 = a1), the leadtime and price
differentiations of both firms coincide. Any increase in firm 2′s market base (a2) increases
its lead time differentiation as well as the price differentiation at equilibrium. Although
firm 1′s price and leadtime differentiation decisions also increase with a2 in this case,
this is specific only to this set of market parameters. In general, the behavior of firm
1′s decisions depends on the market parameters. Whatever be the effects on individual
firms, when a2 > a1, firm 2 always has a larger leadtime differentiation and a larger price
differentiation, irrespective of the capacity strategy and market parameters.
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6. Conclusion & Future Research

In this paper, we studied the product differentiation strategies of competing firms,
which may use different capacity strategies. Our primary objective was to understand
the effect of competition on a firm’s product differentiation strategy since there is still no
general agreement on it in the existing literature. We further investigated the effect of
different (dedicated versus shared) capacity strategies used by competing firms on their
product differentiation strategies at equilibrium. For this, we developed a general math-
ematical model, special cases of which captures a firm’s best response to its competitor’s
decisions, depending on whether it uses dedicated or shared capacities to serve different
market segments.

Our study provides insight into the effect of competition on price discrimination. We
showed that when firms use dedicated capacities, pure price competition always reduces
individual prices as well as price discrimination. However, when firms use leadtimes, in
addition to prices, as strategic variables to compete in the market, the effect of competi-
tion on product differentiation further depends on customers’ behavior. Our study also
brings out the effect of firms’ capacity strategy on their price and leadtime differentiation
decisions. Specifically, when processing capacities are expensive, the firm with shared
capacities should offer faster and more expensive product to time sensitive customers
and slower and cheaper product to price sensitive customers compared to the firm us-
ing dedicated capacities. This implies that the firm with shared capacities should offer
more differentiated products. Further, the above effect of the capacity strategy does not
depend on any end customer characteristics or whether the products are substitutable
or not. When asymmetry in capacity costs exists between firms, the way a firm should
exploit its lower capacity cost further depends on its own capacity strategy and also of its
competitor. Specifically, the firm with cheaper capacities should make its products more
differentiated if both firms use dedicated capacities. If both firms use shared capacities,
then the firm with cheaper capacities should again make its leadtimes more differenti-
ated, but whether it should offer more homogeneous or more differentiated prices depends
further on the capacity strategy used by the two frms as well as their level of capacity
cost. Whereas the firm with a larger market base should always offer more differentiated
products, irrespective of the capacity strategy of either firm.

There are a number of directions in which the current research can be extended.
One possible extension would be to develop a good approximation for the sojourn time
distribution Sl(·) of the low priority customers in a shared capacity setting, which can
be used in the optimization model to obtain a closed-form analytical characterization of
a firm’s best response. This will also allow for a proof of convergence and uniqueness of
the Nash Equilibrium when one of the firms uses shared capacities, which will further
allow one to study the effect of competition on price discrimination even when firms
use shared capacities for different market segments. Further, the mathematical model
for the best response in a shared capacity setting can be extended to include delay
dependent dynamic priority discipline. Another possible extension might be to include
the guaranteed leadtime for the regular customers also as a decision variable.

Appendix A. Proof of Proposition 1

It is well known that at optimality, the two leadtime reliability constraints (7DC) and
(8DC) must be binding (Palaka et al., 1998; So and Song, 1998; Boyaci and Ray, 2003).
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This implies that the two service rates will be given by:

µic = − ln(1− α)

Lic
+ λic c ∈ {l, h}

As a result, [PLDPDC ] reduces to maximizing (3) with µic as given above. The system
stability conditions (6DC) are automatically satisfied by the expressions for µic. Upon
substituting the expressions for µic into (3), and taking it partial derivatives with respect
to pih and pil gives the following Hessian for a fixed Lih:(

−2(βhp + θp + γp) 2θp
2θp −2(βlp + θp + γp)

)
Clearly, the Hessian is negative definite. This shows that the objective function πi(Lih) is
strictly concave for a fixed Lih, and, therefore, has a unique pair of optimal prices pi∗h (Lih)
and pi∗l (Lih), which can be obtained by solving the following system of equations:

∂πi(Lih)

∂pih
= 0;

∂πi(Lih)

∂pil
= 0

Substituting the optimal prices given by (10) and (11) into the objective function, and
differentiating it with respect to Lih gives:

∂πi(Lih)

∂Lih
=−

(
βhL + θL + γL

) (
pi∗h (Lih)−mi − Ai

)
+ θL

(
pi∗l (Lih)−mi − Ai

)
− A ln(1− α)

(Lih)
2

(A1)

∂2πi(Lih)

∂(Lih)
2

=−
(
βhL + θL + γL

)(∂pih(Lih)
∂Lih

)
+ θL

(
∂pil(L

i
h)

∂Lih

)
+

2Ailn(1− α)

(Lih)
3

(A2)

∂3πi(Lih)

∂(Lih)
3

=− 6Ai ln(1− α)

(Lih)
4

(A3)

The the first three derivatives of πi(Lih) suggests that it has the following properties: (i)
As Lih → 0+, πi(Lih) → −∞. (ii) πi(Lih) is increasing concave in Lih in the vicinity of
Lih = 0+. (iii) As Lih increases from 0, πi(Lih) changes from concave to convex for some
Lih ∈ (0,+∞), and never becomes concave again. It is clear from the above properties
of πi(Lih) that it has a unique maximum and at most one minimum in [0,+∞). The
stationary points are given by the roots of (A1) in [0,+∞), and the maximum is always

the smaller of the two. Further,
∂πi(Li

h)

∂Li
h

∣∣
Li
h=L

i
l

< 0 is sufficient to guarantee that (A1) has

only one root in the interval [0, Lil), and that it is the point of maximum. The condition
simplifies to:

K1a
i +K2L

i
l +K3A

i +K4m
i

2(βhpβ
l
p + βhp θp + βlpθp + βhpγp + βlpγp + 2θpγp + γ2p)

− Ai ln(1− α)

(Lil)
2

< 0 (A4)

where K1, K2, K3, K4 are functions only of the market parameters (βcp, β
c
L, θp, θL, γp,

γL), and hence are constants. Further,

K1 = −
{

(βlp − βhp )θL + (βhL + γL)(βlp + 2θp + γp)
}
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Since βhp < βlp, a necessary condition for (A4) to hold is ai to be high. A sufficiently high
value of ai also guarantees pic > 0, pih > pil and λic > 0.

Appendix B. Matrix Geometric Method

Joint Stationary Queue Length Distribution: If we define Nh(t) and Nl(t) as state vari-
ables representing the number of high and low priority customers in the system at time
t, then {N(t)} := {Nl(t), Nh(t), t ≥ 0} is a continuous-time two-dimensional Markov
chain with state space {n = (nl, nh)}. The key idea we employ here is that {N(t)} is
a quasi-birth-and-death (QBD) process, which allows us to develop a matrix geometric
solution for the joint distribution of the number of customers of each class in the system.
A simple implementation of the matrix geometric method, however, requires the number
of states in the QBD process to be finite. For this, we treat the queue length of high
priority customers (including the one in service) to be of finite size M , but of size large
enough for the desired accuracy of our results. Since high priority customers are always
served in priority over low priority customers, it is reasonable to assume that its queue
size will always be bounded by some large number.

In the Markov process {N(t)}, a transition can occur only if a customer of either class
arrives or a customer of either class is served. The possible transitions are:

Table B.5: Transition rates for the priority queue

From To Rate Condition
(nl, nh) (nl, nh + 1) λih for nl ≥ 0, nh ≥ 0
(nl, nh) (nl + 1, nh) λil for nl ≥ 0, nh ≥ 0
(nl, nh) (nl, nh − 1) µi for nl ≥ 0, nh > 0
(nl, nh) (nl − 1, nh) µi for nl > 0, nh = 0

The infinitesimal generator Q associated with our system description is thus block-
tridiagonal:

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where B0, A0, A1, A2 are square matrices of order M + 1. These matrices can be easily
constructed using the transition rates described above.

A0 =


λil

λil
. . .

. . .

λil

 ; A2 =


µi

0
. . .

. . .

0

 ; B0 =


∗ λih
µi ∗ λih

µi ∗ λih
. . .

. . .
. . .

µi ∗


where ∗ is such that A0e + B0e = 0. A1 = B0 − A2.

We denote x as the stationary probability vector of {N(t)}:

x = [x00, x01, . . . , x0M , x10, x11, . . . , x1M , . . . , . . . , xn0, xn1, . . . , xnM , . . . , . . .]
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The vector x can be partitioned by levels into sub vectors xn, n ≥ 0, where xn =
[xn0, xn1, . . ., xnM ] is the stationary probability of states in level n (nl = n). Thus,
x = [x0,x1,x2,x3, . . . , . . .]. x can be obtained using a set of balance equations, given
in matrix form, by the following standard relations (Latouche and Ramaswami, 1999;
Neuts, 1981):

xQ = 0; xn+1 = xnR

where R is the minimal non-negative solution to the matrix quadratic equation:

A0 +RA1 +R2A2 = 0

The matrix R can be computed using well known methods (Latouche and Ramaswami,
1999). A simple iterative procedure often used is:

R(0) = 0 ; R(r + 1) = −
[
A0 +R2(r)A2

]
A−11

The probabilities x0 are determined from:

x0(B0 +RA2) = 0

subject to the normalization equation:

∞∑
n=0

xne = x0(I −R)−1e = 1

where e is a column vector of ones of size M + 1.
Estimation of Sil (·): The leadtime W i

l of a low priority customer is the time between its
arrival to the system till it completes service. It may be preempted by one or more high
priority customers for service. So it is difficult to characterize the distribution Sil (·). Ra-
maswami and Lucantoni (1985) present an efficient algorithm based on uniformization to
derive the complimentary distribution of waiting times in phase-type and QBD processes.
We adopt their algorithm to derive Sil (·), the distribution of the waiting time plus the
time in service of low priority customers.

Consider a tagged low priority customer entering the system. The time spent by the
tagged customer depends on the number of customers of either class already present in
the system ahead of it, and also on the number of subsequent high priority arrivals before
it completes its service. All subsequent low priority arrivals, however, have no influence
on its time spent in the system. The tagged customer’s time in the system is, therefore,
simply the time until absorption in a modified Markov process {Ñ(t)}, obtained by set-
ting λil = 0. Consequently, matrix Ã0, representing transitions to a higher level, becomes
a zero matrix. We define an absorbing state, call it state 0

′
, as the state in which the

tagged customer has finished its service. The infinitesimal generator for this process can
be represented as:

Q̃ =


0 0 0 0 0 · · ·
b0 B̃0 0

0 A2 Ã1 0

0 A2 Ã1 0
...

. . . . . . . . .
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where, B̃0 = B0 + A0; Ã1 = A1 + A0; and b0 = [µi 0 · · · 0]TM+1. The first row and

column in Q̃ corresponds to the absorbing state 0́. The time spent in system by the
tagged customer, which is the time until absorption in the modified Markov process with
rate matrix Q̃, depends on the prices (pih and pil), through the arrival rates (λih and λil),
and the service rate µi. For given prices (pikh , pikl ) and service rate µik, the distribution

of the time spent by a low priority customer in the system is Sikl (y) = 1− Sikl (y), where

Sikl (y) is the stationary probability that a low priority customer spends more than y units

of time in the system. Further, let Skln(y) denote the conditional probability that a tagged
customer, who finds n low priority customers ahead of it, spends a time exceeding y in
the system. The probability that a tagged customer finds n low priority customers is
given, using the PASTA property, by xn = x0R

n. Sikl (y) can be expressed as:

Sikl (y) =
∞∑
n=0

xnSikln(y)e (B1)

Sikln(y) can be computed more conveniently by uniformizing the Markov process {Ñ(t)}
with a Poisson process with rate γ, where

γ = max
0≤m≤M

(−Ã1)mm = max
0≤m≤M

− (A0 + A1)mm

so that the rate matrix Q̃ is transformed into the discrete-time probability matrix:

Q̂ =
1

γ
Q̃+ I =


1 0 0 0 0 · · ·
b̂0 B̂0 0

0 Â2 Â1 0

0 Â2 Â1 0
...

. . . . . . . . .


where Â2 = A2

γ
, Â1 = Ã1

γ
+ I, b̂0 = b0

γ
. In this uniformized process, points of a Poisson

process are generated with a rate γ, and transitions occur at these epochs only. The
probability that r Poisson events are generated in time y equals e−γy (γy)

r

r!
. Suppose the

tagged customer finds n low priority customers ahead of it. Then, for its time in system
to exceed y, at most n of the r Poisson points may correspond to transitions to lower
levels (i.e., service completions of low priority customers). Therefore,

Sikln(y) =
∞∑
r=0

e−γy
(γy)r

r!

n∑
v=0

G(r)
v e, n ≥ 0 (B2)

where, G
(r)
v is a matrix such that its entries are the conditional probabilities, given that

the system has made r transitions in the discrete-time Markov process with rate matrix
Q̂, that v of those transitions correspond to lower levels (i.e., service completions of

low priority customers). Substituting the expression for Sikln(y) from (B2) into (B1), we
obtain:

Sikl (y) =
∞∑
r=0

dre
−γy (γy)r

r!
(B3)
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where, dr is given by:

dr =
∞∑
n=0

x0R
n

n∑
v=0

G(r)
v e, r ≥ 0 (B4)

Now,

∞∑
n=0

Rn

n∑
v=0

G(r)
v e

=
r+1∑
n=0

Rn

n∑
v=0

G(r)
v e +

∞∑
n=r+2

Rn

r∑
v=0

G(r)
v e

(
since G(r)

v = 0 for v > r
)

=
r+1∑
v=0

r+1∑
n=v

RnG(r)
v e + (I −R)−1Rr+2e

(
since

r∑
v=0

G(r)
v e = e

)

=
r+1∑
v=0

(I −R)−1(Rv −Rr+2)G(r)
v e + (I −R)−1Rr+2e

=
r∑

v=0

(I −R)−1RvG(r)
v e + (I −R)−1Rr+1G

(r)
r+1e

(
since

r+1∑
v=0

G(r)
v e = e

)

=
r∑

v=0

(I −R)−1RvG(r)
v e

(
since G(r)

v = 0 for v > r
)

= (I −R)−1Hre r ≥ 0

where, Hr =
∑r

v=0R
vG

(r)
v . Therefore,

Sikl (Lil) = 1− Sikl (Lil) =
∞∑
r=0

e−γLl
(γLl)

r

r!
x0(I −R)−1Hre (B5)

Hr can be computed recursively as:

Hr+1 = HrÂ1 +RHrÂ2; H0 = I

Therefore, for given prices (pikh , pikl ) and service rate (µik), Sikl (·) in (16) can be computed
using (B5).

Appendix C. Estimation of the Gradient of Si
l (·)

There are several methods available in the literature to compute the gradients of Sil (·).
We use a finite difference method as it is probably the simplest and most intuitive, and
can be easily explained (Atlason et al., 2004). Using the finite difference method, the
gradients can be computed as:

26



∂Sikl (·)
∂pih

=
Sil (·)

∣∣
(pikh +dpih,p

i
l ,µ

i)
− Sikl (·)

∣∣
(pikh −dp

i
h,p

i
l ,µ

i)

2dpih

∂Sikl (·)
∂pil

=
Sikl (·)

∣∣
(pih,p

ik
l +dpil ,µ

i)
− Sikl (·)

∣∣
(pih,p

ik
l −dp

i
l ,µ

i)

2dpil

∂Sikl (·)
∂µi

=
Sikl (·)

∣∣
(pih,p

i
l ,µ

ik+dµi)
− Sikl (·)

∣∣
(pih,p

i
l ,µ

ik−dµi)

2dµi

where dpih, dp
i
l and dµi (referred to as step sizes) are infinitesimal changes in the respective

variables.

Appendix D. The Cutting Plane Algorithm

We now describe the cutting plane algorithm to solve [PDP(K)]. The algorithm fits the
framework of Kelley’s cutting plane method (Kelley, 1960). It differs from the traditional
description of the algorithm in that we use the matrix geometric method to generate
the cuts and evaluate the function values instead of having an algebraic form for the
function and using analytically determined gradients to generate the cuts. Figure D.7
shows a flowchart of the cutting plane algorithm. The algorithm works as follows: We
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Figure D.7: Cutting Plane Algorithm

start with an empty constraint set (20), which results in a simple QPP, and obtain an
initial solution k0 := (pi0h , pi0l , µi0). We use the matrix geometric method to compute
the distribution Sik0l (·) of W i

l . If Sik0l (·) meets the leadtime reliability constraint α, we
stop with an optimal solution to [PDP i

(K)], else we add to (20) a linear constraint/cut
generated using the finite difference method. The new cut eliminates the current solution
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but does not eliminate any feasible solution to [PDP i
(K)]. This procedure repeats until

the leadtime reliability constraint is satisfied within a sufficiently small tolerance limit
ε such that |Sil (·)− α| ≤ ε. The method has been proved to converge (Atlason et al.,
2004).

The success of the cutting plane algorithm relies on the concavity of Sil (·). We have
already demonstrated, using computational results obtained by the matrix geometric
method, that Sil (·) is concave in (pih, p

i
l) and separately concave in µi. However, it is

difficult to establish the joint concavity of Sil (·) in (pih, p
i
l, µ

i). If the concavity assumption
is violated, then the algorithm may cut off parts of the feasible region and terminate with
a solution that is suboptimal. We include a test to ensure the concavity assumption is
not violated. This is done by ensuring that a new point, visited by the cutting plane
algorithm after each iteration, lies below all the previously defined cuts, and that all
previous points lie below the newly added cut. The test, however, cannot ensure that
Sil (·) is concave unless it examines all the points in the feasible region. Still, it does help
ensure that the concavity assumption is not violated at least in the region visited by the
algorithm. Details of the test can be found in Atlason et al. (2004).

Appendix E. Proof of Proposition 3

The equilibrium prices are given by the simultaneous solution of the 4 linear equations
given by (10) and (11) for i ∈ {1, 2}. The system of equations in matrix notation is given
by Ax = b.

A =


1 0

−(βl
p+θp+γp)γp

2D

−θpγp
2D

0 1 −θpγp
2D

−(βh
p+θp+γp)γp

2D
−(βl

p+θp+γp)γp

2D

−θpγp
2D

1 0
−θpγp
2D

−(βh
p+θp+γp)γp

2D
0 1

 (E1)

where D = βhpβ
l
p + βhp θp + βlpθp + βhpγp + βlpγp + 2θpγp + γ2p

x =
(
p1∗h p1∗l p2∗h p2∗l

)T
and b is a 4x1 matrix of constants. A is symmetric and strictly diagonally dominant
since we have Aij = Aji ∀i, j and

∑
j 6=i |Aij| < Aii ∀i. Hence, A is positive definite (Horn

and Johnson, 1985). This implies that A is full-rank, and hence the system of linear
equations Ax = b has a unique solution. This proves the uniqueness of the equilibrium.

Further, when the firms are identical, they have the same operating parameter values
(a1 = a2; m1 = m2; A1 = A2; α1 = α2; L1

l = L2
l ; L

1
h = L2

h). Denote the equilibrium
solution by the 2-tuple (s1∗(Lh), s

2∗(Lh)), where si∗(Lh):= (pi∗h (Lh), p
i∗
l (Lh)). Assume the

contrary that the equilibrium solution is not symmetric, i.e., s1∗(Lh) 6= s2∗(Lh). Since the
two firms are identical, this implies that (s2∗, s1∗) must also be a Nash Equilibrium, which
contradicts the uniqueness of the Nash Equilibrium. Hence, s1∗(Lh) = s2∗(Lh). Substi-
tuting p1∗h (Lh) = p2∗h (Lh) = p∗h(Lh) and p1∗l (Lh) = p2∗l (Lh) = p∗l (Lh) in the expressions for
the best response prices, given by (10) and (11), and solving the resulting system of 2
equations in 2 unknown gives (21) and (22).
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Appendix F. Proof of Proposition 4

The duopoly prices under pure price competition are given by (21) and (22). The
monopolist prices can be obtained from (21) and (22) by substituting γp = γL = 0.
Comparing the monopolist prices with the duopoly prices, we get:

pDD∗h (Lh)

∣∣∣∣
duopoly

− pDC∗h (Lh)

∣∣∣∣
monopoly

=
−γp

{
Kh

1 a+Kh
2Lh +Kh

3Ll +Kh
4 (A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2p

(F1)

pDD∗l (Lh)

∣∣∣∣
duopoly

− pDC∗l (Lh)

∣∣∣∣
monopoly

=
−γp

{
K l

1a+K l
2Lh +K l

3Ll +K l
4(A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2p

(F2)

(
pDD∗h (Lh)− pDD∗l (Lh)

) ∣∣∣∣
duopoly

−
(
pDC∗h (Lh)− pDC∗l (Lh)

) ∣∣∣∣
monopoly

=
−γp

{
Kd

1a+Kd
2Lh +Kd

3Ll +Kd
4 (A+m)

}
4βhpβ

l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2p

(F3)

where, Kd
i = Kh

i − K l
i , and Kh

i and K l
i for i ∈ {1, 4} are some functions of system

parameters, and hence Clearly, when γp = 0, pDD∗h (Lh)

∣∣∣∣
duopoly

= pDC∗h (Lh)

∣∣∣∣
monopoly

and

pDD∗l (Lh)

∣∣∣∣
duopoly

= pDC∗l (Lh)

∣∣∣∣
monopoly

. For, γp > 0, (F1), (F2) and (F3) are dictated

mainly by Kh
1 and K l

1 and Kd
1 , respectively since a is assumed to be large. Further,

Kh
1 = 2(βlp)

2 + 2βhp θp + 6βlpθp + 8θ2p + βlpγp + 2θpγp > 0

K l
1 = 2(βhp )2 + 6βhp θp + 2βlpθp + 8θ2p + βhpγp + 2θpγp > 0

Kd
1 = (βlp − βhp )γp + 2{(βlp)2 − (βhp )2}+ 4(βlp − βhp )θp > 0

Therefore, Kh
1 > 0, K l

1 > 0 and Kd
1 > 0⇒ (F1) < 0, (F2) < 0 and (F3) < 0, respectively

if γp > 0. This shows that pure price competition decreases both the express and regular
prices as well as the price differentiation. Further, it clearly follows from the expressions
for Kh

1 , K l
1 and Kd

1 that the effects are more pronounced when θp > 0, i.e., in presence
of product substitution.

Appendix G. Proof of Proposition 5

Given the strategy of firm j ∈ {1, 2}, the best response express leadtime of firm
i = 3− j satisfies:

∂πi

∂Lih
= 0
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Taking the total derivative of the above relation with respect to the express leadtime Ljh
of firm j, we get:

d

dLjh

(
∂πi

∂Lih

)
=

∂

∂Ljh

(
∂πi

∂Lih

)
+

∂

∂pjh

(
∂πi

∂Lih

)
∂pjh
∂Ljh

+
∂

∂pjl

(
∂πi

∂Lih

)
∂pjl
∂Ljh

+
∂

∂Lih

(
∂πi

∂Lih

)
dLih
dLjh

= 0

⇒ dLih
dLjh

=
−
[

∂2πi

∂Lj
h∂L

i
h

+ ∂2πi

∂pjh∂L
i
h

∂pjh
∂Lj

h

+ ∂2πi

∂pjl ∂L
i
h

∂pjl
∂Lj

h

]
∂2πi

∂(Li
h)

2

For a DD setting, the above relation simplifies to:

dLih
dLjh

=

−
[
γp

{(
∂pjh
∂Lj

h

)2
+
(
∂pjl
∂Lj

h

)2}
+ γL

(
∂pjh
∂Lj

h

)]
∂2πi

∂(Li
h)

2

(G1)

We know that for Lh ≤ L∗h:
∂2πi

∂(Lih)
2
< 0

The numerator in RHS of (G1) consists of terms that are functions only of the market
parameters, and hence is a constant for a given parameter setting. Further,

γp


(
∂pjh
∂Ljh

)2

+

(
∂pjl
∂Ljh

)2
 > 0 and γL

(
∂pjh
∂Ljh

)
< 0

Therefore, we have:

dLih
dLjh

≥ 0 if γp


(
∂pjh
∂Ljh

)2

+

(
∂pjl
∂Ljh

)2
 ≥ γL

(
∂pjh
∂Ljh

)
(G2)

dLih
dLjh

< 0 if γp


(
∂pjh
∂Ljh

)2

+

(
∂pjl
∂Ljh

)2
 < γL

(
∂pjh
∂Ljh

)
(G3)

This suggests that if the market parameters are such that (G2) holds, firm i always
increases (decreases) its express leadtime Lih in response to a corresponding increase
(decrease) in firm j′s express leadtime Ljh. We let pih(n), pil(n) and Lih(n) be the best
response decisions of firm i at the nth iteration of the procedure. If Lih(0) = 0, then
Lih(n) ≥ Lih(0) for all n. We will show that if (G2) holds, Lih(n) is increasing in n for
i ∈ {1, 2}. As Lih is bounded above (Lih < Ll), for i ∈ {1, 2}, this will establish that the
iterative procedure converges. We prove the convergence by induction as follows:

1. (Step n = 1): We know that Lih(1) ≥ Lih(0) for i ∈ {1, 2}.
2. (Step n− 1): Assume that Lih(n− 1) ≥ Lih(n− 2) for i ∈ {1, 2}.
3. (Step n): Given the inductive assumption from Step n − 1, (G2) implies that
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Lih(n) ≥ Lih(n− 1) for i ∈ {1, 2}.
This completes our induction. In case (G3) holds, convergence of the algorithm can
proved similarly by letting L1

h(0) = Ll and L2
h(0) = 0 and by showing that L1

h(n) is
decreasing in n while L2

h(n) is increasing in n.

Appendix H. Proof of Proposition 6

The effect of competition on the express leadtime when firms use dedicated capacities
is given by:

∂π(Lh)

∂Lh

∣∣∣∣
duopoly

− ∂π(Lh)

∂Lh

∣∣∣∣
monopoly

=
−{K1a+K2Lh +K3Ll +K4(A+m)}

2(4βhpβ
l
p + 4βhp θp + 4βlpθp + 2βhpγp + 2βlpγp + 4θpγp + γ2p)(β

h
pβ

l
p + βhp θp + βlpθp)

(H1)

where, K1, K2, K3 and K4 are some functions only of the system parameters, and hence
are constants. For large a, (H1) is dictated mainly by K1, which is given by:

K1 =
{

4βhp (βlp)
2 + 4(βlp)

2θp + 8βhp θ
2
p + 8βlpθ

2
p + 12βhpβ

l
pθp
}
γL

−
{
βhLβ

l
p + 2βhLθp + [(βlp)

2 − (βhp )2]θL
}
γ2p

−
{

2βhpβ
h
Lθp + 2(βlp)

2βhL + 4βlpθL + 8βhLθ
2
p

}
γp

−
{

[6βlpβ
h
L − 4βhp θL]θp + 2[(βlp)

2 − (βhp )2]θL
}
γp

+2
{
βhpβ

l
p + βhp θp + βlpθp

}
γLγp (H2)

Clearly, the effect of competition on Lh, and hence on leadtime differentiation, depends
on the relative intensities of price competition (γp) and leadtime competition (γL), as
well as other demand parameters. γp = 0 and γL > 0 results in (H2) > 0, and hence (H1)
< 0. Further, π(Lh) is increasing concave in Lh for Lh ≤ LDC∗h (see Appendix A). This,
together with (H1) < 0, implease that:

L∗h|duopoly := {Lh|duopoly :
∂π(Lh)

∂Lh

∣∣∣∣
duopoly

= 0} < L∗h|monopoly := {Lh|monopoly :
∂π(Lh)

∂Lh

∣∣∣∣
monopoly

= 0}

This implies that Lh is smaller under competition when γp = 0. Further, (F1), (F2) and
(F3) suggest that for a given Lh, the equilibrium prices as well as the price differentiation
coincide with the monopolist prices and price differentiation for γp = 0. However, a
smaller Lh under monopoly compared to duopoly results in a larger price differentiation
for γp = 0. γp > 0 and γL = 0, on the other hand, results in (H2) < 0, and hence
(H1) > 0. Thus, Lh is larger under competition. A larger Lh results in a smaller price
differentiation.

Allon, G., Federgruen, A., 2007. Competition in service industries. Operations Research,
53, 37–55.

Allon, G., Federgruen, A., 2008. Competition in service industries wit segmented markets.
Working paper. Graduate School of Business, Columbia University, NY, USA.

Armony, H., Haviv, M., 2003. Price and delay competition between two service providers.
European Journal of Operational Research, 147, 32–50.

31



Atlason J., Epelman M.A., Henderson S.G., 2004. Call center staffing with simulation
and cutting plane methods. Annals of Operations Research, 127, 333–358.

Blackburn, J.D., 1991. Time-Based Competition: The Next Battleground in American
Manufacturing. Business One Irwin, Homewood, IL, USA.

Borenstein, S., 1989. Hubs and high fares: Dominance and market power in the U.S.
airline industry. The RAND Journal of Economics, 20, 344–365.

Borenstein, S., Rose, N., 1994. Competition and price dispersion in the U. S. airline
industry. The Journal of Political Economy, 102, 653–683.

Boyaci, T., Ray, S., 2003. Product differentiation and capacity selection cost interaction in
time and price sensitive markets. Manufacturing and Service Operations Management,
5, 18–36.

Boyaci, T., Ray, S., 2006. The impact of capacity costs on product differentiation in
delivery time, delivery reliability and price. Production and Operations Management,
15, 179-197.

Cachon, G.P., Harker, P.T., 2002. Competition and outsourcing with scale economies.
Management Science, 48, 1314–1333.

Chang, W., 1965. Preemptive priority queues. Operations Research, 13, 820–827.

Chen, H., Wan, Y., 2003. Price competition of make-to-order firms. IIE Transactions, 35,
817–832.

Gale, I., 1993. Price dispersion in a market with advanced purchases. Review of Industrial
Organization, 8, 451–464.

Gerardi, K.S., Shapiro, A.H., 2007. Does competition reduce price discrimination? New
evidence from the airline industry. Working Paper No. 07-7. Federal Reserve Bank of
Boston.

Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, Cam-
bridge, UK.

Jayaswal, S., Jewkes, E.M., Ray, S., 2011. Product differentiation and operations strategy
in a capacitated environment. European Journal of Operational Research, 210, 716–
728.

Kelley, J.E. Jr., 1960. The cutting plane method for solving convex programs. Journal of
the Society for Industrial and Applied Mathematics, 8, 703–711.

Latouche, G., Ramaswami, V., 1999. Introduction to matrix analytic methods in stochas-
tic modeling. The American Statistical Association and the Society for Industrial and
Applied Mathematics, Philadelphia, USA.

Lederer, P.J., Li, L., 1997. Pricing, production, scheduling and delivery-time computa-
tion. Operations Research 45, 407–420.

Levhari, D., Luski, I., 1978. Duopoly pricing and waiting lines. European Economic
Review 11, 17–35.

32



Loch, C., 1991. Pricing in markets sensitive to delay. Ph.D. thesis, Stanford University,
CA, USA.

Luenberger, D.G., 1984. Linear and Nonlinear Programming. Addison-Wiley Publishing
Company, CA, USA.

Maltz, A., Maltz, E., 1998. Customer service in the distribution channel: Empirical
findings. Journal of Business Logistics, 19, 103–120.

Miller, C.C., 2010. In price war, new kindle sells for $139. The New York Times, July 28.

Neuts, F.M., 1981. Matrix Geometric Solutions in Stochastic Models: An Algorithmic
Approach. Dover Publications, Mineola, NY, USA.

Pekgun, P., 2007. An analysis of pricing and leadtime policies within the market-
ing/operations interface. PhD thesis. H. Milton School of Industrial Engineering Geor-
gia Institute of Technology, Atlanta, Georgia, USA.

Pekgun, P., Griffin, P.M., Keskinocak, P., 2006. Centralized vs. decentralized competition
for price and lead-time sensitive demand. Working paper. H. Milton School of Systems
and Industrial Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Ramaswami, V., Lucantoni, D.M., 1985. Stationary waiting time distribution in queues
with phase type service and in quasi-birth-and-death processes. Stochastic Models 1,
125–136.

Ray, S., Jewkes, E.M., 2004. Customer lead time management when both demand and
price are lead time sensitive. European Journal of Operational Research, 153, 769–781.

Rochet, J., Stole, L., 2002. Nonlinear pricing with random participation. The Review of
Economic Studies, 69, 277–311.

Ross, S.M., 2010. Introduction to Probability Models, tenth ed. Academic Press, San
Diego, USA.

Schmidt, M.S., Aschkenase, S., 2004. The building blocks of service. Supply Chain Man-
agement Review, 8, 34–40.

So, K.C., 2000. Price and time competition for service delivery. Manufacturing and Service
Operations Management, 2, 392–409.

Stole, L., 1995. Nonlinear pricing and oligopoly. Journal of Economics & Management
Strategy, 44, 529–562.

Talluri, K.T., Van Ryzin, G.J., 2004. The Theory and Practice of Revenue Management.
Kluwer Academic Publishers, Boston, USA.

Tirole, J., 1998. The Theory of Industrial Organization. MIT Press, Cambridge, MA,
USA.

Tsay, A., Agrawal, A.N., 2000. Channel dynamics under price and service competition.
Manufacturing and Service Operations Management, 2, 272–391.

33



Varian, H.R., 1985. Price discrimination and social welfare. American Economic Review,
75, 870–875.

Varian, H.R., 1989. Price discrimination. eds, Schmalensee, R., Willig, R. Handbook of
Industrial Organization, Elsevier Science Publishers, North-Holland, Amsterdam.

Wolfe, P., 1959. The simplex method for quadratic programming. Econometrica, 27, 382–
398.

Zhao, X., Stecke, K.E., Prasad, A., 2008. Lead time and price quotation mode selection:
Uniform or differentiated? Working paper. The School of Management, The University
of Texas at Dallas, TX, USA.

34


