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Abstract:

We develop a quick and approximate way to address the fleet sizing problem for transporters
with non-stationary demands and uncertain trip times. Non-stationary demands are modeled using
Markov-modulated Poisson process (MMPP) and the variable fleet size is modeled using multi-
server queuing construct (MMPP (2)/M/C queue). The customer service level is expressed by the
probability that a customer on arrival waits for availability of trucks. The waiting time probabili-
ties are estimated from the steady-state probabilities, which are obtained from the solution of the
continuous-time Markov chain. We demonstrate the fleet-sizing approach for a transporter with two
level of demand rates and exponentially distributed truck unavailable times.
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1. Introduction

The road transport sector in India is dominant mode for freight transport, carrying over 60% of
domestic freight ([8]). Low startup capital, ease in truck purchase finance, and less effort to obtain
driver license and permits allow for an easy entry to this sector. Due to relatively easy entry, this
sector is highly fragmented and disorganized with a large number of players. The business prac-
tices such as driver management, route management, and costing models are also not standardized.
Transporters carry a fleet of about 1-2 trucks to 5000 trucks. However, about 75% of the transporters
have a fleet size of five. Transporter margins are about 2%-3% and they are under immense financial
pressure with increasing fuel costs, toll rates, tyre costs, interest rates. Recently, the increase in
interest rates has also triggered rise in vehicle prices; however, the transportation rates are stagnant,
resulting in lower margins.

The transporters often need to decide the appropriate fleet size when the load pattern is seasonal
and the truck unavailable time is uncertain. Figure 1 includes the order profile for a liquid bulk
transporter company that transports consignment from a port to the manufacturer’s facility. The
loading quantity in a month varies between 5 metric tonnes to 100 metric tonnes, which can be
translated to number to truck requirements based on loading capacity per truck. The one-way
travel distance is about 3100 kilometers and the corresponding trip time including delays varies
between 7-10 days. The uncertainty in the truck unavailable times are developed due to inadequate
transport infrastructure and additional delays due to the regulatory procedures, which take place at
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the inter-state borders/check-posts. Under such economic conditions, determining an optimal fleet
size is not an easy task, because the demand is not constant in time, and the vehicle unavailable
times that includes the loading/ unloading, and travel times are also uncertain, among the other
factors. In this research, we attempt to estimate the number of trucks required to provide a given
level of service subject to a given load pattern. In particular, we determine the optimal number
of trucks (for a particular tonnage capacity and a specific load movement) that the owner should
maintain at its depot to minimize the probability of truck unavailability.

Figure 1: A liquid bulk transporter’s order profile for a month

We model this decision problem using a multi-server queue where the servers denotes the vehicles.
Using Markov Modulated Poisson Process (MMPP) and Markovian arrival based on Continuous
Time Markov Chain (CTMC), we allow for different levels of demand. Further, we assume expo-
nential unavailable times for the vehicles. The main idea of this study is to find the steady state
probabilities for the number of customers in the queue. These steady state probabilities help to
determine if it is necessary to invest in additional trucks for decrease the average customer waiting
time in the system. We could also find out what should be the optimum number of servers that not
only satisfy transporter’s budget but also minimize customer’s waiting time probabilities for truck
availability. The rest of this paper is organized as follows. We review the literature on fleet sizing as
well as applications in Markov Modulated Poisson Process in Section 2. Section 3 describes the fleet
sizing model which includes modeling the arrival process, service times, and the solution approach.
Section 4 presents the insights from the numerical experiments whereas in Section 5, we provide
concluding remarks and possible course of future research.

2. Literature Review

In this section, we first review literature related to the fleet-sizing problem and then introduce
models related to the Markov Modulated Poisson Process (MMPP).

• Fleet sizing : Gould [3] showed that a simple fleet size problem with fluctuating demands can
be formulated as a linear program. However, he considers certain demand. Our work aligns to
the study by Parikh [10] where a multi-server queuing model is developed for the fleet-sizing
problem. However, we consider non-stationary customer demands. Vis et al. [12] develop a
integer linear programming model to solve the problem of determining vehicle requirements
under time-window constraints. The vehicles that operate in a container terminal must start
to move the containers from the quay-side to the stack-side within a time-window[release time,
due time]. Ronen [11] constructed a cost-based tradeoff model (between speed reduction and
number of additional vessels) to determine the number of vessels required to maintain a liner
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service. They suggest that “changing prices of bunker fuel open the door for substantial cost
savings by adjusting the sailing speed of ships. A large ship may be burning up to 100,000
USD of bunker fuel per day, which may constitute more than 75% of its operating costs.
Reducing the cruising speed by 20% reduces daily bunker consumption by 50%. However, in
order to maintain liner service frequency and capacity, reducing the cruising speed may require
additional ships to operate a route.”

• MMPP : In the case of Internet traffic, similar looking traffic bursts can be seen at every
time scale ranging from few milliseconds to hours. Thus processes having this property tend
to exhibit long range dependence, i.e. the values at instances tend to positively correlate
with those at future instants. Markov Modulated Poisson Processes are adopted for long
range internet traffic measurement studies (see [5], and [2]). MMPP is also adopted to analyze
inventory control policies such as Abhyankar and Graves [1] examine an instance of production
planning problem with nonstationary demand. In particular, they assume that that aggregate
demand follows a cyclic pattern where a high-demand period follows the low-demand period in
a cycle.They model cyclical demand as a two-state Markov-modulated Poisson process. The
Markov-modulated Poisson process is analyzed via the matrix-analytic method proposed by
Neuts[9]. The Markovian arrival process (MAP) was originally explored by Lucantoni et al.
[7] (also see [6]). MAP is actually a Markov process where the arrivals are governed by an
underlying m-state Markov chain. MAP includes phase-type renewal process and the Markov-
modulated Poisson process.

3. Modeling the Fleet Sizing Problem

We model the fleet sizing problem for a transporter using a multi-server queue where the order
arrival process is modeled using a Markov-Modulated Poisson Process (MMPP) and the truck un-
available times are modeled as iid exponential random variable. Our analysis is to find the optimal
number of trucks/servers required so that the waiting probability is below a threshold level. We
first discuss the components of the queuing model: modeling of an order arrival process and the
modeling of service times. We then present the queuing model for fleet sizing decision.

3.1 Modeling the Order Arrival Process: Markov Modulated Poisson Process

The Markov-modulated Poisson process (MMPP) is a doubly stochastic Poisson process whose
rate varies according to a continuous-time Markov process. As with Markovian Arrival process
(MAP) and Batch Markovian Arrival process (BMAP), the use of MMPP permits modelling of time-
varying systems while keeping the analytical solution tractable. All transitions that are associated
do not change the phase of a state in a Markov chain that defines an MMPP. The state-transition-
rate diagram for MMPP(4) is shown in Figure 1 where the state of the CTMC is defined by the
two-tuple state vector (x, y), [4]. x denotes the number of customers in the system and y denotes
the phase of arrival. Note that the transitions in the state-transition-rate diagram denoted the rate
at which the process moves from state to state and not the probability of moving from one state to
another. MMPP(4) stands for a Markov Modulated Poisson Process with four states in each level.
We denote the transition-rate between states of the same levels using αij , while λi is used to denote
the arrival rates for the corresponding states.

The generator matrix QMMPP for the MMPP(4) process is expressed as follows.

W.P. No. 2012-12-06 Page No. 4



IIMA • INDIA
Research and Publications

0, 1
0, 2

0, 30, 4

1, 1 1, 2

1, 31, 4

2, 1 2, 2

2, 32, 4

Level0 Level1 Level2

λ1 λ1λ2 λ2 λ2
λ1

λ4 λ4 λ4λ3 λ3

λ3

α14
α14

α14
α41

α41 α41

α12 α12 α12

α21
α21 α21

α23
α23 α23α32

α23
α23

α43 α43 α43

α34 α34 α34

Figure 2: State-transition-rate diagram for MMPP(4) (Adapted from [4])

D0 =


−(λ1 + α1) α12 α13 ... α1m

α21 −(λ2 + α2) α23 ... α2m

α31 α32 −(λ3 + α3) ... α3m

... ... ... ...
αm1 αm2 αm3 ... −(λm + αm)



D1 =


λ1 0 0 ... 0
0 λ2 0 ... 0
0 0 λ3 ... 0
... ... ... ... ...
0 0 0 ... λm

 = Λ

QMMPP =


D0 D1 0 0 0 ...
0 D0 D1 0 0 ...
0 0 D0 D1 0 ...
... ... ... ... ... ...


where Λ is the m×m diagonal matrix whose elements are the arrival rates λi, i=1,2,...,m; i.e.
Λ=diag(λ1,λ2,...λm) and αij are the transition rates from state i to state j of the same level.

3.2 Modeling the Service Time

The components of a truck unavailable times for a liquid bulk transporter (as referred in Figure
1) are described in Figure 3. The components include wait for truck, travel to port, wait at port
and load, travel to plant, wait at plant and unload, and wait for departure. In this research, we
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aggregate all the time components and use an aggregate truck unavailable time as the service time
in the queue. The service time is assumed to be iid exponential random variable.

Travel

to port

Wait at
port and
load

Wait at
plant
and
unload

Travel

to

plant

Wait

for

truck

Wait
for
departure

Order fulfillment time = Waiting time + Trip time

Figure 3: Components of customer order fulfillment time

3.3 The MMPP (2)/M/C Queue

MMPP(2) is a two state Poisson process with parameter λ1, for a time that is exponentially
distributed with mean 1/α and then switches over to the next state with parameter λ2 that is ex-
ponentially distributed with mean 1/β. The process switches between the two states.

Consider a situation where the customer demand is unpredictable. It can switch between being high
or low. The duration of the high and low demand conditions are exponentially distributed with
parameters λ1 and λ2 respectively. The customer arrival rate has no effect on the customer service
rate and the service times are exponentially distributes with a mean µ−1. We can show this example
by the following state-transition-rate diagram.
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Figure 4: State-transition-rate diagram for MMPP (2)/M/C

If we write the lexicographical ordering of the states used, then the infinitesimal generator, Q, is
given by

Q =


−(λ1 + α) α λ1 0 0 0 0 0 ...

β −(λ2 + β) 0 λ2 0 0 0 0 ...
µ 0 (λ1 + α + µ) α λ1 0 0 0 ...
0 µ β −(λ2 + β + µ) 0 λ2 0 0 ..
0 0 µ 0 −(λ1 + α + µ) α λ1 0 ...
0 0 0 µ β −(λ2 + β + µ) 0 λ2 ...
... ... ... ... ... ... ... ... ...


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=



D0 D1 0 0 0 0 ...
A2 A0 A1 0 0 0 ...
0 A2 A0 A1 0 0 ...
0 0 A2 A0 A1 0 ...
0 0 0 A2 A0 A1 ...
0 0 0 0 A2 A0 ...
... ... ... ... ... ... ...


where

D0 =

{
−(λ1 + α) α

β −(λ2 + β)

}

D1 =

{
−λ1 0

0 λ2

}

A0 =

{
−(λ1 + α+ µ) α

β −(λ2 + β + µ)

}

A1 =

{
−λ1 0

0 λ2

}

A2 =

{
−µ 0
0 µ

}

3.4 Steady State Probabilities

In a queueing system, customers arrive from a specified population to a service facility to receive
service. The facility can have more than one server to cater the customers. If when a customer
arrives, all the servers are busy, it joins the queue till a server becomes free. we do not allow service
with feedback. We also consider that the systems follow the work conservation rule: a server cannot
sit idle when there are customers in the queue.

Steady state probability is the probability that the system will be in a particular state for a particular
number of customers in the system. The steady state probability of the system for n customers is
denoted by Pn. We first identify the system states and the parameters associated. In our case, we
are taking 2 states, State 1 and State 2. The other parameters include the arrival rates, service time,
number of servers, the duration of the distribution of the two states and the number of customers.
Here in our case there is no limitation on the number of customers in the system. We limit the
number of customers in the system only for the final analysis part where the steady state is being
found out where specific number of customers arrive in the system. We can use this data to draw a
state-transition-rate diagram to represent the states as in a Markov chain. We can write the steady
state relations in a linear form to be represented as a Matrix. The matrix that contains these entries
is known as the generator matrix. Now the resultant matrix is solved using Gaussian elimination to
obtain the steady state probabilities.
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3.5 Estimating Waiting Time Probability

Our analysis is to find the optimal number of servers required so that the waiting probability
is below a certain level. We are able to get the steady state probabilities at each state of the
MMPP(2)/M/C. Each state is characterized by the ordered pair (i,j) where it denotes that there
are i customers in jth state. Therefore P (ij) denotes the probability that there are i customers in
jth state. Customer Waiting Probability can be calculated using the formula

Pwait =

i=∞,j=2∑
i=c+1,j=1

Pij

4. Numerical Experiment

We assume that customer require one truck each time (without loss of generality). Consider
an example in which that on a on-season day, an average of ten orders are are placed by incoming
customers according to a Poisson process while on an off-season day, the number goes down to six.
It takes a mean of three days for completion of an order and return back to the service station. We
also make an assumption that in a year, three months are off-seasonal. We want to calculate the
number of trucks that are required at any moment in available for a service, so that the customer
waiting probability is less than 5 %. Here we take the value of n, i.e. the maximum trucks available
by the company as 50.

In this problem, we construct a generator matrix with the said values and apply Gaussian elimina-
tion to obtain the steady state probabilities. The steady state probabilities are then used to show
the relation between the number of trucks required, which is plotted on the x-axis and the customer
waiting probability which is plotted on the y-axis.
In any transportation company, one of the prime motto of the company to improve customer service
will be to have very low customer waiting time. There will be a certain number of trucks, say n,
which are used to provide services to an inbound customer. We should find out the optimum number
of trucks that are required for services by the company.

Therefore, for the above example, the various parameters are λ1=10, λ2=6, µ=1/3, α=1/270,
β=1/90 and n=100. From the results obtained, it may be inferred that the customer waiting
probability is less than 5 %, when the number of trucks available are 40 or higher. So as a solution
to the problem we have discussed here, a minimum of 40 trucks are required so that the waiting
time probability of a customer is less than 5 %, which was our objective (see Table 1 and Figure 5).

5. Conclusions and Future Work

In this research, we present an approximate way to model the fleet sizing problem in a stochastic
setting with non-stationary demands and exponential truck unavailable times. Using anMMPP (2)/M/C
queue, we were able to obtain the optimal number of trucks to provide a minimum service level. Our
work can be extended to consider other dimensions such as orders requiring multiple trucks at an
instant, truck unavailable times modeled with general distribution, and order arrival times modeled
with general distribution.
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Table 1: Number of trucks vs. Waiting Probability
Number of Trucks Waiting time Probability (×100%)

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 0.9999
18 0.9974
19 0.9839
20 0.9572
21 0.9254
22 0.8948
23 0.8677
24 0.8445
25 0.8247
26 0.8072
27 0.7903
28 0.7701
29 0.7362
30 0.6695
31 0.5676
32 0.4572
33 0.3583
34 0.2756
35 0.2086
36 0.1553
37 0.1138
38 0.0820
39 0.0581
40 0.0405
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Figure 5: Waiting Probability
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