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Abstract

In this paper, we present computationally efficient formulations for the hub interdiction and
hub protection problems, which are bi-level and tri-level mixed integer linear programs, respec-
tively. In the hub interdiction problem, the aim is to identify a set of r critical hubs from an
existing set of p hubs that when interdicted results in the greatest disruption cost to the hub-and-
spoke network. Reduction of the bi-level interdiction model to single level is straightforward using
Karush-Kuhn-Tucker (KKT) conditions corresponding to the lower level problem; however, this
turns out to be computationally inefficient in this context. Therefore, we exploit the structure of
the problem using various closest assignment constraints to reduce the hub interdiction problem
to single level. The modifications lead to computational savings of almost an order of magnitude
when compared against the only model existing in the literature. Further, our proposed modifi-
cations offer structural advantages for Benders decomposition, which lead to substantial savings,
particularly for large problems. Finally, we study and solve the hub protection problem exactly by
utilizing the ideas developed for the hub interdiction problem. The tri-level protection problem is
otherwise intractable, and to our best knowledge, has not been solved in the literature.

Keywords: Location, hub-and-spoke network, interdiction, protection, Benders decomposition.
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Hub Interdiction & Hub Protection problems:
Model formulations & Exact Solution methods

1 Introduction

Certain infrastructural assets are critical to the functioning of a nation’s economy and societal
well being. The United States’ Department of Homeland Security[]] identifies 16 infrastructure sectors
as critical, such that their incapacitation or destruction can be debilitating to the national secu-
rity, economy, and public health. Three out of these sixteen critical infrastructure sectors, namely
transportation systems, communications, and energy employ hub-and-spoke as a dominant network
structure because of its operational advantage. Hub-and-spoke networks exploit the economies of scale
arising from consolidating at hubs the traffic originating from different sources and/or those destined
to different demand points, instead of serving each origin-destination pair directly. Flows from the
same origin with different destinations in a hub-and-spoke network are consolidated on their route
at the hub where they are combined with flows that have different origins but the same destination
(Campbell, [1996). In multi-hub networks, traffic concentrated at a hub is directed to a second hub,
which distributes it to the final destinations, thereby exploiting the economies of scale on the inter-hub
flows. Another advantage of a a hub-and-spoke network is that it results in fewer links, which makes
the network construction cheaper and its maintenance easier, compared to an alternate network with
direct connections between all sources and destinations.

O’Kelly| (1986) was the first paper to study locating hubs between interacting cities. (Campbell
(1994)) gave the first integer programming formulations for the p-hub median problem, uncapacitated
hub location problem, p-hub center and hub covering problems. These models are largely inspired by
their facility location counterparts: p-median problem, facility location problem, p-center problem and
maximal covering problem. Since then research papers have been published in both single allocation (a
non-hub is allocated to only one hub) or multiple allocation (a non-hub is allocated to one or more than
one hub), capacitated (hubs have a fixed capacity) or uncapacitated (no limit on hub capacity) median
and location problems. |Skorin-Kapov et al.| (1996)), [Ebery et al| (2000), [Ernst and Krishnamoorthy
(1996), Hamacher et al.| (2004) are some of the important works in this area. In recent years several
variations of the hub location problems have also appeared in literature. Notable among those are,
hubs with congestion (Elhedhli and Hul 2005), (Jayaswal and Vidyarthi, |2013)), cycle hub location
problem, where hubs are connected in a cycle (Contreras et al 2016|), tree of hubs location problem,
where hubs are connected by a tree structure (Contreras et al., 2010), flow dependent economies of
scale (O’Kelly and Bryan), [1998]), stochastic demands (Contreras et al., 2011b), and hub location over
a time period (Contreras et al., 2011a)). A review of research papers in hub location can be found in:
Alumur and Karal (2008), Campbell and O’Kelly| (2012) and [Farahani et al.| (2013).

While a hub-and-spoke network structure is attractive due to its cost effectiveness, it is prone to
sever disruptions in the event of a failure of any of its hubs. This is because failure of any hub in the
network disrupts the flows from all the origin and destination points that it serves. A study states
that it is possible to disrupt the entire United States’ air network by interdicting just 2% of its all

"https://www.dhs.gov/what-critical-infrastructure
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airports (Lewis, 2006). A related real incident is the June’l6 attack on Ataturk International airport
in Turkey. Ataturk International airport is one of the busiest airports in the world and it serves as
a hub for Turkish Airlines, Onur Air and Atlas Global. It was attacked on 28th June 2016 by some
gunmen, which left 45 people dead and more than 230 injured. Following the attack, flights destined for
Istanbul were diverted to other hubs in the vicinity. The Federation Aviation Administration (FAA)
and the Transportation Security Administration (TSA) of the United states’ government grounded
all passenger and commercial flights to and from Turkey for several hours post the attack, which
resulted in traffic disruptions throughout the world. Incidents like this, make it necessary to identify
critical hubs in a hub-and-spoke network so that resources may be focused towards their fortification
(protection), and this forms the motivation of our study. We study the problem of identifying the
critical hubs, which when disrupted will cause the maximum disruption. We call this problem as the
hub interdiction problem (HIP). We further study the hub protection problem (HPP), which identifies
the hubs to protect, taking into account the reaction of the interdictor (attacker). The hub interdiction
and protection problems are modeled as bi-level and tri-level mixed integer programs (MIPs), which are
challenging to solve. We present efficient solution methods that are capable of solving large instances
of the problems in a reasonable time.
Following are the major contributions of the paper:

e This is among the first few papers to study the bi-level interdiction and tri-level protection
problems in the context of hub-and-spoke network design.

e We present alternate ways to exploit the structure of the bi-level interdiction problem to reduce
it to a tractable single-level optimization problem.

e We further present Benders decomposition for the different single-level formulations to efficiently
solve large instances of the hub interdiction problem.

e To the best of our knowledge, this is the only paper to efficiently solve large instances of the hub
interdiction and protection problems to optimality.

In Section 2, we present a literature review on interdiction and protection problems. Section 3 presents
the model formulation of the bi-level interdiction problem, followed by two alternate ways of reducing
it to a single level problem to make it tractable. The first approach uses the well-known Karush-
Kuhn-Tucker (KKT) conditions for the lower level problem, while the second approach exploits the
structure of the solution to the lower level problem to replace it by what we call as the closest
assignment constraints (CACs). We present alternate forms of CACs, and present their relative
merits and computational performances in Sections 4 and 5, respectively. In Section 6, we exploit
Benders decomposition of the reduced single level formulation of the hub interdiction problem to solve
it more efficiently, and present its computational results. In Section 7, we present the tri-level hub
protection problem, followed by its solution using Implicit enumeration in combination with Benders
decomposition. We conclude by providing possible future research directions in Section 8.

2 Literature Review

Interdiction problems have been widely studied with respect to network flows (network interdiction)
and facility location (facility interdiction) problems. The decision maker in an interdiction problem
is interested in identifying the set of nodes/arcs (in network interdiction) or facilities (in facility

W.P. No. 2014-03-01 Page No. 4



I ]
e — Research and Publications

interdiction) that when interdicted causes the maximum loss to her. The problem is modeled as
a Stackleberg game in which the attacker is the leader and the network operator (defender) is the
follower.

2.1 Network Interdiction

Network interdiction problems identify critical nodes or arcs in a network. The defender operates
on the network to optimize her objective that can be one of the following: (i) to pass through the
network as fast as possible (shortest path network interdiction) (Corley and Shay [1982; [Israeli and
Wood, [2002; Cappanera and Scaparral, |2011) (ii) to move through the network without getting caught
(most reliable path interdiction) (Shimizu et al., 2012) or (iii) to maximize the amount of flow passing
through the network (maximum flow network interdiction) (Wood), |1993; Cormican et al., 1998). The
objectives of the attacker in these models are: (i) to intercept or destroy the arc(s)/node(s) so as
to maximize the length of the shortest path, or (ii) to minimize the maximum flow in the network,
or (iii) to maximize the probability of detection in the network. These models find applications in
disrupting enemy flows (McMasters and Mustin) 1970), infectious disease control (Assimakopoulos,
1987), counter-terrorism (Farley, 2003), interception of nuclear material (Morton et al., 2007) and
contraband smuggling (Washburn and Wood, 1995)). A review of network interdiction models with
applications can be found in |Collado and Papp (2012]).

2.2 Facility Interdiction and Protection

Facility interdiction problems study the identification of critical facilities in a supply network. |[Church
et al.| (2004) proposed the r-interdiction median problem (r-IMP) and r-interdiction covering problem
(r-ICP) to study interdiction of facilities under different location scenarios. The r-IMP identifies the set
of r facilities to remove from the existing ones to maximize the overall demand weighted transportation
cost of serving customers from remaining facilities, whereas r-ICP identifies the set of r facilities that
when removed minimizes the total demand that can be covered within a specific distance or time.

Different variants of r-IMP are studied in the literature. |Church and Scaparra) (2007a)) studied an
extension of the problem where the success of the attack is uncertain. The authors assumed that the
attacks are successful with a given probability. [Losada et al.| (2012) studied another type of uncertainty
in r-IMP which is the uncertainty of the degree of impact created by the attack. This problem identifies
disruption scenarios that result in the maximum overall traveling distance for serving all customers
when the impact on a facility after an attack is uncertain. A key assumption here is that the degree
of interdiction impact on a facility is proportional to the amount of resources employed.

The problems described above assume no restrictions on the capacity of the facilities. [Aksen et al.
(2014) studied the partial interdiction of capacitated r-IMP, wherein facilities operate with a fixed
capacity, which when interdicted, operate with a reduced capacity. The amount of capacity reduction
is directly proportional to the interdiction resources deployed. Though various versions of r-IMP are
studied (capacitated and uncapacitated, partial and full interdiction), its counterpart (r-ICPs) have
received only limited attention in literature.

Church and Scaparral (2007b) studied an extension of r-IMP, known as the r-interdiction median
problem with fortification (r-IMF). This problem identifies optimal fortification/protection strategies
against interdiction. According to this model, when a facility is fortified/protected, it is completely
immune to an attack. Scaparra and Church (2008a) formulated the m-IMF as a bi-level MIP, which is
solved using an Implicit enumeration algorithm. Scaparra and Church (2008b)) proposed an alternate
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method for r-IMF. The idea is to reformulate the problem as a maximal covering problem with
precedence constraints, which is solved using an approximate heuristic. This helps in identifying the
upper and lower bounds of the problem, which is used to reduce the size of the original problem.
This reduced problem is then solved to optimality using a standard MIP solver. Losada et al.| (2010)),
Scaparra and Church| (2012)), |Aksen et al. (2010), /Aksen and Aras (2012)), |Aksen et al. (2013) and
Liberatore et al|(2012) are other related works in this area.

2.3 Hub interdiction

Interdiction of hubs in a hub-and-spoke network has received scarce attention in the literature, despite
its many useful applications as discussed in Section 1. However, there have been a few studies in
closely related areas. |An et al. (2015]) and |Azizi et al,| (2016]), for example, studied the reliable hub-
and-spoke network design problem, which includes the possibility of re-routing flows through backup
hubs when the active hubs are disrupted. However, the objective in both these papers is to minimize the
weighted sum of pre-disruption and the expected value (over all disruption scenarios) post-disruption
transportation cost. HIPs by contrast, study the worst-case loss to the defender.

To the best of our knowledge, Lei| (2013) is the only paper on HIP/HPP. The author presented
bi-level and tri-level MIP for HIP and HPP, respectively. However, due to the complexity of the
problem, computational results are presented only for small instances of HIP, whereas no solution
method for HPP is presented. The objective of this paper is to present efficient solution methods
capable of solving large instances of HIP and HPP.

3 Problem Description and Model formulation

We consider a hub-and-spoke network with a set of flows (W;;) associated with every source node
1 € N and destination node j € N. The flows are always routed through one or two of the hubs from
the set H < N of p hubs to benefit from economies of scale in transportation. The objective of the
operator of the network (called defender) is to identify the set of r hubs, which when destroyed by
an attacker causes her the maximum cost from rerouting of flows that are affected because of the
interdicted hubs. We make a reasonable assumption of r < p since the attacker (typically a terrorist
organization) might not have resources to interdict all the hubs. This is the context of HIP, which is
modeled as a Stackleberg game. In HIP, the attacker makes the first move by choosing the r hubs to
interdict, followed by the defender who decides how to route the flows through the remaining p — r
hubs with minimum cost. This is represented as a bi-level MIP. The hierarchical structure of the
problem is shown through Figure ?7.

3.1 Model Formulation

In this section, we provide a mathematical formulation for the HIP. To begin with, we introduce the
notations used, and then move on to the formulation.

3.1.1 Notations

To model the problem, we define the following indices and parameters:
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i Index for source nodes, i € N;
] Index for destination nodes, j € IV;
k Index for hub which is connected to i, k € H;
m Index for hub which is connected to j, m € H;
« ;  Discount factor for collection (source to hub), (i — k)
) ; Discount factor for transhipment (hub to hub), (kK — m)
X ;  Discount factor for distribution (hub to destination), (m — j)
H set of all hubs, H < N;
Wi; Flow from source ¢ to destination j;

dij Cost of travelling from node i to node j;

dijkm :  Cost of traversing from source ¢ to destination j; dijrm = adik + 0dgm + Xdmj;
P No. of hubs present in the system;

r : No. of hubs to interdict:

The decision variables are defined as follows:

Xijkm : Fraction of flows from source i to destination j through hubs £ and m after interdic-
tion;
2k : 1, if hub k remains open after interdiction, 0 otherwise.

With the above notation, the hub interdiction problem can mathematically be stated as the fol-
lowing bi-level MIP.

[HIPQL] 2H§E:XZ (1)
s.t.sz:p—r (2)

keH
z, € {0, 1} Vke H (3)

= Hlln Z Z Z Z Wz]dz]km ijkm (4)

Xigkm [N jeN keH meH

st > D Xijgm = 1 Vi,je N (5)
keH meH
D Xigm + D> X < Vi,je Nike H (6)
meH meH/(k)
ijkaO Vi,je N;k,me H (7)

Attacker’s objective function maximizes the defender’s objective of minimizing the weighted
transportation cost. Constraint ensures that p—r hubs remain open after interdiction. Constraints
to form the lower level routing problem. Constraint states that the fractional sum of flows
between source ¢ and destination j through all possible combinations of hubs k& and m should be equal
to 1. Constraint @ models the condition that a flow can happen through and out of the hub only
if the hub remains open. The same condition can be alternatively represented by the following set of
constraints, as done by |Lei (2013).

> Xijem < Zm Vi,je Nyme H
keH
T Xijm < 2 Vi,je Nyke H
meH

W.P. No. 2014-03-01 Page No. 7
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However, the constraint set of the form @ is proven to be facet defining (Hamacher et al. 2004).
Hence, constraint set @ provides a tighter LP relaxation, which is effective in solving large instances
of the hub interdiction problem.

3.2 Reduction to Single level

Bi-level problems, even with linear programs at both levels, are NP-hard problems (Audet et al.,
1997; [Frangioni, 1995). HIP, which is a bi-level MIP, is even more difficult. Bi-level problems in the
literature are traditionally solved by reducing the problem to single level using reduction techniques.
We present two alternate ways of reducing HIP to a single level MIP to make it tractable. The first
approach is based on the use of the well-known KKT conditions for the lower level problem, while
the second approach exploits the structure of the solution to the lower level problem to replace it by
CACs.

3.2.1 Single level reduction using lower level KKT conditions

The lower level problem in HIP is a linear program with continuous variables. This makes its reduction
to a single level using KKT conditions straightforward. For a given upper level variable zj, taking
dual variables ¢;; and A;j;, for constraints , @ we get the following Lagrangian relaxation:

DT D) Wiidijem Xigrm + Y D5 6ii( D) Y Xijkm — 1)+

€N jeN ke H meH ieN jeN keH meH
PIPIPITEOIRCTRIDY K= )
€N jeN keH meH meH /(k

Differentiating the expression with respect to X, we get:
Wijdijkk-i-gbij-f—)\iijO Vi,je NNkme Hk=m
Wijdijkm+¢ij+/\ijk+)\ijm>0 Vi,je NNkkme Hk#m

The single level problem with KKT conditions can be written as:

[HIPKKT max Z Z Z Z ledzjkm ijkm (8)

#eoXijkm i jEN ke H meH

s.t.szzp—r 9)

keH
Wijdijkm+¢ij+)\ijk’>0 Vi,je Nykkme Hk=m (10)
Wijdijim + Gij + Nijke + Xijm =0 Vi,je Nik,me H, k#m (11)
zyk Z Xz]km + Z Xzymk k) 0 Vi,je Nyke H (12)
meH meH /(k)

Z Z Xijrm =1 Vi,jeN (13)
keH meH

Z Xijtm + Z Xijmr < 21 Vi,je N;ke H (14)
meH meH/(k)
Xijrems Nijk = 0, =00 < ¢ < 0 Vi,je Nyk,me H (15)

W.P. No. 2014-03-01 Page No. 8
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This resulting single level problem contains non-linear complementary slackness constraint , that
is linearized using the standard method (Fortuny-Amat and McCarl, [1981)). The linearized constraints
are:

Aijk < M = g, Vi,je Nyke H (16)
Z Xijkm + 2 Xijmk — 2 = —M (1 — ojx) Vi, je Nyke H (17)
meH meH /(k)

a;jk € {0,1} Vi,je Nyke H (18)

The objective function along with constraints @D - , - and - forms the

linearized problem. The problem contains n?p? + 3n’p + n? + 1 constraints and n?p? + 2n%p + n? +p
variables, out of which p + n?p are binary variables. For a 25-node 10-hub problem, this results in
81,876 constraints and 6,260 binary variables out of a total of 75,635 variables, which makes it a fairly
difficult problem to solve. This enormous size is due to the addition of binary variables to convert the
mixed integer non-linear program to mixed integer linear program. Given that KKT based reduction
might not be suitable to solve large scale HIPs, we look at an alternative formulation that exploits
the properties of the problem to come up with a more tractable formulation.

3.2.2 Single level reduction using closest assignment constraints

The attacker in the upper level of the bi-level HIP decides upon his optimal set of r hubs to attack,
after which the defender routes the disrupted flows optimally through the remaining hubs. Since the
lower level problem contains just the routing decision, we can reduce the lower level problem using a
closest assignment constraint by which the flows are allocated to the cheapest cost routes.

Closest assignment constraints are used in facility location problems to allocate customers to
their nearby facilities. It is because in facility location problems cost is not always proportional
to the distance between customer and the facility. The system might assign a customer to some
facility farther from him, while he might want to be assigned to the nearest open facility. The
closest assignment constraint captures this requirement. Espejo et al.| (2012]) and |Gerrard and Church
(1996) compare different closest assignment constraints used in location problems and study their
theoretical properties. These constraints find applications in hazardous facility location (Song et al.,
2013), facility location under competition (Dobson and Karmarkar, |1987)), and interdiction problems
(Liberatore et al., 2011). Lei| (2013) converted the bi-level hub interdiction problem to single level
using the following set of closest assignment constraints:

Z Xijq5+X7;jkm>Zk+Zm_]- Vi, je Nyk,me H (CACl)

q5€C;jkm

where, Cijrm = {(¢,5)| dijqs < dijim or (dijqs = dijkm and (¢ < k or (¢ = k and s <m)))}.

For a given source - destination (s - d) pair (i,j), CAC1 ensures that the flow between them
happens only through a path that is no costlier than the path via hubs k£ and m as long as they are
open. This is an extension of its counterpart for facility location problems given by |[Church and Cohon
(1976). C AC1 arbitrarily breaks any tie between paths having the same cost. Breaking ties for HIP
is not necessary, unlike in facility location problem without which it becomes infeasible. For ease of
discussion, we redefine CAC1 as:

Z Xijgs + Xijkm = 26 + 2m — 1 Vi,je N;k,me H (CACY)

qs|dijqs <dijrm

W.P. No. 2014-03-01 Page No. 9
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It is noteworthy that the use of CAC1’ in place of C AC1 makes little computational difference.

We propose two alternative CACs, which are presented below. These constraints are designated
as CAC2 and CAC3. CAC?2 forbids assignment of flows from any s - d pair (7, ) to a path costlier
than the path Xjjrm, (1 = k — m — j) when hubs k and m are open (2, and z,, = 1). CAC2 is given
below:

Z Xijgs <2 — 2k — Zm Vi,je N;k,me H (CAC2)

qs€E;jkm

where, Eijrm = {(¢,5)| dijgs > dijkm}. CAC2 is similar to the constraint devised by |Wagner and
Falkson| (1975)) for facility center problems.

C'AC3 ensures closest assignment by allocating flows from any s - d pair (7, j) through all the paths
Xijgs (i = ¢ — s — j) not greater than the current path Xjjpy, (i > k — m — j) when hubs k and
m are not interdicted. This is presented below:

DD dijgs Xijgs + (M = dijrm) (25 + 2m — 1) < M Vi, jeN;k,meH (CAC3)
qeH seH

where, M = max > .y 2ien 2ikerr Zmen Lijhm-
In the above inequality, by fixing z; and z,, to 1, the allocations Xj;,s will be on paths shorter

than d;jrm. CAC3 is an adaptation of the closest assignment constraint from Berman et al.| (2009)
for hub location problems.
The single level HIP with the addition of closest assignment constraint takes the following form:

1 e 3553 Wi Yo
Yo Rigkm ;N €N ke H meH
s.t. , , -

CAC1 or CAC2 or CAC3

This single level problem is smaller in size compared to the single level problem formulation obtained
using KKT conditions. The current problem has the same number of variables as the original bi-level
problem, while the latter one has a very large model size due to the extra binary variables that were
required to linearize it. For a 25-node 10-hub problem, the reduced single level problem using the
closest assignment constraint contains 62,510 variables and 69,376 constraints compared to 75,635
variables and 81,876 constraints for the single level problem using KKT conditions. This makes the
KKT approach computationally inefficient when compared with the CACs. Hence going forward, we
focus on reduction using closest assignment constraints for solving the HIP.

3.3 Dominance relationship between CACs

In order to find the best closest assignment constraint among the proposed constraints for reduction,
we study the dominance relationships between the constraints. A constraint which dominates all the
other alternate constraints is the one with the tightest LP relaxation for the problem. [Espejo et al.
(2012) proposed the rules for dominance relationship between constraints as follows: A constraint
dominates the other if the former constraint implies the latter. If both constraints imply one another
we say that the constraints are equivalent.

In the following, we state dominance relationships between the closest assignment constraints
introduced above.

——
W.P. No. 2014-03-01 Page No. 10
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Proposition 1. CAC2 is equivalent to CAC1’
Proof. CAC2 can be written as:

1-— > Xijgs <2— 2k —2m Vi,jeN;k,me H
(98)|dijqs <dijkm
— Z Xijgs = 21+ 2m—1 Vi, je N;k,me H

(g5)ldijqs <dijrm
Separating Xijkm term we get:

Xijgs + Xijkm 2 2k + 2m — 1 Vi,je Nyk,me H

qs|dijqs <d;jkm

Hence, CAC2 = CAC1’. Similarly CAC1’ = CAC2 can be proved. Therefore, CAC2 is
equivalent to CACT". O

Proposition 2. CAC2 dominates CACS3

Proof. CAC2 can be written as:
D1 Xijgs + 2k + 2m <2 Vi,jeN;k,me H
(a8)€Eijkm
CAC?2 can be relaxed and written as:
Xijgs + 21 + 2m < 2 Vi,je N;k,me H;(q,s) € Ejjim- (CAC2-rel)

Now it is evident that, CAC2 = CAC2-rel, while CAC2-rel == CAC2. Therefore CAC2
dominates CAC2-rel. In order to show that CAC2 dominates C AC3, we just need to prove that
CAC2-rel implies CACS3.

Multiplying by d;jqs on both sides of C AC2-rel and summing it up over (g, s) € Ejjrm we get,

Z diquXiqu + Z diquZk + Z diquzm <2 Z diqu Vi,7€ N; k,me H
(g5)€E;jkm (¢5)€E;jkm (¢5)€E;jkm (¢5)€E;jkm
Adding Z(qS)Idiquédijkm dijgs Xijgs + (M — dijim — Z(QS)EEi]‘km dijgs)(2k + 2m — 1) to both sides of the

above inequality, we get

Z Z dijgs Xijgs + (M — dijrm) (21 + 2m — 1) < 2 dijgs + Z dijqs Xijgs

qeH seH (45)€Eijkm (5)|dijqs <dijrm
+(M — dijrm)(2k + 2m — 1) — Z dijgs(2k + 2m — 1) Vi,je N;k,me H.
(¢5)€EE;jkm

In the above constraint, the right hand side takes the maximum value when both z; and z,, are one.
This value is always bounded by M since Z(qs)| dijas <digim dijqs Xijgs < dijim. Therefore, we get the
following

DD dijgsXijgs + (M = dijim) (26 + 2m — 1) < M Vi,jeN;k,meH,

qeH seH
which proves that CAC2-rel = CAC3. Hence, CAC?2 dominates CACS3. O

In the following section, we suggest refinements of CAC1 and CAC?2, and present two additional
CAC sets that lead to fewer constraints.

L ——
W.P. No. 2014-03-01 Page No. 11



I ]
e — Research and Publications

3.4 Reduced formulation

In this section, we propose a reduced formulation for C AC'1 and C AC2 based on constraint dominance
principles.

Proposition 3. For a given s - d pair (i,j) and hubs (k,m # k) between them, C AC1;ji,, dominates
CAClijmk when dijkm < dijmk~

Proof. For given CAC1;jim, CAC1jmi and djjrm < dijmk, comparing CAC1; 1y, and CAC1;jy,, we
see that RHS of both the constraints are the same and LHS of CAC1;;,,;, contains the terms in the
LHS of CAC1;jkm (since dijpm < dijmi) and additional X4 variables.

CAC1jkm and CAC;jm, constraints are binding when z, and 2, = 1. The additional Xjj4s
variables in CAC1;j,,; are set to zero because LHS of C'AC1;j1y, is equal to 1, thereby making
CAC1;j, redundant. Therefore, C AC1,;j1,, dominates CAC1;j . O

Based on Proposition 3] we propose a new formulation for CAC1 which is given below: We define
a set, ngkm = {(k,m)|dijkm < dijmk; or (m, k)|dijme < dijem and V i,j € N, k,m > k € H} Next we
define the set C! ik which eliminates the closest assignment constraint corresponding to the longest
path as follows: C! {(q,s)| dijgs < dijkem or dijgs = dijpm and (¢ < k or(¢ = k and s < m));

ijkm—
Vi,je N, (k,m)e H!. }. The new closest assignment constraint can then be written as follows:

ijkm
Z Xiqu+Xijkm>Zk+zm_1Vi7jeN;kvmeH (I‘CACl)
qseC’;jkm
Proposition 4. For a given s - d pair (i,j) and hubs (k,m # k) between them, C AC2;j1y, dominates
CACQijmk when dijkm < dijmk'

Proof. Given CAC2;jpy, and CAC2;jmy and d;jrm < dijmp, comparing CAC2;p,, and CAC2j,,;, we
see RHS of both the constraints are same and LHS of CAC2;jy,, contains the terms in the LHS of
CAC2;jmi; (since dijpm < dijmi) and additional X;;,s variables.

CAC2jmy and CAC2;jy,, are binding when zj, and 2, = 1. CAC2;j1y, sets the variables in LHS of
CAC2;jm) and additional Xj;4s variables to zero, making C AC2;;,,;, redundant. Therefore, CAC2;j1m,
dominates CAC2;j- O

Based on Proposition [4] we propose a new formulation for C AC?2 which is given below: We define
a set S;jkm = {(k,m)|dijikm < dijmi or (M, k)|dijme < dijkm ¥ 1,5 € N,k,m > k € H}. Next we
define the set E!., ~ which eliminates the closest assignment constraint corresponding to the longest
path as follows: El’.jkm = {(q,8)|dijqs > dijlm;Vi,j € N,(k,m) € Sz{jkm}. The new closest assignment
constraint can then be written as:

D Xijgs <2— 2z — 2 Vi, jeN;k,m>ke H. (rCAC2)

qseE!

ijkm

The reduced constraint sets 7CAC1 and rCAC2 have |N|?((p? + p)/2) constraints, while their
parents CAC1 and CAC?2 have |N|?p? constraints.

——
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4 Advantages of CAC2 over CAC1

In this section, we outline the advantages of CAC2 over CAC1 in different stages of the solution
process. CAC?2 has certain structural properties that help in solving the single level problem faster
than the one with CAC1. These properties are also valid for rC AC2 since it is a tighter version of
CAC2.

4.1 Advantage at Presolve

Presolve procedure is executed by the solver, prior to solving the optimization problem to reduce the
size of the given problem by removing the redundant variables and constraints. Probing is a process
that is carried out at the presolve step wherein logical consequences are investigated by setting the
binary variables at their bounds (Savelsbergh, 1994). In this subsection, we show that CAC?2 and
rC'AC2 together with constraint @ eliminate a lot of variables by probing.

Proposition 5. For a given s - d pair (i,j) and hub k, Xijim variables that appear common in
constraint (@) and CAC2;;1y. can be fized to zero.

Proof. Given CAC2;jk, let the set A = {X;ikm|Xijim € CAC2jkk; @ for i, j, k}

Case 1: z, = 0 Variables in set A are reduced to zero by constraint @ for 4, j, k.

Case 2: z, = 1 Variables in set A are reduced to zero by CAC2;;xy.

Since the variables in set A are reduced to zero eitherwise, they can be eliminated from the model. [

Thus, CAC2 and rC AC2 formulations eliminate a lot of variables by probing procedure. Despite
the constraints being equivalent, probing reduction using C AC'1 formulation is not straightforward. It
will be obvious from the results provided in the later section, where we will observe that there is little
advantage at the presolve stage with the CAC1 formulation. In the following subsection, we present
the advantage provided by C' AC?2 in a branch-and-bound procedure.

4.2 Advantage at Branch-and-Bound step

In a branch-and-bound procedure, the given MIP is relaxed and the linear relaxation is solved at the
root node. Further branching is done by setting the integer variables to its bounds that have taken a
fractional value in the optimal solution to the relaxed problem. In our problem, branching is done by
setting zj variables to zero and one. When a z; variable is set to one, some X, variables are set to
zero because of the CAC?2 formulation. These variables can be eliminated from the model to reduce
the model size. Alternatively, when z; is set to zero some Xjjj,, variables are eliminated because of
constraint (@ which again reduces the model size. This is elaborated in the example below:

Consider a hub interdiction problem with N = 5, p = 3 and r = 1. Let the located hubs be
1,2 and 3. For a given s - d pair (0,4) of the problem we have the following distance matrix:
doa1n = 373.8127,dps12 = 1006.071,dps1s = 2642.653,dogo1 = 1527.739,dpgoe = 1375.603, dogos =
1696.158, dpg31 = 2266.804, dogze = 1745.126, dpyszs = 1696.158

Now writing constraint [0 and CAC?2 constraint for the path 0411 we have:

Xoa11 + Xoar2 + Xoarz + Xoao1 + Xoaz1 <= 21
Xoa12 + Xoa13 + Xoao1 + Xoa2z + Xoazz + Xoaz1 + Xoazz + Xoazz <=2 — 22

I
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As discussed above, in the branch-and-cut tree two branches are created with z; = 1 and z; = 0.

For the branch with z; = 0, The variables X411, Xo412, Xo0413, X421, X0431 are set to zero.

For the branch with 21 = 1, The variables X0412, X0413, X0421, X0422, X0423, X0431, X0432, X0433 are set
to zero. Thus CAC?2 and rCAC?2 formulations reduce the size of the problem further for each sub
problem in the branch-and-cut tree. This advantage of C AC2 and rC' AC2 further results in improved
performance while solving the hub interdiction problem.

5 Computational Results

In the previous section, we studied the relative merits of different CACs in solving the hub interdiction
problem. In this section, we present the results of our computational experiments to highlight the
degree of computational advantage gained through the use of one CAC vis-a-vis others. For our
experiments, we use instances derived from the Civil Aeronautics Board (CAB) dataset containing
|N| = 25 nodes, and Australian Post (AP) dataset containing |N| = 200 nodes. The hub locations
used for each of these instances are the optimal hub locations obtained by solving a corresponding
uncapacitated p-hub median problem (Ebery et al., 2000). All the computational experiments are
performed on a workstation with a 2.60GHz Intel Xeon - €5 processor and 24GB memory, and all the
instances are solved using Cplex 12.6.

In Table [I} we present the results of the experiments for CAB dataset with |[N| = 25 nodes and
p € {7,10} hubs. The discount factors for collection («) and distribution (x) are set at 1.0 in the CAB
dataset, while the discount factor for transhipment (§) is varied in the experiments. For N = 25 and
p = 7 hubs, HIP with CAC1 or CAC?2 or CAC3 contains 35,626 constraints and 30,633 variables.
Similarly, N = 25 and p = 10 hubs, the number of constraints and variables are 69,376 and 62,511,
respectively, which are reported under the column “Original size”. The number of constraints and
variables remaining in the model after the presolve operation and the CPU time to solve the model are
reported under the columns “Cons.”, “Vars.” and “CPU”, respectively for the different CACs. These
results clearly show the computational inferiority of C AC3 compared to the other CACs, as highlighted
by its relatively high CPU times. This is mainly due to a weak LP relaxation of the resulting sin