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Abstract

In recent years there has been considerable concern expressed worldwide re-
garding increase in temperature popularly called the global warming problem.
In this paper we examine monthly temperature data of nine Indian cities for
the period 1961 to 2013. We introduce a new Gaussian process based method
for change point detection with functional data and use it to investigate the
existence of change point for the temperature data series of nine Indian cities.
It is found that there has been a rise in the average temperature for eight of
the nine cities during this period. The magnitude of warming is found not to
be uniform but vary across cities located in different parts of India. The cities
located in hilly areas is seen to have warmed more than those located in the
plains. The estimated change points for the eight cities are not identical but
most of them are in the period 1994 - 2001. The findings suggest that imme-
diate policy measures are required to ensure that no further warming happens
in these cities.

Keywords: Global warming, Climate change, Gaussian process, Powered
Exponential Covariance Function, Functional Principal Component Analysis,
Generalized Likelihood Ratio Test
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1 Introduction

In recent years, a lot of attention of the world’s leaders both in developing and de-
veloped countries has been drawn towards “climate change”. The Intergovernmental
Panel on Climate Change (IPCC) uses this term to indicate change in climate (i.e.
the planet’s weather patterns or average temperatures) over time, whether due to
natural variability or as a result of human activity. A major concern which has
received wide coverage in the popular press across the world is the phenomenon of
global warming which can be described as an increase in average surface temperature
compared to the past, possibly due to human activity. While there is no consensus
amongst climate scientists regarding the exact magnitude of this increase and its
causes, there are a large number of them who believe that the global warming is a
real phenomenon. Climate scientists from the IPCC estimate that average global
temperatures could increase between 1.1◦C and 6.4◦C by the year 2100 compared to
the 1980-1999 levels, IPCC (2007). The effects of global warming may include rising
sea levels due to the melting of the polar ice caps leading to nearly complete submer-
sion of low-lying countries (such as Maldives), as well as an increase in occurrence
and severity of extreme weather events such as storms, drought etc.

In recent years we have a resurgence of interest in reducing global warming and
mitigating the impact of climate change. The Kyoto Protocol, which is an interna-
tional treaty that commits countries to reduce greenhouse gas emissions was adopted
in December 1997 and entered into force in February 2005. The 2010 United Na-
tions Climate Change Conference (UNCCC) held in Cancun, Mexico adopted an
agreement that called for the countries to create a large Green Climate Fund, and a
Climate Technology Centre and network. The recently held 2015 UNCCC in Paris,
France resulted in an agreement that committed all the countries to work towards
reduction of their greenhouse gas emissions in amounts that meets the aim of re-
stricting global warming to below 2◦C.

In India, climate change is thought to be impacting the natural ecosystems. It
is expected that in the long run substantial adverse effects mainly on, agriculture
on which 58 per cent of the Indian population still depends for livelihood, water
availability for cultivation of crops and drinking due to melting of the Himalayan
glaciers which are the source of India’s major rivers, and loss of habitation and food
security due to sea-level rise resulting in inundation of large tracts of fertile coastal
lands with sea water.

India being the seventh largest country in the world with north-south distance
more than 3200 km and east-west distance more than 2900 km it is expected that
the effect of global warming would vary across different regions of the country. In
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this paper we consider nine cities from different parts of India and examine if the
yearly average temperature has risen during the period 1961-2013 in these cities.
The findings indicate that global warming may become a cause of concern to a large
section of the population of India. We further investigated whether the temperature
increase varies across seasons and regions. We find that the temperature increase is
more in the winter season indicating the winters have become milder in many parts
of the country. Moreover, we find that the temperature increase is more for high
altitude regions than that of plains. Similar studies have addressed temperature
changes in other countries like Finland [Mikkonen et al. (2015)].

The remainder of the article is organized as follows. In section 2, we provide a
background on stochastic process, functional data and change point problem and in
section 3, we provide a brief review of Gaussian process with powered exponential
covariance function that is relevant for this paper. In section 4, we propose a method
for detecting the presence of change point using Generalised Likelihood Ratio test. In
section 5, we analyze the monthly temperature data for the period 1961-2013 for nine
Indian cities to detect the presence of a change point. In section 6, we explore the
relation of amount of change with geographical location, seasons as well as altitude
followed by some concluding remarks in section 7.

2 Background

A stochastic process indexed by a set T is a collection X = {X(t)}t∈T of measurable
maps from a probability space (Ω, F, P) with values in a measurable space (E, ξ).
X(t) is called a random element which is a generalization of the concept of a random
variable (where (E, ξ) = (R, B)). The set X(ω) = {X(t, ω) : t ∈ T} is called a
sample path of the process. In the context of this paper we take E to be the space of
all continuous square integrable real valued functions. We consider the temperature
at a place over a year (the temperature curve) as an element of E. Thus we visualize
that for each year we have an element of E which is drawn at random according to
the probability distribution P.

In functional data analysis (FDA) the data is represented in the form of curves
unlike that in the conventional univariate or multivariate data where the observations
are either scalars or vectors. There has been a substantial progress in the statistical
analysis of functional data over the last three decades. FDA has been applied in a
variety of scientific fields like medicine [Erbas et al. (2009)], biology [Müller et al.
(2009)], environment [Gao and Niemeier (2008)], ecology [Ikeda et al. (2008)] and
many other areas. Ramsay and Dalzell (1991) analyses daily temperature and pre-
cipitation levels at 35 Canadian weather-stations over a year using a functional data
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approach. Meiring (2007) uses FDA to study altitude variation in the ozone partial
pressure profiles, which also includes nonlinear time trends. Applications of FDA
has greatly increased in the past few years because of rapid advancement of data
gathering technologies such as sensors, and increase in processing power of comput-
ers. The books by Hsing and Eubank (2015), Horváth and Kokoszka (2012), Ramsay
et al. (2009), Ramsay and Silverman (2002), Ramsay and Silverman (2005) offer a
broad perspective of the available methods and case studies in functional data.

We consider functional observations Xi(t), t ∈ T, i = 1, . . . , n defined over [a,b].
It is assumed that Xi are independent and identically distributed as X, drawn from
L2([a, b]). Suppose that the mean function be µ = E(X) ∈ L2([a, b]). Further,
assume that the covariance function K is a continuous function on [a, b]×[a, b]. Then,
there exists a sequence of continuous eigenfunctions φn and a decreasing sequence of
corresponding non-negative eigenvalues λn such that∫ b

a

K(s, t)φn(s)ds = λnφn(t),

∫ b

a

φn(s)φm(s)ds = δnm

Also, each functional observation can be decomposed as X(t) = µ(t) +
∑∞

n=0 ηnφn(t)
where (ηn) is a sequence of real zero-mean random variables such that E(ηnηm) =
λnδnm. Moreover, K(s, t) =

∑∞
n=0 λnφn(s)φn(t); s, t ∈ [a, b]; where the series con-

verges uniformly and absolutely on (a, b) [Bosq (2000),(p.25)].

The change point problem for the mean function with functional observations
was studied in Berkes et al. (2009) using a non-parametric approach. Suppose
Xi(t), t ∈ T, i = 1, 2, . . . , n be a temporally ordered sequence of independent func-
tional observations defined over a compact set T with mean functions µ1, . . . , µn
respectively. We are interested in testing the following hypothesis:

H0 : µ1 = µ2 = · · · = µn versus the alternative H1 : not H0

The test statistic Sn,d given in Berkes et al. (2009) rejects H0 if the value of the
test statistic is greater than the tabled values given in table 1 of Berkes et al. (2009)
where

Sn,d =
1

n2

d∑
`=1

1

λ̂`

n∑
k=1

 k∑
i=1

η̂i,` −
k

n

n∑
i=1

η̂i,`

2

(1)

where η̂i,` are the estimated functional scores expressed as

η̂i,` =

∫
T

[Xi(t)−Xn(t)]φ̂n(t)dt
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where the quantity φ̂n is estimated as explained earlier and d is chosen to explain
around 85% of variance while applying principal component analysis. Aue et al.
(2009) provide a method for estimating the change point based on maximizing a
quadratic form.

3 Gaussian Process

In the context of FDA, the outcome for each experiment can be considered as re-
alization of a sample path of the underlying stochastic process. A convenient as-
sumption is to take the underlying process to be a Gaussian Process. The class
of Gaussian processes is one of the most widely used families of stochastic pro-
cesses for modeling dependent data observed over time (see for e.g. Müller and
Yang (2010), Shi and Choi (2011)). A Gaussian process {X(t), t ∈ T}, indexed
by a set T (in this paper we take T to be the set of non-negative real numbers),
is a stochastic process, in which any finite linear combination of random variables
X(t), have a joint multivariate normal distribution. Equivalently, {X(t), t ∈ T}
is a Gaussian process, if for any choice of distinct values t1, . . . , tk ∈ T , the ran-
dom vector X = (X(t1), . . . , X(tk))

T has a multivariate normal distribution with
mean vector µ = E(X) = (E(X(t1)), . . . , E(X(tk)))

T and covariance matrix Σ =
(Cov(X(ti), X(tj)))i,j=1,...,k = (σij)i,j=1,...,k. The mean and covariance functions of a
Gaussian process are given by

µ(t) = E(X(t)) and

Σ(s, t) = Cov(X(s), X(t)) = E(X(s)− E(X(s)))(X(t)− E(X(t)))

respectively. A Gaussian process is completely specified by its mean function and
covariance function. Among the many desirable properties associated with the Gaus-
sian process is the Karhunen-Loeve (KL) expansion. The KL-expansion of a centered
Gaussian process {X(t), t ∈ T} can be represented as [Wahba (1990)(p.5)]

X(t) =
∞∑
k=1

ξkφk(t)

where ξ1, ξ2 . . . are independent, Gaussian random variables with

Eξk = 0, Eξ2
k = λr

and

ξk =

∫
T

X(s)φk(s)ds, Σ(s, t) =
∞∑
k=1

λkφk(s)φk(t) and

∫
T

∫
T

Σ2(s, t) ds dt <∞
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where λk is a decreasing sequence of non-negative eigenvalues and φk is a correspond-
ing sequence of continuous eigenfunctions.
In this paper, we restrict ourselves to the powered exponential covariance function
which is defined as

Σ(s, t) = v0 exp(−w|s− t|γ), 0 < γ ≤ 2, v0 > 0, w > 0 (2)

We will denote a Gaussian process with powered exponential covariance function as
GPPE(µ, v0, w, γ). In applications, we will assume that all observations are indepen-
dent and each observation is a sample path of a GPPE(µ, v0, w, γ). The parameters
(µ, v0, w, γ) are usually unknown and they are to be estimated from the given data.

3.1 MLE of mean and covariance parameters of GPPE(µ, v0, w, γ)

Assume that the curves X1, . . . , Xn is a random sample from GPPE(µ, v0, w, γ) and
each of these curves are observed at same time points t1, . . . , tk. The log likelihood
of the data is given by:

l0 = l(µ̃, v0, w, γ) =
n∑
i=1

(
−k
2
ln2π − 1

2
ln|Σ| − 1

2
(X̃i − µ̃)′Σ−1(X̃i − µ̃)

)
(3)

where X̃i = (Xi(t1), . . . , Xi(tk)) , µ̃ = (µ(t1), . . . , µ(tk)),Σ is the k× k matrix whose
(g, h)th element is v0 exp(−w(tg − th)γ). Differentiating equation (3) with respect to

µ̃ and equating to zero yields µ̂(tl) =
∑n

i=1Xi(tl)

n
, 1 ≤ l ≤ k. Again, differentiating

equation (3) with respect to v0 and equating to zero yields v̂0 =
∑n

i=1(X̃i−µ̂)′T−1(X̃i−µ̂)

nk

where Σ = v0T and T is the k×k matrix whose (g, h)th element is exp(−w|tg− th|γ).
In case w and γ are assumed known then v̂0 is the MLE of v0.
Writing Σ =

[
σij
]
k× k

where σij = v0 exp(−wcγij) where cij = |ti − tj|,
l0 = l0(µ, σ11, σ12, . . . , σ1k, σ22, σ23, . . . , σ2k, . . . , σkk) and σij = σij(v0, w, γ) if i 6= j
else σij = v0. Since

∂l0
∂w

=
k∑

i,j=1

∂l0
∂σij

∂σij
∂w

,
∂l0
∂γ

=
k∑

i,j=1

∂l0
∂σij

∂σij
∂γ

(4)

∂σij
∂w

= −cγijσi,j and
∂σij
∂γ

= −wcγijlog(cij)σi,j (5)

by using Smith (1978),

∂l0
∂σij

=
1

2
tr


−nΣ−1 + Σ−1

(
n∑

m=1

(
X̃m − µ̃

)(
X̃m − µ̃

)′)
Σ−1

[ ∂Σ

∂σij

] (6)
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we can obtain the estimates of w and γ by substituting values from equation (5)
and equation (6) in equation (4) and then equating it to zero and solving for w
and γ. As the analytical solutions are not tractable, numerical techniques can be
used to obtain these estimates. Alternatively, one may attempt to maximize the log-
likelihood function directly using a global optimization algorithm. Among the several
modern numerical approaches to global optimization of functions the Differential
Evolution (DE), Storn and Price (1997) approach is one of the most promising.
In the R software, the package DEoptim provides the functionality of optimizing a
given function using the DE algorithm. We use the DEoptim algorithm for obtaining
the MLEs of the parameters in this paper motivated by Mullen (2014) where it is
reported that the performance of the DEoptim algorithm is good across a variety of
benchmark problems.

4 Change point detection

Let us assume that we have a time-ordered sequence of n independent functional
observations X1, . . . , Xn. We assume that these observations come from a Gaussian
process with powered exponential covariance function. In actual applications with
real data often it is found that the functional observations Xi are not observed at
all-time points but only at a few discrete points 0 ≤ ti1 < ti2 < < tiki and in general,
it is possible that the points tij and the constants ki depend on i. However for the
data-sets analyzed in this paper, kis are all equal (= k say) and tij = tkj for all i and
k, and for each j, 1 ≤ j ≤ k. We are interested to determine if there exists a point
r, 1 ≤ r ≤ n such that

X1, . . . , Xr ∼ GPPE(µ0, v0, w0, γ0)

Xr+1, . . . , Xn ∼ GPPE(µ1, v1, w1, γ1)

We adopt a generalized likelihood ratio test (GLRT) methodology for this prob-
lem.
Let Ω = {(µ0, µ1, v0, v1, w0, w1, γ0, γ1, r) : µ0, µ1 ∈ Rk, v0 > 0, v1 > 0, w0 >
0, w1 > 0, 0 < γ0 ≤ 2, 0 < γ1 ≤ 2, 1 ≤ r ≤ n}, Ω0 = {(µ0, µ1 = µ0, v0, v1 =
v0, w0, w1 = w0, γ0, γ1 = γ0) : µ0, µ1 ∈ Rk, v0 > 0, w0 > 0, 0 < γ0 ≤ 2, r = n}
and Ω1 = Ω− Ω0. It may be noted that Ω0 ∩ Ω1 = ∅ and Ω0 ∪ Ω1 = Ω.

Further, let L∗ = sup(θ∈Ω) L(θ), L∗0 = sup(θ∈Ω0) L(θ) and L∗1 = sup(θ∈Ω1) L(θ)
where L denotes the likelihood function. We wish to test H0 : θ ∈ Ω0 versus H1 :
θ ∈ Ω1.
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The generalized likelihood ratio(GLR) test statistic is defined to be λ =
L∗0
L∗

and
the GLRT rejects H0 for small values of λ. An equivalent test can be based on
ln λ∗ = l∗1 − l∗0 where l∗0 = ln L∗0 and l∗1 = ln L∗1 which rejects H0 for large values of
ln λ∗. We use ln λ∗ as the GLR test statistic in this paper.

4.1 Change point problem for mean when covariance func-
tion is unchanged

We first consider the simplified case where no change is envisaged for the covariance
function i.e. it is assumed that v0 = v1, w0 = w1, and γ0 = γ1. Suppose we have ob-
served X1 at time points t11, t12, . . . , t1k1 ; X2 at time points t21, t22, . . . , t2k2 ; . . . , Xn

at time points tn1, tn2, . . . , tnkn , i.e. possibly at different time points. Then the log
likelihood under H0 is given by

l0 = l(µ0, v0, w0, γ0) =
n∑
i=1

(
−ki
2
ln2π − 1

2
ln|Σ0i| −

1

2
(X̃i − µ̃0i)

′Σ−1
0i (X̃i − µ̃0i)

)
(7)

where X̃i = (Xi(ti1), . . . , Xi(tiki)) , µ̃0i = (µ0(ti1), . . . , µ0(tiki)), Σ0i is the ki × ki
matrix whose (g, h)th element is v0 exp(−w0|tig − tih|γ0). Under H1r where H1r is
the alternative hypothesis with change at r, the log likelihood l1r is given by

l1r = l(µ0, v0, w0, γ0, µ1) =
r∑
i=1

(
−ki
2
ln2π − 1

2
ln|Σ0i| −

1

2
(X̃i − µ̃0i)

′Σ−1
0i (X̃i − µ̃0i)

)
+

n∑
i=r+1

(
−ki
2
ln2π − 1

2
ln|Σ0i| −

1

2
(X̃i − µ̃1i)

′Σ−1
0i (X̃i − µ̃1i)

)
(8)

where 1 ≤ r ≤ n − 1, X̃i = (Xi(ti1), . . . , Xi(tiki)), µ̃0i = (µ0(ti1), . . . , µ0(tiki)), µ̃1i =
(µ1(ti1), . . . , µ1(tiki)), Σ0i is the ki× ki matrix whose (g, h)th element is v0 exp(−w0|tig−
tih|γ0). Then the GLR test statistic can be expressed as ln λ∗ = max1≤r≤n(l1r − l0),
where l1n ≡ l0. The position of the change point is estimated by r̂ where r̂ is the
value of r for which ln λ∗r = l1r − l0 attains its maximum. The null distribution of
ln λ∗ is not analytically tractable. In case (µ0, v0, w0, γ0) are known then the cut-off
points of the test can be obtained using simulation. If µ0 is known but v0, w0, γ0 are
unknown, then an approach similar to Silvapulle (1996) can be taken to overcome
the problem of nuisance parameters. In case all the nuisance parameters under H0

are unknown, an adaptive approach can be pursued to obtain approximate cut-off
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points as discussed later in this paper.

Note that if each X1, . . . , Xn are defined at same time points t1, . . . , tk ,then

the mean of the function estimated from equation (8) is µ̂0(tl) =
∑r

i=1Xi(tl)

r
, and

µ̂1(tl) =
∑n

i=r+1Xi(tl)

n−r , 1 ≤ l ≤ k. The v0 of the function estimated from equation (8)
is

v̂0 =

∑r
i=1(X̃i − µ̂0i)

′T−1(X̃i − µ̂0i) +
∑n

i=r+1(X̃i − µ̂1i)
′T−1(X̃i − µ̂1i)

nk

where Σ = v0T where T is the k× k matrix whose (g, h)th element is exp(−w0|tig −
tih|γ0).

It may be noted that for this simplified situation an analogue of this problem
in the mutivariate normal set-up but without any parametrization of the covariance
matrix has been discussed in Srivastava and Worsley (1986) (see also Zamba and
Hawkins (2006)).

4.2 Change point problem for mean when covariance func-
tion may also have changed

We now consider the general case of the change point problem where we want to
detect a possible change in the mean and / or covariance function. We assume
that in case both mean function and covariance function have changed, the changes
have occurred at the same time point. Suppose we have observed X1 at time points
t11, t12, . . . , t1k1 ; X2 at time points t21, t22, . . . , t2k2 , . . . , Xn at possibly time points
tn1, tn2, . . . , tnkn , i.e. at different time points. Then the log likelihood under H0 is
given by

l0 = l(µ0, v0, w0, γ0) =
n∑
i=1

(
−ki
2
ln2π − 1

2
ln|Σ1i| −

1

2
(X̃i − µ̃0i)

′Σ−1
1i (X̃i − µ̃0i)

)
(9)

where X̃i = (Xi(ti1), . . . , Xi(tiki)) , µ̃0i = (µ0(ti1), . . . , µ0(tiki)), Σ0i is the ki × ki
matrix whose (g,h)th element is v0 exp(−w0(tig − tih)γ0).
Under H1r where H1r is the alternate hypothesis with change at r, the log likelihood
l1r is given by
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l1r = l(µ0, v0, w0, γ0, µ1, v1, w1, γ1)

=
r∑
i=1

(
−ki
2
ln2π − 1

2
ln|Σ0i| −

1

2
(X̃i − µ̃0i)

′Σ−1
0i (X̃i − µ̃0i)

)
+

n∑
i=r+1

(
−ki
2
ln2π − 1

2
ln|Σ1i| −

1

2
(X̃i − µ̃1i)

′Σ−1
1i (X̃i − µ̃1i)

) (10)

where X̃i = (Xi(ti1), . . . , Xi(tiki)) , µ̃0i = (µ0(ti1), . . . , µ0(tiki)), µ̃1i = (µ1(ti1), . . . ,
µ1(tiki)),Σ0i is the ki × ki matrix whose (g,h)th element is v0 exp(−w0(tig − tih)γ0),
Σ1i is the ki × ki matrix whose (g,h)th element is v1 exp(−w1(tig − tih)γ1).

Again note that if X1, . . . , Xn are observed at same time points t1, . . . , tk , the

mean of the function estimated from equation (10) is µ̂0(tl) =
∑r

i=1Xi(tl)

r
, and µ̂1(tl) =∑n

i=r+1Xi(tl)

n−r , 1 ≤ l ≤ k. The v0 is estimated from equation (8) is

v̂0 =
∑r

i=1(X̃i−µ̂0)′T−1
0 (X̃i−µ̂0)

rk
where Σ0 = v0T0 where T0 is the k × k matrix whose

(g,h)th element is exp(−w0|tg − th|γ0). The v1 is estimated from equation (8) is

v̂1 =
∑n

i=r+1(X̃i−µ̂1)′T−1
1 (X̃i−µ̂1)

(n−r)k where Σ = v1T1 where T1 is the k × k matrix whose

(g,h)th element is exp(−w1|tg − th|γ1).

As discussed earlier, the GLR test statistic can be expressed as ln λ∗ = max1≤r≤n(
l1r− l0) where l1n ≡ l0. The position of the change point is estimated by r̂ where r̂ is
the value of r for which ln λ∗r = l1r − l0 attains its maximum. The null distribution
of ln λ∗ is not analytically tractable. In case (µ0, v0, w0, γ0) are known then the
cut-off points of the test can be obtained using simulation. In case all the nuisance
parameters under H0 are unknown an adaptive approach can be pursued to obtain
approximate cut-off points as discussed later in this paper.

5 Warming of Indian Cities

In this section we study the monthly temperature data of nine Indian cities for the
period 1961-2013 and examine the possible existence of a change point using the
technique discussed in section 4.2. This data is obtained from the Indian Meteoro-
logical department (IMD), Ministry of Earth Sciences, Government of India. The
nine cities under consideration are Ahmedabad, Bengaluru, Imphal, Jaipur, Kolkata,
Port Blair, Pune, Srinagar and Trivandrum. Table 1 shows the latitude, longitude,
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altitude and location of these cities. These cities are located in different parts of the
country and are at differing altitudes.

City Latitude Longitude Altitude(m) Region
Ahmedabad 23.02 72.57 53 Western India
Bengaluru 12.97 77.59 920 Southern India
Imphal 24.81 93.93 786 Eastern India
Jaipur 26.91 75.78 431 Northern India
Kolkata 22.57 88.36 9.1 Eastern India
Port Blair 11.62 92.72 16 Southern India
Pune 18.52 73.85 560 Western India
Srinagar 34.08 74.79 1585 Northern India
Trivandrum 8.52 76.93 10 Southern India

Table 1: Geographical information of the nine Indian cities

The data supplied by IMD consisted of the maximum and minimum temperature
in a month. We computed the average temperature of a month by averaging the max-
imum and minimum temperatures for a month [World Meteorological Organisation
(2012)]. We treat the 12 monthly average temperature readings for a given year as
observations from a random sample path of GPPE(µ, v, w, γ) observed at time points
t = 1, . . . , 12. Further, we assume that the 53 random sample paths corresponding
to the years 1961-2013 are mutually independent as in Berkes et al. (2009). Since,
the dataset supplied by IMD contained some missing values we carried out missing
value treatment to obtain the completed dataset which is used for this paper. As an
example of the kind of missing value treatment carried out, consider Bengaluru city
for which the IMD data has two missing values for March 1962 and August 1963.
To impute the missing value for March 1962, a cubic smoothing spline is fitted by
taking the available values between December 1961 and January 1963 in R-software.
The fitted value for March 1962 is used as the imputed value. Similar procedure is
used for imputing the value of August 1963.

The powered exponential covariance function could not be used directly for this
data because of the periodic nature of the monthly temperature data. In this con-
text, it is natural to expect that the monthly temperatures of January and De-
cember in a year would be correlated because both these months fall in the win-
ter season in India. However this would not be correctly captured by the PECF
Σ(s, t) = v0 exp(−w|s − t|γ) since the month of January with s = 1 would appear
to be distant with December with t = 12 and therefore the model would expect the
temperatures of these months to have low correlation. To overcome the problem we
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use the following periodic PECF (P2ECF)Σ(s, t) = v0 exp

(
−w

(
2
∣∣sin s− t

2

∣∣)γ)
,which is discussed in a different context in Solin and Särkkä (2014). The motiva-
tion behind this formulation is that, if the twelve months in a year are viewed as 12

equispaced points on the unit circle with coordinates

(
cos

πi

6
, sin

πi

6

)
, i = 1, . . . , 12

then the points representing January and December are adjacent to one another.

The Euclidean distance between two points

(
cos

πs

6
, sin

πs

6

)
and

(
cos

πt

6
, sin

πt

6

)
is 2
∣∣sin s− t

2

∣∣ which is used to replace |s − t| in the original definition of PECF to

get P2ECF.

We illustrate the data analysis carried out by us using the example of Bengaluru.
The data analyses for the other eight cities follow a similar procedure. While the main
focus of our investigation is to detect a change in the mean function, if present, we also
allow the possibility that the covariance matrix may have changed simultaneously
along with the mean i.e. we do not assume that v0 = v1, w0 = w1, and γ0 = γ1.
Since the GLR test for change point problem generally does not perform well if the
change point is at the beginning of the given sequence or towards the end, therefore we
decided to search for a change point only in the middle of the range. More specifically,
we assume that there is no change point in the temperature series for Bengaluru
between the years 1961-1970 and also 2004-2013 i.e the range of possible values of
r is 11 ≤ r ≤ 43. The maximum of value l0 and l1r , 11 ≤ r ≤ 43 are computed
by maximizing these using the DEoptim package in R. These are used to compute
the value of the GLR test statistic for Bengaluru. The cut-off value of the GLR test
statistic is obtained through simulation under the null hypothesis of no change. Since
we have assumed that there is no change point in the initial ten years 1961-1970, we
compute an estimate of the mean function µ(t) at the points t = 1, . . . , 12 and the
parameters v, w and γ determining the covariance function. The pointwise average
of the first ten functional observations is taken as the estimate of estimate of µ(t).
Let suv be the sample covariance of X(u) and X(v) computed using the first ten
observations. We estimate v, w, and γ by minimizing the square of the Frobenius
norm, [Golub and Van Loan (1996) (p.55)] of the matrix (Σ(u, v) − suv)1≤u,v≤12.
We prefer this approach for estimating v, w, and γ because of the small sample
size. We treat these estimated values as true values of µ0, v0, w0, γ0 and perform
1000 simulations. For each simulation we generate a random sample of 53 functional
observations from this Gaussian process GPP 2E(µ0, v0, w0, γ0) using the gaussSamp
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function in the gptk package in R.
The simulated null distribution of the GLR test statistic is obtained by comput-

ing the value of the GLR test statistic (with the restriction 11 ≤ r ≤ 43) for each
simulation. In this paper, we reject the null hypothesis of no-change if the observed
value of the test statistic is greater than the 95th percentile obtained from the simu-
lated null distribution. While it may be (correctly) argued that these cut-off values
are approximate, we have observed that the conclusions drawn on the basis of these
cut-off values are mostly in agreement with those using the method of Berkes et al.
(2009). Thus we feel that the obtained cut-off values are reasonably robust as far as
drawing conclusion about the presence of change point in the data. When the above
GLR test procedure is applied to the Bengaluru monthly temperature dataset we get
the GLR test statistic value to be 24.93. Since the 95th percentile of the simulated
null distribution of the GLR test statistic is 16.56, we reject the null hypothesis of
no change and conclude that a change point is present in the dataset. The estimated
year of change is 1989 which is the year corresponding to the value of r for which
ln λ̂ is maximum as described in section 4.2. A study of the average temperature
in the two periods 1961-1989 and 1990-2013 indicates that the temperature of Ben-
galuru has risen for all months in the year. The maximum increase has happened for
the month of January with average January temperature for the period 1990-2013
being 0.776◦C higher than that for the period 1961-1989. To quantify the extent
of increase and compare the same across the cities we need to compute a distance
measure between the two average temperature curves. It may be noted that in math-
ematics there are several ways of computing the distance between two functions of
which the Lp-distances (p ≥ 1) are most well-known, [Bollabás (1999) (p. 24)]. The
L1-distance between the two average temperature curves observed at time points

t = 1, . . . , 12 is
1

n

12∑
t=1

|µ̂1(t) − µ̂0(t)|, the L2-distance is

√
1

n

12∑
t=1

(µ̂1(t)− µ̂0(t))2 and

L∞-distance is max
1≤t≤12

|µ̂1(t) − µ̂0(t)| where µ̂i is the estimate of µi, i = 0, 1. When

these are computed for Bengaluru, we get the L1-distance to be 0.470, L2-distance
is 0.478 and the L∞ distance is 0.776.

When the above GLR test procedure is applied to the monthly temperature
dataset of the other eight cities it is found that the null hypothesis of no change is
rejected for all the cities except Ahmedabad. Table 2 gives a summary of the results
obtained for all the nine cities. Table 4 gives the estimates of the v, w and γ for both
the pre and post change periods for all the cities. Since no change point is detected
for Ahmedabad only the estimates of v, w and γ for the entire period is given. Table
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3 gives the L1, L2 and L∞ distances of the average temperature curves before and
after the change point for the eight cities where the GLR test indicated the presence
of change point. It is seen that Imphal followed by Srinagar are the two cities where
there has been the largest changes in annual temperature patterns as measured by
both L1 and L2 distances. Further, Srinagar is the city for which there has been
the maximum change in temperature for a month as seen by the L∞ distance. The
rise in average temperature for the month of March for Srinagar is the highest rise
in monthly temperature amongst all the nine cities included in this study. Figure
1 gives the graphs of the average monthly temperature values before and after the
year of change for the eight cities where a change point is detected.

City 95th Percentile GLR test Significant Year of
statistic value at 95% level change

Ahmedabad 16.657 7.219 Not Significant *
Bengaluru 16.56 24.93 Significant 1990
Imphal 17.2 35.649 Significant 1994
Jaipur 5.221 23.9 Significant 1997
Kolkata 5.801 27.034 Significant 1986
Port Blair 5.966 28.282 Significant 2001
Pune 6.087 18.859 Significant 2000
Srinagar 17.212 26.78 Significant 1994
Trivandrum 17.341 31.646 Significant 1994

Table 2: Presence of change point and estimated year of change in temperature in
the period 1971-2003 for the nine cities

As mentioned in section 1, Berkes et al. (2009) gives a test for presence of change
point for functional observations. We apply this test to the average monthly tem-
perature datasets of all the nine cities. We follow Horváth and Kokoszka (2012)
regarding the choice of the number of functional principal components (FPCs) to be
used for carrying out this test. As suggested in p.87 of Horváth and Kokoszka (2012),
we use the number of FPCs for which 85 % (approx.) of the variability is explained.
For all the cities except Imphal and Trivandrum five FPCs are required whereas for
these cities four FPCs sufficed. The test rejected the null hypothesis of no change
point for all cities except Ahmedabad and Kolkata at 5% level of significance. Thus
we see that the results obtained using the methodology of Berkes et al. (2009) agrees
with that of the methodology proposed in this paper for all cities except Kolkata.
In this context it may be noted that in Berkes et al. (2009) method the covariance
function remains the same before and after the change point while we have allowed
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City L1 distance L2 distance L∞ distance
Bengaluru 0.470 0.498 0.776
Imphal 1.229 1.256 1.656
Jaipur 0.792 0.937 1.613
Kolkata 0.518 0.577 0.769
Port Blair 0.910 0.947 1.431
Pune 0.345 0.458 0.966
Srinagar 0.913 1.064 1.797
Trivandrum 0.508 0.536 0.710

Table 3: L1, L2 and L∞ distances of the average temperature curves before and after
the change point for the eight cities where the GLR test indicated the presence of
change point

Cities Year v w γ
Ahmedabad 1961-2013 0.956 1.295 0.498

Bengaluru
1961-1989 0.314 1.548 0.923
1990-2013 0.309 1.587 0.575

Imphal
1961-1994 0.988 1.121 0.402
1995-2013 0.720 1.490 0.487

Jaipur
1961-1997 1.303 1.789 0.496
1997-2013 1.427 1.938 1.129

Kolkata
1961-1986 0.659 2.393 0.665
1987-2013 0.513 2.217 0.417

Port Blair
1961-2001 0.517 0.549 0.406
2002-2013 0.289 1.254 0.735

Pune
1961-2000 0.664 2.350 1.113
2001-2013 0.559 1.198 0.362

Srinagar
1961-1998 1.678 1.708 0.221
1999-2013 1.178 3.28 0.339

Trivandrum
1961-1994 0.218 1.133 0.413
1995-2013 0.236 1.522 0.620

Table 4: Estimates of the parameters v, w and γ for both the pre and post change
periods for all the cities
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for the possibility that they may be different.

6 Variation of warming with geographical location

In this section, we investigate whether the amount of temperature change in the
Indian cities has any relation with geographical location i.e. it’s latitude (lat), lon-
gitude (long) and altitude (alt). Since lat and long are in spherical coordinates,
therefore first we transform them into Cartesian coordinates by using the following
transformation

x = R cos θ

y = R sin θ cosφ

z = R sin θ sinφ

where θ denotes the latitude and φ denotes the longitude, in radians and R =
6371000 m is the radius of Earth.

India has four pronounced seasons: summer(S), monsoon(M), autumn(A) and
winter(W)(Wikipedia (2007)). The winter season consists of the months of Decem-
ber, January, February and March; Summer season consists of the months of April,
May and June; Monsoon season consists of July, August and September; Autumn
has the months of October and November. Three indicator variables (s1, s2, s3) are
used to represent the four seasons. s1 is the indicator of monsoon season, s2 is the
indicator of autumn season, and s3 is the indicator of winter season. Note that the
summer season is represented as s1 = s2 = s3 = 0. The dataset used in this analysis
consists of the x, y, z, alt, s1, s2, s3 and ∆ where ∆ is the average temperature
of a month in the post-change period minus the same in the pre-change period. A
snapshot of the data set consisting of 108 observations is given in table 5. Note that
for Ahmedabad, we take ∆ = 0 for all the months since no change point is detected
for this city. We observe that magnitude of warming (∆) varies across cities and
seasons which motivates us to investigate a relation of ∆ with lat, long, alt and
seasons.

We fit a linear regression model with ∆ as the response variable and x, y, z, alt,
s1, s2, s3 as predictor variables:

∆ = α + β1s1 + β2s2 + β3s3 + β4 x+ β5 y + β6 z + β7ALT + ε (11)
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Figure 1: Average temperature curve before change point (dotted line) and the
average temperature after change point (smooth solid line) for eight cities where
change point is detected
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S.no ∆ s1 s2 s3 x y z alt
1 0.776 0 0 1 -1429912 -1334234 -6063399 920
2 0.663 0 0 1 -1429912 -1334234 -6063399 920
3 0.632 0 0 1 -1429912 -1334234 -6063399 920
4 0.193 0 0 0 -1429912 -1334234 -6063399 920
5 0.325 0 0 0 -1429912 -1334234 -6063399 920
6 0.439 0 0 0 -1429912 -1334234 -6063399 920
...

...
...

...
...

...
...

...
...

104 0.15 1 0 0 -2023657 -1680340 -5802664 560
105 0.16 1 0 0 -2023657 -1680340 -5802664 560
106 -0.03 0 1 0 -2023657 -1680340 -5802664 560
107 0.6 0 1 0 -2023657 -1680340 -5802664 560
108 0.97 0 0 1 -2023657 -1680340 -5802664 560

Table 5: Snapshot of data used to study variation of warming with geographical
location, seasons and altitude

where ε is the error term satisfying the standard assumptions of a linear regression
model. The results of the regression analysis is mentioned in table 6. The value of
adjusted R-square for this model is 45.78%.

Estimate Std. Error t value p-value
(Intercept) 1.05E+01 4.04E+00 2.594 0.01091
s1 -5.41E-02 9.33E-02 -0.58 0.56334
s2 1.27E-01 1.04E-01 1.221 0.22479
s3 2.36E-01 8.73E-02 2.706 0.00802
x 5.16E-07 2.21E-07 2.336 0.02151
y 4.96E-07 8.28E-08 5.988 3.34E-08
z 1.46E-06 6.01E-07 2.433 0.01676
alt 2.54E-04 8.84E-05 2.866 0.00506

Table 6: Result of regression discussed in section 6

The estimated regression equation indicates that warming is more in those cities
which are at high altitude than those in plains. Further, it can be inferred that
cities in southern part of India may have witnessed larger amount of warming as
compared to cities in northern India having similar altitude. Moreover, the cities in
eastern India seems to have warmed more than that of western India with comparable
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altitudes. Finally, we observe that warming has mostly happened in the Winter
season.

In this context it may be noted that popular magazine articles such as Balster
(2015) has indicated a higher rise in temperature in regions of higher altitude com-
pared to the plains. Öztürk et al. (2015) discusses the impact of such warming for
high altitude ecosystems and suggests that the consequences may be more severe for
such regions. Thus the above findings point to an urgent need for putting in place
appropriate policy measures that would help in mitigating the effects of warming in
the higher altitude regions of India.

7 Conclusion

The present study of monthly temperature data of 53 years from 1961 to 2013 for
nine cities in India indicates that temperatures of most cities in India are rising.
We come to this conclusion using a new method using Gaussian Process models for
analyzing Functional data. The analysis clearly shows that eight of the nine cities
located all over India has warmed over the years. Only for Ahmedabad no change
point could be detected. The magnitude of warming is seen to be higher for cities
located in hilly areas such as Srinagar and Imphal as compared to the cities located
in the plains. The findings of this study indicate that there is cause for concern for
several Indian cities as the average temperature increase may cause severe impact
unless immediate steps are taken to contain or reduce further temperature increase.
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Mikkonen, S., Laine, M., Mäkelä, H., Gregow, H., Tuomenvirta, H., Lahtinen, M.,
and Laaksonen, A. (2015). Trends in the average temperature in Finland, 1847–
2013. Stochastic Environmental Research and Risk Assessment, pages 1–9.

Mullen, K. M. (2014). Continuous Global Optimization in R. Journal of Statistical
Software, 60(6):1–45.

Müller, H.-G., Wu, S., Diamantidis, A. D., Papadopoulos, N. T., and Carey, J. R.
(2009). Reproduction is adapted to survival characteristics across geographically
isolated medfly populations. Proceedings of the Royal Society of London B: Bio-
logical Sciences, pages 4409–4416.

Müller, H.-G. and Yang, W. (2010). Dynamic relations for sparsely sampled Gaussian
processes. Test, 19(1):1–29.
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