
INDIAN INSTITUTE OF MANAGEMENT

AHMEDABAD • INDIA
Research and Publications

Scatter search algorithms for the single row facility
layout problem

Ravi Kothari
Diptesh Ghosh

W.P. No. 2012-04-01
April 2012

�
�

�
�

The main objective of the Working Paper series of IIMA is to help faculty members,
research staff, and doctoral students to speedily share their research findings with

professional colleagues and to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD – 380015

INDIA

W.P. No. 2012-04-01 Page No. 1



IIMA • INDIA
Research and Publications

Scatter search algorithms for the single row facility
layout problem

Ravi Kothari
Diptesh Ghosh

Abstract

The single row facility layout problem (SRFLP) is the problem of arranging facilities with
given lengths on a line, with the objective of minimizing the weighted sum of the distances
between all pairs of facilities. The problem is NP-hard and research has focused on heuristics to
solve large instances of the problem. In this paper we present four scatter search algorithms to
solve large sized SRFLP instances. Our computational experiments show that these algorithms
generate better solutions to 26 of the 43 large sized benchmark SRFLP instances than were
previously known in the literature. In the other 17 instances they output the best solutions
previously known in the literature.
Keywords: Facilities planning and design; Single Row Facility Layout, Scatter search

1 Introduction

In the single row facility layout problem (SRFLP), we are given a set F = {1, 2, . . . , n} of n > 2
facilities, the length lj of each facility j ∈ F , and weights cij for each pair (i, j) of facilities, i, j ∈ F ,
i 6= j. The objective of the problem is to find a permutation Π of facilities in F that minimizes the
total cost given by the expression

z(Π) =
∑

1≤i<j≤n

cijdij

where dij is the distance between the centroids of the facilities i and j when arranged according the
permutation Π. The cardinality of F is called the size of the problem. The objective of the SRFLP is
to arrange the facilities in F on a line so as to minimize the weighted sum of the distances between
all pairs of facilities. This problem is known to be NP-hard (Beghin-Picavet and Hansen 1982).
The SRFLP was first proposed in Simmons (1969) and since then it has been used to design the
arrangements of rooms in hospitals, departments in office buildings or in supermarkets (Simmons
1969), to arrange machines in flexible manufacturing systems (Heragu and Kusiak 1988), to assign
files to disk cylinders in computer storage, and to design warehouse layouts (Picard and Queyranne
1981).

Several formulations of the SRFLP has been proposed in the literature (see Kothari and Ghosh
2011, for a comprehensive review) and researchers have used many exact and approximate approaches
to solve the problem. Exact approaches include branch and bound (Simmons 1969), mathematical
programming (Love and Wong 1976, Heragu and Kusiak 1991, Amaral 2006; 2008), cutting planes
(Amaral 2009), dynamic programming (Picard and Queyranne 1981, Kouvelis and Chiang 1996),
branch and cut (Amaral and Letchford 2012), and semidefinite programming (Anjos et al. 2005,
Anjos and Vannelli 2008, Anjos and Yen 2009, Hungerländer and Rendl 2011). These methods have
been able to obtain optimal solutions to SRFLP instances with up to 42 facilities. Researchers have
focused on approximate approaches or heuristics to solve larger sized SRFLP instances. Heuristics
are of two types, construction and improvement. Construction heuristics for the SRFLP have been

W.P. No. 2012-04-01 Page No. 2



IIMA • INDIA
Research and Publications

proposed in Heragu and Kusiak (1988), Kumar et al. (1995), and Braglia (1997). However, improve-
ment heuristics have superseded these construction heuristics in the literature and have yielded the
best known solutions for large sized SRFLP instances. Most improvement heuristics for the SRFLP
are metaheuristics which are either single solution approaches or population approaches. Single so-
lution based heuristics include simulated annealing (Romero and Sánchez-Flores 1990, Kouvelis and
Chiang 1992, Heragu and Alfa 1992) and tabu search (Samarghandi and Eshghi 2010), while the
population heuristics for SRFLP include ant colony optimization (Solimanpur et al. 2005), scatter
search (Kumar et al. 2008), particle swarm optimization (Samarghandi et al. 2010), and genetic
algorithm (Datta et al. 2011). Among these the genetic algorithm in Datta et al. (2011) yield best
results for benchmark SRFLP instances of large sizes.

Scatter search (see Glover 1977) have recently been shown to yield promising results for solving
various non-linear and combinatorial optimization problems Glover (1998). Although it is a popula-
tion based heuristic, it is significantly different from genetic algorithms. Similarities and differences
between scatter search and genetic algorithms have been previously discussed in Glover (1994; 1995).
To the best of our knowledge, the only study which has applied scatter search algorithm to the SR-
FLP is Kumar et al. (2008). It deals with SRFLP instances of size 30 only. We have not encountered
any scatter search algorithm for larger sized SRFLP instances.

In this paper we present scatter search algorithms for solving large sized SRFLP instances.
Our paper is organized as follows. In Section 2 we describe a generic scatter search algorithm
for the SRFLP. We then describe our specific scatter search algorithms and present results of our
computational experiments with these algorithms in Section 3. We conclude the paper in Section 4
with a summary of the work.

2 Scatter search for the SRFLP

Scatter search for a SRFLP is an evolutionary technique which orients its exploration relative to a set
of permutations, called the reference set. The reference set typically consists of good permutations
obtained by other methods. The criterion of “good” may refer not only to the cost of the permutation,
but also to certain other properties that the permutations or a set of permutations may possess. Most
scatter search algorithms for combinatorial optimization problems use the scatter search template in
Glover (1998) as a reference for building the algorithm. We also draw ideas from the same template
in our scatter search algorithms to solve large sized SRFLP instances. As per the template, our
scatter search algorithms consist of five steps which we describe below.

Diversification generation method

This element of scatter search determines the quality of permutations in the reference set and ensures
diversification in the search process. We use the concept of deviation distances (see Sörensen 2007)
to measure the diversification in a set of permutations. In a SRFLP a permutation is identical to the
permutation obtained by reversing the positions of all the facilities in the permutation. So we define
the distance between two permutations Π1 and Π2 as the minimum of the deviation distance between
Π1 and Π2 and the deviation distance between Π1 and the permutation obtained by reversing Π2.
Using this distance measure, we develop two methods, DIV-1 and DIV-2, to generate a diversified
set of good permutations which serves as the initial population for our scatter search algorithms.
Both these methods require an initial seed permutation of facilities in F as an input for generating
the initial population.

In the DIV-1 method, starting from the initial seed permutation Π = (1, 2, . . . , n), we generate
a large set of permutations with cardinality U Size by randomly interchanging facilities in Π. We
then choose E Size lowest cost permutations from the set to form a set of elite permutations. We

W.P. No. 2012-04-01 Page No. 3



IIMA • INDIA
Research and Publications

then generate the initial population of size P Size by choosing permutations from the elite set in a
way such that the minimum distance between any two permutations in the population is as high as
possible. The parameters U Size, E Size, and P Size are specified by the user.

In the DIV-2 method, the initial seed permutation Π is generated using Theorem 1 in Samarghandi
and Eshghi (2010). A distance value H Dist is also taken as an input. We first include Π in the
initial population. We then generate permutations by randomly interchanging facilities in Π, and
include these permutations in the initial population only if the minimum distance between the newly
generated permutation and each of the permutations in the initial population is at least H Dist.
The method stops when we have the required number of permutations in the initial population.

Improvement method

The improvement method tries to improve upon the permutations in the initial population and the
permutations obtained by the solution combination method at later stages of the algorithm. In our
scatter search algorithms we use local search iterations with an insertion neighborhood to improve
the permutations. An insertion neighbor of a permutation is obtained by removing a facility from its
position and introducing it at another position in the permutation. A local search iteration searches
all the insertion neighbors of a given permutation and returns the best insertion neighbor of the
permutation.

Reference set update method

The reference set update method is used to build and update a set of permutations known as the
reference set. The reference set consists of B Size good permutations those which are best and
diverse obtained during the run of the algorithm. The value of B Size is typically not more than 20.
At the start of the algorithm the user inputs two parameters B1 and B2 such that B1+B2 = B Size.
The reference set is created from the set of permutations obtained by applying the improvement
method on each permutation in the initial population. The improved permutations are then sorted
in non-decreasing order of their costs and the first B1 and last B2 permutations in the sorted list are
selected to be the members of the reference set. Hence B1 permutations have low objective function
values and B2 permutations improve the diversity in the reference set.

In the later stages of the scatter search algorithm, the permutations in the reference set are
combined using the subset generation method and solution combination method, and then improved
using the improvement method to generate new permutations which may replace some of the existing
members of the reference set. A new permutation replaces the highest cost permutation in the
reference set if its cost is lower than it. When no new permutations get added to the reference
set during a reference set update, we say that the reference set has converged and the lowest cost
permutation in the reference set is output as a solution to the problem.

Subset generation method

The subset generation method produces subsets of permutations in the reference set. These subsets
are used to generate new permutations using the solution combination method. Outlines of various
subset generation methods is available in Glover (1998). In our algorithms we generate all the subsets
of the reference set with cardinality 2. We restrict ourselves to subsets of size 2 since scatter search
algorithms with subsets of higher sizes are computationally impractical for large SRFLP instances.

W.P. No. 2012-04-01 Page No. 4



IIMA • INDIA
Research and Publications

Solution combination method

The solution combination method combines the permutations in the subsets generated by the subset
generation method into a new permutation. The new permutation thus generated is then subjected
to the improvement method till it converges to a local optimum. The locally optimal permutation
is finally either added to the reference set or discarded based on its cost. In our scatter search
algorithms we use two combination methods, one of which is purely deterministic in implementation
and the other one which has a random component.

The first combination method is the alternating combination method. It creates a new permu-
tation by alternately selecting facilities from the first permutation and second permutations in the
subset, omitting the facilities that have already been located in the new permutation. The operation
is shown in Figure 1 with the shaded cells indicating the facilities selected for inclusion in the new
permutation at the corresponding positions.

Figure 1: Alternating combination between permutations P1 and P2

The second combination method is the partially matched combination method. It is known as the
PMX crossover mechanism in genetic algorithms, and is the most widely used combination operator
for permutation problems. This combination method works as follows. For notational convenience
we denote the two permutations in subset by P1 and P2, and the combined permutation as P3.

Step 1 Select a random segment (combination segment) of facilities from P1 and copy it to same
location in P3. This constitutes the Step 1 as shown in Figure 2.

Step 2 Starting from the first combination point (i.e., the first facility in the combination segment
in Step 1) look for facilities in that segment of P2 which have not been copied to P3. For
each of these facilities i in P2 look in P3 to see which facility j has been copied in its place
from P1 and place the facility i in P3 in the same position as that occupied by facility j in
P2. This is Step 2 in figure 2. Note that if the position occupied by facility j in P2 has
already been occupied in P3 by facility k, then place facility i in P3 in the same position
as that occupied by facility k in P2. Perform this step for every facility in the combination
segment.

Step 3 Having dealt with the facilities from the combination segment, the rest of the locations in
P3 are filled with facilities from P2 in order to ultimately obtain a complete permutation as
shown in Step 3 in figure 2.

Having described the components of scatter search we are now in a position to describe a generic
scatter search algorithm for the SRFLP. It starts by generating an initial population of permutations
using a diversification generation method. It then uses an improvement method to improve the
permutations in the initial population and builds a reference set using the reference set update
method. The algorithm then performs iterations consisting of three steps till the reference set
converges. In the first step it creates subsets of the reference set using a subset generation method.
In the second step, for each of the subsets, it combines the permutations in the subset using a
solution combination method to create one permutation corresponding to each subset. Each of
these permutations is then improved using the improvement method. In the third step it tries to

W.P. No. 2012-04-01 Page No. 5



IIMA • INDIA
Research and Publications

Figure 2: Partially matched combination between P1 and P2

update the reference set using these improved permutations. A permutation enters the reference
set by replacing the highest cost permutation in the reference set if the cost of the permutation is
lower than the cost of at least one permutation already present in the reference set. If none of the
improved permutations enter the reference set in the third step, then the reference set is said to have
converged and the scatter search algorithm terminates after reporting the lowest cost permutation
in the reference set.

In our computational experiments described in the next section we create four scatter search
implementations by specifying the methods used in the generic scatter search algorithm.

3 Computational experiments

We performed computational experiments with scatter search algorithms to compare its performance
with other methods available in the literature to solve large sized SRFLP instances. We developed
four versions of scatter search. All the versions used the same improvement method, reference set
update method, and subset generation method but differed in diversification generation methods
and subset generation methods. The details of the diversification generation method and solution
combination method for the four algorithms are given in Table 1.

We coded these algorithms in C and performed our experiments on a personal computer with
four Intel Core i5-2500 3.30GHz processors, 4GB RAM, running Ubuntu Linux 11.10. Based on
initial experiments we set U Size = 1000, E Size = 500, and P Size = 100. For DIV-2 the value
of H Dist was set to n2/4 where n is the size of the instance. Following usual practice we set the
size of the reference set B Size at 20, with B1 = B2 = 10.

W.P. No. 2012-04-01 Page No. 6



IIMA • INDIA
Research and Publications

Table 1: The four scatter search algorithms used in experiments

Algorithm Diversification generation Solution combination
Method Method

SS-1A DIV-1 Alternating combination
SS-1P DIV-1 Partially matched combination
SS-2A DIV-2 Alternating combination
SS-2P DIV-2 Partially matched combination

We experimented with three sets of benchmark SRFLP instances. The first set is due to Anjos
et al. (2005) and consists of four groups of five instances each of size 60, 70, 75, and 80. We refer to
these as the Anjos instances. These instances have been widely experimented with in the published
literature (see, e.g., Datta et al. 2011, Hungerländer and Rendl 2011, Samarghandi and Eshghi 2010).
The second set of instances are QAP-based sko instances. This set consists of four groups of five
instances each of size 64, 72, 81, and 100. They were initially proposed in Anjos and Yen (2009)
and have been experimented with in the literature in Anjos and Yen (2009), Amaral and Letchford
(2012), Hungerländer and Rendl (2011). We refer to them as the sko instances. The third set is due
to Amaral and Letchford (2012) and consists of three instances of size 110 each. We refer to these
as the Amaral instances.

There are several published studies on the SRFLP which have reported results on the Anjos
instances. Among them Samarghandi and Eshghi (2010) uses tabu search, Datta et al. (2011) uses
a genetic algorithm, and Hungerländer and Rendl (2011) uses a SDP-relaxation based approach
to provide upper bounds on the cost of optimal solutions. Among these, the results reported in
Samarghandi and Eshghi (2010) have been superseded by those reported in Datta et al. (2011) and
Hungerländer and Rendl (2011). Apart from the published literature, the Anjos instances have
been experimented with using tabu search with 2-opt and insertion neighborhoods (Kothari and
Ghosh 2012c), Lin-Kernighan based neighborhood search (Kothari and Ghosh 2012b), and genetic
algorithm (Kothari and Ghosh 2012a). The results from these three studies supersede the results in
the published literature. In Table 2 we present the costs of the best permutations obtained by the
four scatter search algorithms and compare them with the results available in the literature. The
first column of the table provides the name of the instance, and the second column provides its size.
The third and fourth columns of the table present the costs of the best permutations obtained in
the published and unpublished literature Kothari and Ghosh (2012c;b;a). The results in the third
column have a superscript of either ‘d’ or ‘h’. The letter ‘d’ indicates that the cost reported was
obtained in Datta et al. (2011) while the letter ‘h’ indicates that it was obtained in Hungerländer
and Rendl (2011). The last four columns report the costs of the best permutations obtained by the
four scatter search algorithms that we present in this paper.

The results in Table 2 show that all the four scatter search algorithms generate results that are
competitive with the unpublished literature. They equal the best costs in the published literature
for 15 of the 20 instances and generate better permutations in the other five instances. The costs
reported in these five instances were however already obtained in the unpublished literature. The
permutations obtained in the five instances where scatter search generated permutations better than
those reported in the published literature are presented in the appendix to the paper.

In Table 3 we report the execution times required by the four scatter search algorithms on the
Anjos instances. We also report the execution times from Datta et al. (2011) and Hungerländer and
Rendl (2011) for comparison. Note that the machines used in Datta et al. (2011) and Hungerländer
and Rendl (2011) had different specifications than the one that we use for our experiments. The first
two columns in the table present details about the instances, the third and fourth columns present
times reported in Datta et al. (2011) and Hungerländer and Rendl (2011) respectively, and the last
four columns gives the times required by the four scatter search algorithms.

W.P. No. 2012-04-01 Page No. 7



IIMA • INDIA
Research and Publications

Table 2: Comparison on solution costs to Anjos instances

Best costs in the literature

Instance Size Publisheda Unpublishedb SS-1A SS-1P SS-2A SS-2P

Anjos 60 01 60 1477834.0dh 1477834.0 1477834.0 1477834.0 1477834.0 1477834.0

Anjos 60 02 60 841776.0h 841776.0 841776.0 841776.0 841776.0 841776.0

Anjos 60 03 60 648337.5dh 648337.5 648337.5 648337.5 648337.5 648337.5

Anjos 60 04 60 398406.0h 398406.0 398406.0 398406.0 398406.0 398406.0

Anjos 60 05 60 318805.0dh 318805.0 318805.0 318805.0 318805.0 318805.0

Anjos 70 01 70 1528560.0dh 1528537.0 1528537.0 1528537.0 1528537.0 1528537.0

Anjos 70 02 70 1441028.0dh 1441028.0 1441028.0 1441028.0 1441028.0 1441028.0

Anjos 70 03 70 1518993.5dh 1518993.5 1518993.5 1518993.5 1518993.5 1518993.5

Anjos 70 04 70 968796.0d 968796.0 968796.0 968796.0 968796.0 968796.0

Anjos 70 05 70 4218002.5h 4218002.5 4218002.5 4218002.5 4218002.5 4218002.5

Anjos 75 01 75 2393456.5d 2393456.5 2393456.5 2393456.5 2393456.5 2393456.5

Anjos 75 02 75 4321190.0d 4321190.0 4321190.0 4321190.0 4321190.0 4321190.0

Anjos 75 03 75 1248537.0d 1248423.0 1248423.0 1248423.0 1248423.0 1248423.0

Anjos 75 04 75 3941845.5d 3941816.5 3941816.5 3941816.5 3941816.5 3941816.5

Anjos 75 05 75 1791408.0d 1791408.0 1791408.0 1791408.0 1791408.0 1791408.0

Anjos 80 01 80 2069097.5d 2069097.5 2069097.5 2069097.5 2069097.5 2069097.5

Anjos 80 02 80 1921177.0d 1921136.0 1921136.0 1921136.0 1921136.0 1921136.0

Anjos 80 03 80 3251368.0d 3251368.0 3251368.0 3251368.0 3251368.0 3251368.0

Anjos 80 04 80 3746515.0d 3746515.0 3746515.0 3746515.0 3746515.0 3746515.0

Anjos 80 05 80 1588901.0d 1588885.0 1588885.0 1588885.0 1588885.0 1588885.0

a: Best costs published in the literature. The letters ‘d’ and ‘h’ refer to the costs reported
in Datta et al. (2011) and upper bounds reported in Hungerländer and Rendl (2011)
respectively.

b: Best costs reported in Kothari and Ghosh (2012c;b;a).

From Table 3 we observe that the times required by the four scatter search algorithms are
slightly higher than those reported in Datta et al. (2011). This is due to the fact that the subset
generation method in scatter search is exhaustive in nature and hence requires much longer time
than the crossover operation for genetic algorithms. The convergence of scatter search is however
much faster; for the Anjos instances, scatter search always converged in less than 5 iterations. The
execution times required by the scatter search algorithms is clearly much less than those reported
in Hungerländer and Rendl (2011).

In the published literature, results of computational experiments with the sko instances have
been reported in Amaral and Letchford (2012), Anjos and Yen (2009), and Hungerländer and Rendl
(2011). Amaral and Letchford (2012) uses a polyhedral approach while Anjos and Yen (2009)
and Hungerländer and Rendl (2011) use SDP-relaxation based approaches. All three report upper
bounds to the costs of optimal solutions. The results in Amaral and Letchford (2012) supersede
those in Anjos and Yen (2009) and Hungerländer and Rendl (2011). In the unpublished literature,
good quality permutations for the sko instances have been reported using tabu search with 2-opt
and insertion neighborhoods (Kothari and Ghosh 2012c), local search using Lin-Kernighan neigh-
borhoods (Kothari and Ghosh 2012b) and using a genetic algorithm (Kothari and Ghosh 2012a).
These results are competitive with the results in the published literature. In Table 4 we compare
the costs of the permutations output by the four scatter search algorithms with those known from
the literature. The first and second columns of the table present details about the instances, the
third column presents the costs of the best permutations known from the published literature, and
the fourth column presents the costs of the best permutations known from the published literature.
Each cost value in the fourth column has a superscript of ‘g’, ‘l’ or ‘t’ to indicate whether the best
cost has been reported in Kothari and Ghosh (2012a), Kothari and Ghosh (2012b), and Kothari and

W.P. No. 2012-04-01 Page No. 8



IIMA • INDIA
Research and Publications

Table 3: Comparison on execution times (in seconds) for Anjos instances

Instance Size DA&Fa H&Rb SS-1A SS-1P SS-2A SS-2P

Anjos 60 01 60 19.54 103169.00 55.41 46.73 53.25 41.15

Anjos 60 02 60 22.34 111126.00 52.07 41.54 51.43 47.04

Anjos 60 03 60 68.81 85021.00 49.12 50.40 74.61 64.71

Anjos 60 04 60 20.71 95439.00 69.38 53.52 70.22 52.74

Anjos 60 05 60 26.41 99106.00 48.78 52.35 61.36 47.77

Anjos 70 01 70 64.83 96094.00 94.45 82.61 122.24 91.01

Anjos 70 02 70 77.49 94287.00 108.87 88.16 114.53 96.62

Anjos 70 03 70 68.26 94514.00 83.65 83.17 117.31 99.83

Anjos 70 04 70 100.59 98928.00 145.01 102.26 139.60 95.31

Anjos 70 05 70 60.48 101765.00 95.44 81.59 112.91 79.93

Anjos 75 01 75 125.26 136673.00 136.76 127.66 151.92 119.47

Anjos 75 02 75 128.95 142118.00 171.40 118.01 163.11 136.90

Anjos 75 03 75 157.95 138066.00 195.62 143.69 155.72 136.57

Anjos 75 04 75 119.92 139378.00 120.14 125.37 166.94 122.04

Anjos 75 05 75 101.67 148237.00 156.94 138.71 134.89 120.80

Anjos 80 01 80 75.41 210289.00 158.81 162.59 167.66 172.45

Anjos 80 02 80 68.75 211635.00 225.85 174.80 233.71 166.69

Anjos 80 03 80 85.90 209839.00 185.16 181.84 166.86 146.98

Anjos 80 04 80 77.81 211847.00 201.84 148.41 209.13 181.59

Anjos 80 05 80 196.51 210630.00 197.26 199.79 189.51 205.12

a: Execution times published in Datta et al. (2011)
b: Execution times reported in Hungerländer and Rendl (2011)

Ghosh (2012c) respectively. The last four columns present the costs of the permutations output by
the four scatter search algorithms.

The results in Table 4 clearly demonstrate the superiority of the scatter search algorithms over
the previously known methods for the sko instances. In 18 of the 20 instances, the results from
the scatter search algorithms are superior to those known in the published literature. For these
18 instances we report the permutations from scatter search in the appendix to the paper. In 13
among the sko instances, they are superior to the results known even in the unpublished literature.
There is only one instance, namely sko 64 02, in which the SS-1A algorithm outputs a permutation
which is worse than in the published literature. For all other instances the scatter search algorithms
have either matched or superseded the best known results in the literature. We did not observe the
dominance of any of the four scatter search algorithms over the other three for these instances.

We report the execution times required by the four scatter search algorithms on the sko instances
in Table 5. The first two columns in the table describe the instance, and the remaining four columns
report the execution times required by the four scatter search algorithms. We do not report the times
from Amaral and Letchford (2012) for these instances since it only reported a run-time limit of one
day for these instances. The table shows that the four scatter search algorithms required reasonable
execution times for these instances. We observed that all the four scatter search algorithms converged
in less than 5 iterations for the sko instances.

Results for the Amaral instances have been reported in Amaral and Letchford (2012) in the
published literature, and in Kothari and Ghosh (2012a) in the unpublished literature. The results
in Kothari and Ghosh (2012a) are better for the first two instances, while the result in Amaral and
Letchford (2012) is better for the third instance. In Table 6 we report the results obtained from
the four scatter search algorithms for these instances. The first two columns in table describe the
instance, the third and fourth columns report the results from Amaral and Letchford (2012) and
Kothari and Ghosh (2012a), and the other four columns report the costs of permutations output by

W.P. No. 2012-04-01 Page No. 9



IIMA • INDIA
Research and Publications

Table 4: Comparison on solution costs to sko instances

Best costs from the literature

Instance Size A&La Unpublishedb SS-1A SS-1P SS-2A SS-2P

sko 64 01 64 96930.0 96915.0t 96884.0 96883.0 96884.0 96890.0

sko 64 02 64 634332.5 634332.5g 634338.5 634332.5 634332.5 634332.5

sko 64 03 64 414356.5 414323.5lg 414323.5 414323.5 414323.5 414323.5

sko 64 04 64 297358.0 297205.0l 297129.0 297129.0 297137.0 297129.0

sko 64 05 64 501922.5 501922.5tlg 501922.5 501922.5 501922.5 501922.5

sko 72 01 72 139174.0 139150.0lg 139153.0 139150.0 139150.0 139150.0

sko 72 02 72 712261.0 712005.0l 711998.0 711998.0 711998.0 711998.0

sko 72 03 72 1054184.5 1054110.5tlg 1054141.5 1054110.5 1054110.5 1054110.5

sko 72 04 72 920693.5 919590.5g 919586.5 919586.5 919586.5 919586.5

sko 72 05 72 428305.5 428228.5g 428226.5 428226.5 428228.5 428228.5

sko 81 01 81 205475.0 205145.0t 205112.0 205106.0 205120.0 205112.0

sko 81 02 81 523021.5 521391.5lg 521391.5 521391.5 521391.5 521391.5

sko 81 03 81 970920.0 970862.0l 970796.0 970796.0 970796.0 970796.0

sko 81 04 81 2032634.0 2031803.0g 2031803.0 2031803.0 2031803.0 2031803.0

sko 81 05 81 1303756.0 1302733.0g 1302711.0 1302711.0 1302711.0 1302711.0

sko 100 01 100 378584.0 378378.0g 378249.0 378234.0 378259.0 378234.0

sko 100 02 100 2076714.5 2076023.5t 2076008.5 2076008.5 2076008.5 2076008.5

sko 100 03 100 16177226.5 16148818.0l 16145598.0 16145614.0 16145598.0 16149444.0

sko 100 04 100 3237111.0 3232740.0l 3232522.0 3232531.0 3232522.0 3232522.0

sko 100 05 100 1034922.5 1033338.5t 1033085.5 1033080.5 1033085.5 1033080.5

a: Upper bounds reported in Amaral and Letchford (2012).
b: Best costs reported in the unpublished literature. The letters ‘g’, ‘l’ and ‘t’ indicate

whether the best cost has been reported in Kothari and Ghosh (2012a),
Kothari and Ghosh (2012b), and Kothari and Ghosh (2012c) respectively.

the scatter search algorithms. We see from the table that all the scatter search algorithms output
permutations that are superior to those known from the literature, both published and unpublished.
For these instances, the results from SS-1A, SS-2A, and SS-2P are identical, and those from SS-1P
is uniformly worse than the other three algorithms. We report the best permutations obtained by
scatter search on these instances in the appendix to the paper.

Table 7 presents the execution times required by the four scatter search algorithms on the Amaral
instances. The first two columns in the table describe the instance, and the remaining four columns
report the execution times required by the four scatter search algorithms. We do not report the
times from Amaral and Letchford (2012) since that paper only reported a run-time limit of 2.5 days
for these instances. We see that all scatter search algorithms required reasonably low execution
times for these problems. All scatter search algorithms converged in less than 10 iterations.

Based on results from our computational experiments, we conclude that the four scatter search
algorithms presented in this paper are superior to all other algorithms for the SRFLP available in
the literature and are recommended for solving large sized SRFLP instances.

4 Summary and future research

In this paper we have presented four scatter search algorithms for the single row facility layout
problem (SRFLP). Our algorithms inherit the basic structure from the scatter search template pre-
sented in Glover (1998). Each of our algorithms use a diversification generation method to generate

W.P. No. 2012-04-01 Page No. 10



IIMA • INDIA
Research and Publications

Table 5: Comparison on execution times (in seconds) for sko instances

Instance Size SS-1A SS-1P SS-2A SS-2P

sko 64 01 64 104.44 82.80 113.68 92.98

sko 64 02 64 92.62 68.31 96.57 88.52

sko 64 03 64 73.16 80.33 94.54 67.59

sko 64 04 64 89.61 91.05 86.03 84.92

sko 64 05 64 85.05 75.86 66.69 77.51

sko 72 01 72 143.78 115.21 161.73 150.07

sko 72 02 72 151.93 192.12 164.51 226.29

sko 72 03 72 124.10 114.16 124.71 112.02

sko 72 04 72 158.49 135.46 188.20 132.00

sko 72 05 72 152.25 116.50 291.69 172.41

sko 81 01 81 423.73 311.63 548.55 273.92

sko 81 02 81 213.56 226.91 250.67 227.27

sko 81 03 81 217.01 241.50 336.89 263.23

sko 81 04 81 215.28 193.98 225.60 236.82

sko 81 05 81 316.77 287.22 243.86 257.06

sko 100 01 100 1039.38 877.12 874.60 789.64

sko 100 02 100 796.18 526.09 747.75 468.01

sko 100 03 100 670.34 599.92 851.42 529.58

sko 100 04 100 456.26 592.00 651.25 532.43

sko 100 05 100 1068.02 591.75 1159.18 619.13

Table 6: Comparison on solution costs to Amaral instances

Best costs from the literature

Instance Size A&La K&Gb SS-1A SS-1P SS-2A SS-2P

Amaral 1 110 144331884.5 144302160.0 144296768.0 144297440.0 144296768.0 144296768.0

Amaral 2 110 86065390.0 86056632.0 86050112.0 86050208.0 86050112.0 86050112.0

Amaral 3 110 2234803.5 2234825.5 2234743.5 2234798.5 2234743.5 2234743.5

a: Upper bounds published in Amaral and Letchford (2012).
b: Best costs reported in Kothari and Ghosh (2012a).

Table 7: Comparison on execution times (in seconds) for Amaral instances

Instance Size SS-1A SS-1P SS-2A SS-2P

Amaral 1 110 1090.24 975.11 944.01 777.15

Amaral 2 110 788.97 680.10 905.64 774.89

Amaral 3 110 698.25 811.08 739.04 611.40

an initial population containing good quality and diverse permutations, an improvement method
to improve the permutations in the algorithm, a reference set update method to build and main-
tain a reference set of good quality permutations, and a subset generation method and a solution
combination method to update the reference set with new permutations. We present two diversifica-
tion generation methods called DIV-1 and DIV-2 and two solution combination methods, called the
alternating combination method and partially matched combination method, whose combinations
yield four scatter search algorithms called SS-1A, SS-1P, SS-2A, and SS-2P.

We perform computational experiments to compare the performance of the four scatter search
algorithms with the best known results in the literature for three sets of benchmark instances com-

W.P. No. 2012-04-01 Page No. 11



IIMA • INDIA
Research and Publications

prising of 43 large sized SRFLP instances. Our computational experience indicates that all the four
scatter search algorithms are superior to all other algorithms for the SRFLP that are known in the
literature. Compared to the results reported in the published literature, among the 43 benchmark
instances, they matched the best known solutions in 17 instances and obtain better solutions in the
other 26 instances within reasonable execution times. If we include the unpublished literature in
our comparison, the scatter search algorithms obtained better solutions in 21 instances and matched
the best results in the other 22. We therefore feel that scatter search algorithms are algorithms of
choice for solving large sized SRFLP instances.

References

Amaral, A. R. S. (2006). On the exact solution of a facility layout problem. European Journal of
Operational Research, 173(2):508–518.

Amaral, A. R. S. (2008). An Exact Approach to the One-Dimensional Facility Layout Problem.
Operations Research, 56(4):1026–1033.

Amaral, A. R. S. (2009). A new lower bound for the single row facility layout problem. Discrete
Applied Mathematics, 157(1):183–190.

Amaral, A. R. S. and Letchford, A. N. (2012). A polyhedral approach to the single row facility
layout problem. Available at www.lancs.ac.uk/staff/letchfoa/articles/SRFLP-rev.pdf.

Anjos, M. F., Kennings, A., and Vannelli, A. (2005). A semidefinite optimization approach for the
single-row layout problem with unequal dimensions. Discrete Optimization, 2(2):113–122.

Anjos, M. F. and Vannelli, A. (2008). Computing Globally Optimal Solutions for Single-Row Layout
Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Comput-
ing, 20(4):611–617.

Anjos, M. F. and Yen, G. (2009). Provably near-optimal solutions for very large single-row facility
layout problems. Optimization Methods and Software, 24(4-5):805–817.

Beghin-Picavet, M. and Hansen, P. (1982). Deux problèmes daffectation non linéaires. RAIRO,
Recherche Opérationnelle, 16(3):263–276.

Braglia, M. (1997). Heuristics for single-row layout problems in flexible manufacturing systems.
Production Planning & Control, 8(6):558–567.

Datta, D., Amaral, A. R. S., and Figueira, J. R. (2011). Single row facility layout problem using a
permutation-based genetic algorithm. European Journal of Operational Research, 213(2):388–394.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences,
8(1):156–166.

Glover, F. (1994). Tabu search for nonlinear and parametric optimization (with links to genetic
algorithms). Discrete Applied Mathematics, 49:231 – 255.

Glover, F. (1995). Scatter search and star-paths: beyond the genetic metaphor. OR Spectrum,
17:125–137. 10.1007/BF01719256.

Glover, F. (1998). A template for scatter search and path relinking. Lecture notes in computer
science, 1363:13–54.

Heragu, S. S. and Alfa, A. S. (1992). Experimental analysis of simulated annealing based algorithms
for the layout problem. European Journal of Operational Research, 57(2):190–202.

Heragu, S. S. and Kusiak, A. (1988). Machine Layout Problem in Flexible Manufacturing Systems.
Operations Research, 36(2):258–268.

W.P. No. 2012-04-01 Page No. 12

www.lancs.ac.uk/staff/letchfoa/articles/SRFLP-rev.pdf


IIMA • INDIA
Research and Publications

Heragu, S. S. and Kusiak, A. (1991). Efficient models for the facility layout problem. European
Journal Of Operational Research, 53:1–13.

Hungerländer, P. and Rendl, F. (Unpublished results, 2011). A computational study for the single-
row facility layout problem. Available at www.optimization-online.org/DB_FILE/2011/05/

3029.pdf.

Kothari, R. and Ghosh, D. (2011). The single row facility layout problem: State of the art (w.p. no.
2011-12-02). Ahmedabad, India: IIM Ahmedabad, Production & Quantitative Methods. Available
at www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf.

Kothari, R. and Ghosh, D. (2012a). A competitive genetic algorithm for single row facility layout
(w.p. no. 2012-03-01). Ahmedabad, India: IIM Ahmedabad, Production & Quantitative Methods.
Available at www.optimization-online.org/DB_HTML/2012/02/3369.html.

Kothari, R. and Ghosh, D. (2012b). A Lin-Kernighan heuristic for single row facility layout (w.p. no.
2012-01-04). Ahmedabad, India: IIM Ahmedabad, Production & Quantitative Methods. Available
at www.optimization-online.org/DB_HTML/2012/01/3315.html.

Kothari, R. and Ghosh, D. (2012c). Tabu search for the single row facility layout problem using
exhaustive 2-opt and insertion neighborhoods (w.p. no. 2012-01-03). Ahmedabad, India: IIM
Ahmedabad, Production & Quantitative Methods. Available at www.optimization-online.org/
DB_HTML/2012/01/3314.html.

Kouvelis, P. and Chiang, W.-C. (1992). A simulated annealing procedure for single row layout prob-
lems in flexible manufacturing systems. International Journal of Production Research, 30(4):717–
732.

Kouvelis, P. and Chiang, W.-C. (1996). Optimal and Heuristic Procedures for Row Layout Problems
in Automated Manufacturing Systems. Journal of the Operational Research Society, 47(6):803–
816.

Kumar, R. K., Hadjinicola, G. C., and Lin, T.-L. (1995). A heuristic procedure for the single-row
facility layout problem. European Journal of Operational Research, 87(1):65–73.

Kumar, S., Asokan, P., Kumanan, S., and Varma, B. (2008). Scatter search algorithm for single row
layout problem in fms. Advances in Production Engineering & Management, 3(4):193–204.

Love, R. F. and Wong, J. Y. (1976). On solving a one-dimensional space allocation problem with
integer programming. INFOR, 14(2):139–144.

Picard, J.-C. and Queyranne, M. (1981). On the one-dimensional space allocation problem. Opera-
tions Research, 29(2):371–391.

Romero, D. and Sánchez-Flores, A. (1990). Methods for the one-dimensional space allocation prob-
lem. Computers & Operations Research, 17(5):465–473.

Samarghandi, H. and Eshghi, K. (2010). An efficient tabu algorithm for the single row facility layout
problem. European Journal of Operational Research, 205(1):98–105.

Samarghandi, H., Taabayan, P., and Jahantigh, F. F. (2010). A particle swarm optimization for the
single row facility layout problem. Computers & Industrial Engineering, 58(4):529–534.

Simmons, D. M. (1969). One-Dimensional Space Allocation: An Ordering Algorithm. Operations
Research, 17(5):812–826.

Solimanpur, M., Vrat, P., and Shankar, R. (2005). An ant algorithm for the single row layout
problem in flexible manufacturing systems. Computers & Operations Research, 32(3):583–598.

Sörensen, K. (2007). Distance measures based on the edit distance for permutation-type represen-
tations. Journal of Heuristics, 13:35–47. 10.1007/s10732-006-9001-3.

W.P. No. 2012-04-01 Page No. 13

www.optimization-online.org/DB_FILE/2011/05/3029.pdf
www.optimization-online.org/DB_FILE/2011/05/3029.pdf
www.iimahd.ernet.in/assets/snippets/workingpaperpdf/7736113342011-12-02.pdf
www.optimization-online.org/DB_HTML/2012/02/3369.html
www.optimization-online.org/DB_HTML/2012/01/3315.html
www.optimization-online.org/DB_HTML/2012/01/3314.html
www.optimization-online.org/DB_HTML/2012/01/3314.html


IIMA • INDIA
Research and Publications

Appendix

We provide details of the permutations for the instances in which we have improved the best per-
mutation known in the literature. Note that the facilities are numbered from 1 through n where n
is the problem size.

Instance Size Cost Permutation

Anjos-70-01 70 1528537.0 53 47 65 40 2 28 62 22 15 8 32 9 63 31 69 51 68 1 4 16 64 61
41 38 56 67 70 44 10 26 14 19 33 42 49 5 30 36 23 55 60 13 18 21
24 27 54 11 12 58 6 59 52 7 20 66 3 34 45 46 25 43 48 17 29 57 39 35 37 50

Anjos-75-03 75 1248423.0 47 69 42 10 19 33 15 17 43 51 41 46 29 23 68 26 60 4 39 74 64 61 56 20
36 12 27 13 48 71 11 65 57 5 67 45 21 28 35 24 9 75 58 73 40 7 32 6
49 52 59 34 3 16 62 31 30 44 37 2 38 66 70 18 72 8 25 55 53 63 14 1 54 50 22

Anjos-75-04 75 3941816.0 36 60 5 14 15 50 7 75 10 42 62 37 8 70 30 47 22 57 20 41 29 40 33 39 46
12 3 64 35 65 16 52 28 53 44 73 34 18 24 45 13 32 1 67 2 19 55 48 56
63 66 26 23 58 59 54 43 71 4 31 11 74 61 51 6 25 27 68 69 38 72 49 9 17 21

Anjos-80-02 80 1921136.0 11 66 61 45 48 43 49 63 69 51 80 60 78 64 52 31 71 37 79 7 70 30 73 76
59 19 68 26 13 75 42 62 44 50 2 65 8 34 40 9 36 39 38 4 20 53 3 67 6 21
35 25 23 28 27 72 1 77 33 16 29 41 54 12 47 74 32 56 15 46 14 58 5 55
17 10 24 18 57 22

Anjos-80-05 80 1588885.0 2 7 47 52 38 27 61 73 21 67 68 10 37 74 11 22 1 70 8 31 19 9 76 33 36
62 30 34 79 75 54 44 6 43 53 35 71 66 55 65 59 3 32 39 77 18 4 80 20 45
40 63 23 46 50 57 5 56 15 24 28 26 64 14 51 16 29 12 72 42 49 13 78 69
60 58 41 48 17 25

sko-64-01 64 96883.0 31 57 35 18 60 63 2 56 25 50 37 17 26 59 7 1 45 33 44 21 14 8 58 9 22
24 29 52 23 13 49 10 16 53 42 4 64 19 20 62 55 48 38 6 47 51 39 40 5 30
43 28 11 54 32 46 3 34 41 61 27 12 36 15

sko-64-03 64 414323.5 15 12 9 61 56 41 42 49 13 29 4 52 22 23 16 46 36 51 64 55 21 27 31 3 44
14 58 57 24 53 10 25 63 43 18 47 30 35 17 38 34 45 1 39 5 60 26 28 40
11 54 2 8 33 37 19 32 48 20 7 50 59 62 6

sko-64-04 64 297129.0 15 59 57 53 11 54 32 41 30 8 19 10 33 56 25 17 2 38 50 26 34 37 1 7 45
47 35 44 58 13 49 21 24 4 64 39 62 5 16 23 12 29 55 22 9 28 48 14 40 61
52 18 6 3 51 46 20 63 27 43 42 36 60 31

sko-72-01 72 139150.0 34 3 24 54 45 11 5 25 69 72 62 4 43 66 20 58 19 15 41 48 40 42 68
51 36 57 55 44 71 6 9 16 39 32 63 37 13 50 33 49 46 59 38 7 1 29
61 23 52 65 47 26 28 22 14 2 21 67 17 30 27 70 10 56 8 35 18 60 64 31 53 12

sko-72-02 72 711988.0 34 5 58 41 45 11 62 64 20 9 40 71 17 1 19 4 66 54 6 16 72 61 15 36
69 68 57 26 44 55 24 67 39 33 29 25 48 42 51 8 50 31 21 49 7 30
27 2 38 46 60 22 35 28 10 70 52 47 65 53 3 43 63 37 32 13 59 23 14 56 18 12

sko-72-03 72 1054110.5 58 7 72 15 5 3 2 49 38 51 41 55 20 71 34 1 4 36 29 44 57 40 45 11
32 66 19 68 24 42 52 69 25 12 37 43 6 53 47 35 16 27 54 33 48 23
64 22 65 63 13 46 50 8 21 62 61 59 70 10 30 26 28 9 67 17 39 18 60 56 14 31

sko-72-04 72 919586.5 12 3 56 64 24 72 45 50 36 41 20 11 65 61 15 4 66 43 62 63 37 58
34 69 25 6 53 18 5 19 39 9 68 67 16 54 48 51 42 40 44 57 55 31 29
38 60 46 23 49 22 14 35 33 71 70 13 10 30 7 27 28 1 47 52 26 21 2 32 59 17 8

W.P. No. 2012-04-01 Page No. 14



IIMA • INDIA
Research and Publications

Instance Size Cost Permutation

sko-72-05 72 428226.5 51 29 34 40 71 9 44 23 1 7 33 38 55 16 41 58 59 46 65 6 19 15 20
14 49 66 68 61 36 4 57 45 5 69 25 11 24 26 13 43 32 47 52 42 62 63
22 50 37 21 12 2 35 72 17 31 67 64 60 39 48 30 28 54 27 70 10 18 56 3 53 8

sko-81-01 81 205106.0 66 74 3 61 30 25 50 9 48 56 67 65 33 69 23 17 4 6 41 21 81 14 15 19 38
49 31 7 39 36 26 70 35 42 22 55 11 57 78 44 2 45 52 32 68 13 62 1 5 27
58 20 18 73 43 59 24 51 37 63 12 79 75 80 77 71 72 29 64 46 28 10 40 34
76 16 54 53 60 47 8

sko-81-02 81 521391.5 22 55 38 49 25 35 81 14 52 48 56 6 15 61 21 3 69 17 33 66 74 70 41 50
23 67 36 30 65 42 4 11 9 34 26 31 19 44 2 45 12 32 80 29 79 5 58 1 78
51 46 13 68 37 73 59 40 71 75 53 43 24 18 20 39 10 27 63 7 62 54 72 47
16 76 57 64 60 77 28 8

sko-81-03 81 970796.0 47 77 53 16 44 54 10 34 40 76 60 59 63 20 37 51 13 18 64 68 57 21 27 62
24 78 43 7 49 22 45 52 58 69 75 73 1 8 71 32 46 56 4 67 42 23 17 50 65
41 66 81 26 36 80 19 12 33 38 70 3 25 61 2 14 15 31 9 5 6 48 72 28 11
55 29 79 74 39 35 30

sko-81-04 81 2031803.0 66 74 8 25 26 65 69 23 51 3 14 81 20 50 2 30 61 21 12 28 6 44 9 11 19
17 15 70 48 33 46 39 72 40 34 32 49 60 4 67 37 56 78 42 54 10 18 35 36
55 1 45 52 27 62 58 75 64 47 63 73 31 13 68 57 76 77 24 53 38 16 43 59
7 41 5 29 22 79 71 80

sko-81-05 81 1302711.0 66 74 56 48 52 36 6 15 8 9 5 3 55 72 61 68 27 2 45 7 62 39 78 70 57 31
13 16 44 21 17 50 1 46 11 32 81 28 41 14 53 71 49 10 25 20 58 67 24 51
59 77 69 73 33 23 76 37 63 12 18 19 43 60 42 26 35 80 30 65 75 47 38 29
64 22 4 79 54 34 40

sko-100-01 100 378234.0 3 35 44 29 17 21 7 76 53 45 12 36 50 41 48 61 23 49 2 70 82 92 38 72 81
64 90 66 47 51 46 26 100 69 20 40 14 43 99 94 67 85 30 73 24 89 8 68 93
96 56 4 98 42 19 59 9 84 87 86 62 52 22 16 31 34 75 80 54 55 13 27 10 60
28 57 32 63 5 88 77 25 58 74 95 11 6 15 33 91 79 39 83 71 37 1 97 18 78 65

sko-100-02 100 2076008.5 78 91 97 58 27 5 39 24 42 65 10 93 18 73 88 25 32 11 95 60 64 9 85 30 96
62 54 63 71 83 13 75 84 79 22 34 87 74 37 57 6 80 16 89 15 28 31 55 56 4
23 82 1 19 86 44 90 66 47 98 2 21 52 51 49 92 45 67 35 46 20 69 70 100
59 14 43 81 8 68 40 26 7 72 38 94 50 48 76 36 41 77 61 12 53 3 99 17 29 33

sko-100-03 100 16145598.0 44 78 97 35 39 89 24 80 54 21 5 37 71 82 91 31 63 27 13 83 75 11 16 14 9
62 65 73 30 85 99 96 12 93 56 95 10 4 55 74 25 1 18 84 79 57 6 32 77 20
88 34 81 22 15 17 42 98 26 59 23 64 46 7 52 51 67 50 94 29 48 36 38 72
19 86 87 68 66 90 2 43 69 70 41 47 100 61 40 92 53 49 45 76 60 33 8 28 58 3

sko-100-04 100 3232522.0 49 42 39 79 71 25 32 93 97 18 5 94 52 68 8 98 83 9 16 88 22 33 43 21 27
75 80 24 60 67 86 28 31 74 19 89 54 15 1 56 96 65 4 91 85 55 13 11 78 63
57 62 37 77 59 81 61 50 92 48 90 100 38 46 26 82 69 53 35 72 66 70 36
51 10 40 20 30 47 73 14 41 87 34 64 95 44 29 23 12 17 99 2 76 58 45 84 6 3 7

sko-100-05 100 1033080.5 78 90 55 63 25 13 58 6 30 84 60 4 65 96 74 28 85 54 75 10 80 24 27 31
15 95 37 71 97 11 83 39 42 89 16 9 91 18 57 79 5 88 22 43 33 77 1 32 93
56 81 34 73 64 87 14 2 20 67 99 46 41 26 53 94 68 40 36 82 66 49 70 44
8 100 35 21 7 47 98 29 61 59 51 69 19 62 23 12 17 38 92 52 72 86 45 48
50 3 76

Amaral-110-01 110 144296768.0 8 80 53 83 98 6 49 17 54 100 57 48 2 44 52 29 94 106 41 23 18 34
30 107 78 13 70 32 31 12 105 89 81 61 59 38 45 66 68 85 37 27 103
101 104 72 36 82 10 58 87 63 21 60 96 95 20 51 102 47 25 35 43
42 88 99 97 46 90 26 50 91 71 28 5 64 16 74 77 15 56 84 69 1 93
39 24 22 55 79 7 14 92 108 4 33 110 86 3 109 9 11 65 76 67 75 73 62 19 40

W.P. No. 2012-04-01 Page No. 15



IIMA • INDIA
Research and Publications

Instance Size Cost Permutation

Amaral-110-02 110 86050112.0 63 61 0 12 32 10 103 68 73 24 53 15 4 56 85 95 46 54 33 79 13
57 2 69 100 90 74 47 50 8 45 98 55 25 14 87 38 75 76 83 106 1 29
72 6 92 27 21 41 34 91 107 22 99 70 67 3 89 84 93 51 5 71 77 82
81 59 23 48 9 96 16 18 30 62 52 42 65 44 37 60 28 40 19 26 88 43
104 94 80 78 109 49 35 105 58 108 101 97 36 64 102 17 20 66 86 31 39 11 7

Amaral-110-03 110 2234743.3 83 19 60 50 26 91 37 32 67 44 33 98 7 24 54 97 34 2 62 79 43 87 21 3
74 29 25 106 10 75 99 22 51 55 13 108 49 5 109 30 92 102 4 68 58 35 71
104 14 56 81 77 36 12 84 78 63 31 27 48 69 42 20 18 38 47 66 76 64 46
100 80 1 59 53 11 65 96 52 95 86 28 73 8 40 17 82 0 45 41 88 107 89 103
105 85 15 72 70 57 39 93 94 101 16 6 90 9 23 61

W.P. No. 2012-04-01 Page No. 16


	Introduction
	Scatter search for the SRFLP
	Computational experiments
	Summary and future research

