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Abstract

The indexing problem in automated machining environments aims to arrange tools
in tool slots of a tool magazine for faster processing of jobs. This problem is called the
indexing problem and has been widely studied in the literature. We present heuristics
using Lin Kernighan neighborhood structures to solve the indexing problem. Two of
the heuristics are local search heuristics and one is a tabu search heuristic. To the
best of our knowledge this is one of the first implementations of tabu search on a Lin
Kernighan neighborhood structure.
Keywords: CNC tool magazine, indexing, Lin Kernighan neighborhoods, local search,
tabu search

1 Introduction

The indexing problem is one of deciding on the position of cutting tools in a tool magazine
of a computer numerically controlled machine to reduce the processing time of jobs on
the machine. The total processing time of a job on a CNC machine is the sum of the
cutting times by various tools and the times required to change tools on the turret. The
cutting times do not vary on the same job, but the tool changing times are dependent
on the position of the tools in the tool magazine. Some studies, Gray et al. (1993) have
pointed out that such tool changing operations account for up to a third of the total costs
in automated machining environments. When tools need to be changed, the tool which has
finished operation is brought to the indexing position in the tool changer and put back on
the tool magazine, then the tool magazine rotates to bring the next tool to the indexing
position of the tool changer for the next operation. We can consider the tool magazine as
a circular disk with tools in slots arranged at equal intervals (see Figure 1).

The indexing problem has been studied in the literature in two variants. In the first
variant, only one copy of any tool is allowed in the tool magazine. This has been studied
in Wilson (1987), Dereli et al. (1998), Dereli and Filiz (2000), Velmurugan and Victor
Raj (2013), and Ghosh (2016). For these problems, the indexing problem is essentially
a quadratic assignment problem (see, e.g., Ghosh 2016). In the second variant, multiple
copies of a tool is allowed in the magazine. This problem has been studied in Baykasoğlu and
Dereli (2004) and Baykasoğlu and Ozsoydan (2015). In these problems, the computation
of the indexing cost given a tool magazine configuration becomes non-trivial and involves
computing a shortest path in a graph. Problems closely related to the indexing problem
have been studied in Aktürk and Ozkan (2001), Avcı and Aktürk (1996), Hertz et al. (1998),
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Figure 1: Schematic representation of a tool magazine

and Sinriech et al. (2001). Saravanan and Ganesh Kumar (2013) provides a review of the
large body of work in another closely related group of problems called loop layout problems.

Formally the indexing problem is defined as follows. We are given a tool magazine with
n slots placed at equal angular intervals in the magazine. We are given the sequence of tools
required for different operations on a job. The total number of tools required to complete
the job is m, with m ≤ n. Based on the sequence of jobs we can obtain, for each pair of
tools i and j, the frequency fij with which they are used in consequent operations on the
job. Since the slots are at equal intervals on the magazine, the rotation of the tool magazine
to change tools located at positions k and k in the magazine can be quantified as an integer
multiple of the rotation required to move one slot the magazine to the position occupied by
an adjacent slot. Taking this amount of rotation as an unit, the rotation required to move
between slots k and l is dkl = min{|l − k|, |l + n − k|} units. We are required to find an
(into) assignment of m tools (1, . . . ,m) to slots (π(1), . . . π(n)) such that the total amount
of rotation

∑m−1
i=1

∑m
j=i+1 fij dπ(i)π(j) is minimized.

We are interested in metaheuristic techniques for the indexing problem. Most of the
literature presenting metaheuristic techniques for this problem have used population based
metaheuristics. For example, Dereli et al. (1998) and Dereli and Filiz (2000) have used
genetic algorithms and Velmurugan and Victor Raj (2013) have used particle swarm opti-
mization. Recently Ghosh (2016) presented the first neighborhood search algorithm for this
problem. In this paper, a tabu search algorithm using a 2-exchange neighborhood function
was proposed.

In the current paper, we plan to explore another more powerful neighborhood structure
for the problem called the Lin Kernighan neighborhood structure. The Lin Kernighan
neighborhood structure is a composite neighborhood structure comprising multiple moves
from simple neighborhood structures. It was first proposed in Lin and Kernighan (1973)
to solve the traveling salesman problem and was used to generate the best known solutions
to large size traveling salesman problems for a long time. An efficient implementation
of the neighborhood structure was topical even in 2000 (see, e.g., Helsgaun 2000). The
neighborhood structure was also used to solve other problems effectively, e.g., for graph

W.P. No. 2016-02-13 Page No. 3



IIMA • INDIA

Research and Publications

partitioning and VLSI design (see, e.g., Kernighan and Lin 1970, Ravikumar 1995) and for
the single row facility layout problem (see, e.g., Kothari and Ghosh 2013).

In the next section, we describe the Lin Kernighan neighborhood structure applied to the
indexing problem and present two local search algorithms and a tabu search algorithm using
the neighborhoods. Section 3 provides the results of our computational experiments with
our algorithms on realistic size instances of the indexing problem. Finally we summarize
the contribution of this paper in Section 4.

2 Lin Kernighan Neighborhood and our Algorithms

The 2-exchange neighborhood used in Ghosh (2016) is a natural neighborhood structure for
the indexing problem. In this neighborhood, a solution is defined as an assignment of tools
to slots in the tool magazine, and a neighbor of a solution is defined as a solution that is
obtained by exchanging two tools in the tool magazine or by moving a tool to a vacant slot
in the magazine. The Lin Kernighan (LK) neighborhood is one obtained by performing a
number of such exchanges in one go to obtain a neighbor of the initial solution. Since a
move in an LK neighborhood is achieved through performing multiple moves in a simple
neighborhood (the 2 exchange neighborhood in this case) the LK neighborhood is said to
be a composite neighborhood. The maximum number of constituent moves is generally
specified when describing an LK neighborhood.

Let us describe the process of selecting a best neighbor of a solution in a LK neighbor-
hood of a solution x0 using a 2 exchange neighborhood as the simple neighborhood in which
a maximum of nmax component moves are allowed. The problem we are addressing is a
minimization problem. Let x1 be a best 2 exchange neighbor of x0. The cost of x1 could be
more, equal, or less than that of x0. Similarly let x2 be a best 2-exchange neighbor of x1 and
so on. Now let z(x) denote the cost of solution x, and denote the difference z(xi−1)− z(xi)
by ∆(i) i = 1, . . . , nmax. Let i∗ = arg max

1≤i≤nmax

{∆(i)}. A best neighbor of x0 then is xi∗ .

As an example, consider a solution x0 for an indexing problem. Suppose we want to
find a best LK neighbor of x0 when the maximum number of simple 2 exchange moves (i.e.,
nmax is 6. The objective function values of solutions x0 through x6 as described in the
paragraph above is depicted in Figure 2. Note that the best value of ∆(·) is for i∗ = 5.
Hence we choose x5 as the best neighbor of x0 in the LK neighborhood.

In order to make the LK neighborhood search efficient, one needs to search the 2 ex-
change neighborhood of a solution efficiently. Note that there are O(n2) 2 exchange neigh-
bors of a solution to the indexing problem. Computing the cost of a solution is itself O(n2),
and hence a näıve approach to evaluating a best 2 exchange neighbor of a solution requires
O(n4) time. However, the following technique proposed in Ghosh (2016) reduces this time
to O(n3).
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Figure 2: Illustrating a LK move for a minimization problem

Consider a solution x0 and its neighbor x obtained by interchanging tools in positions
r and s (r < s w.l.o.g.). Then

z(x)− z(x0) =cost of repositioning r + cost of repositioning s

=
( n∑
i=1
i 6=r,s

fx0(i)x0(s)dir −
n∑

i=1
i 6=r,s

fx0(i)x0(r)dir

)
+
( n∑
i=1
i 6=r,s

fx0(i)x0(r)dis −
n∑

i=1
i 6=r,s

fx0(i)x0(s)dis

)

=
n∑

i=1
i 6=r,s

(
fx0(i)x0(r) − fx0(i)x0(s)

)(
dis − dir

)
. (1)

This expression can clearly be computed in linear time, which implies that computing a
best (i.e., lowest cost) 2 exchange neighbor of a solution takes O(n3) time. This in turn
means that computing δi = z(xi−1) − z(xi) requires O(n3) time. Since ∆i =

∑i
j=1 δj , the

solution xi∗ can be obtained in O(n3) time.

The following is a pseudocode for a LK iteration using 2 exchange neighborhood as the
simple neighborhood. It assumes a feasible solution x0 and uses two vectors, moves that
stores the sequence of simple moves made during the iteration, and gains that stores the
cumulative gain made from the cost of x0 during the iteration. LKDepth is the maximum
number of simple 2 exchange moves allowed in a LK iteration. xN is the best neighbor of
x0 in its LK neighborhood.

LK-Iteration

Input solution x0, cost function z(·)
Output best neighbor xN of x0 in its LK neighborhood

1. begin

2. set moves←− (∅, ∅, . . . , ∅), gains←− (−∞,−∞, . . . ,−∞), x←− x0;
3. for iter from 1 to LKDepth do begin

4. set ∆max ←− −∞;
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5. for each 2 exchange neighbor xij of x obtained by interchanging contents
of slots i and j in x do begin

6. compute the cost difference δij = z(xij)− z(x) using equation (1);

7. if δij > ∆max then begin

8. set ∆max ←− δij ; i∗ ←− i; j∗ ←− j;
9. end

10. end

11. set moves[iter]←− (i∗, j∗);

12. if (iter = 1) then set gains[iter]←− ∆max;

13. else set gains[iter]←− gains[iter− 1] + ∆max;

14. end

15. gmax ←− −∞, posn←− −1;

16. for iter from 1 to LKDepth do begin

17. if gains[iter] > gmax then begin

18. gmax ←− gains[iter]; posn←− iter;

19. end

20. end

21. xN ←− x0;
22. for iter from 1 to posn

23. interchange contents of the two components of moves[i] in xN ;

24. return xN ;

25. end

When one implements the LK neighborhood search described above, one often sees
the costs of consequent 2 exchange neighborhoods follow a pattern shown in Figure 3. In
particular the search obtains a 2 exchange neighbor with a low value, and then the search
oscillates between solutions with that value and with a value higher than that value. The

Figure 3: Pattern of best neighboring solutions

reason for this pattern is that the solution with the low value is a local minimum for the
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2 exchange neighborhood. In the next iteration, the search finds the best solution in the 2
exchange neighborhood of the local minimum, which has an objective function value more
than that of the local minimum. In the next iteration, then search finds the best neighbor
of this solution and reaches the local optimum it reached two 2 exchange iterations back.
This continues repeatedly giving rise to the pattern.

We modify the search in the LK neighborhood slightly to eliminate this problem. In our
new search, once a pair of tools have been exchanged to generate a solution xi which is a
best neighbor of another solution xi−1, then this pair of tools can not be interchanged again
to obtain a best neighbor. It is clear that the oscillation that we mentioned in the previous
paragraph cannot occur if we adopt this search process. In practice this is achieved by
banning 2 exchange moves in moves from the loop from step 5 through 10 in the previous
pseudocode. We call the modified neighborhood that arises as a result of this modification
in the search process the LK1 neighborhood and shall assume a LK1-Iteration procedure
that takes in a solution x0 and returns a best neighbor xN in the LK1 neighborhood of x0.

We use both the neighborhoods in local search algorithms. We call the local search
algorithms LS-LK and LS-LK1 based on the neighborhood that they use. Both the local
search algorithms start with a randomly generated solution as the current solution, and
iteratively improve it by searching its neighborhood for a better solution and replacing the
current solution with the better solution. It stops when the neighborhood of a current
solution does not contain a solution better than the current solution.

We also describe a tabu search algorithm based on the LK1 neighborhood structure.
The tabu search algorithm is a generic algorithm (such as the one described in Ghosh
(2016)). Since the LK1 neighborhood is a composite neighborhood comprising several simple
2 exchange moves, the maintenance of the tabu list is more complicated. A move in the
LK1 neighborhood in our tabu search is said to be tabu if at least one of its component 2
exchange moves is in the tabu list. Once a move has been adopted in the tabu search, all
its component 2 exchange moves are marked tabu for a number of iterations.

TS-LK1

Input: A solution x0, cost function z(·), tabu tenure TENURE, maximum number of itera-
tions allowed MAXITER.

Output: A good solution to the indexing problem defined by z(·).

1. begin

2. BestSol←− x0; TABU←− ∅; iter←− 1; CurrSol←− x0;
3. while (iter←− MAXITER) do begin

4. IterBestSol←− CurrSol;

5. for (every possible LK1 neighbor NbrSol of CurrSol) begin

6. if (none of the 2-exchange moves required to move from CurrSol to
NbrSol are in TABU and z(NbrSol) < z(IterBestSol) ) then

7. IterBestSol←− NbrSol;

8. add the 2-exchange moves required to move from CurrSol to
NbrSol to TABU for the next TENURE iterations;
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9. if (z(IterBestSol) < z(BestSol)) then BestSol←− IterBestSol;

10. end

11. else if ( (CurrSol −→ NbrSol) ∈ TABU and z(NbrSol) < z(BestSol)
) then

12. IterBestSol←− NbrSol; BestSol←− NbrSol;

13. TABU←− ∅;
14. end;

15. end;

16. CurrSol←− IterBestSol;

17. iter←− iter + 1;

18. end;

19. output BestSol;

20. end.

3 Computational Experiments

We coded the two local search algorithms (LS-LK and LS-LK1) and the tabu search al-
gorithm (TS-LK) described in Section 2 in C. We ran our experiments on a machine with
Intel i-5-2500 64-bit processor at 3.30 GHz with 4GB RAM. The value of LKDepth in all
three implementations was set to 6. For TS-LK1, the tabu tenures, i.e., the number of
tabu search iterations for which a 2 exchange move was tabu was generated from a uniform
distribution with support [2, 5], and the maximum number of iterations MAXITER was set
at 335. This was chosen for the following reason. The implementation of the TS algorithm
in Ghosh (2016) which we compare our implementations with has MAXITER = 2000, and
since we chose LKDepth as 6, we chose the maximum number of iterations for TS-LK1 as
a value close to 2000/6. For each of the algorithms we choose the best among the outputs
from 20 starts of the algorithms. (Each algorithm chooses the same starts though.)

We use two sets of benchmark instances to compare our implementations with the
implementations in Ghosh (2016). These two sets are standard benchmark instances for
the single row facility layout problem, but can be used without modification for the indexing
problem. The advantage of these instances is that they are large enough to be realistic.

3.1 Anjos Instances

The first set of instances are the Anjos instances. These instances are adapted from instances
used in Anjos et al. (2005) for the single row facility layout problem (SRFLP). Each of the
instances in Anjos et al. (2005) had a frequency matrix denoting the frequency of interaction
between a pair of facilities in the SRFLP instance. We use the frequency data to denote
the number of times a pair of tools are used in consequent operations. The dataset has 20
instances, a set of five instances with 60 tools, a second set of five instances with 70 tools,
a third set of five instances with 75 tools and a fourth set of five instances with 80 tools. In
our computations we assume a tool magazine with 100 slots for our experiments. Table 1
presents our results for these instances. The first three columns in each row present the
name of the instance, the number of tools in the instance and the number of slots in the
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tool magazine. The next four columns report the costs of the best solutions found by four
algorithms, the TS algorithm from Ghosh (2016), the LS-LK, the LS-LK1, and the TS-LK1
algorithms. The last four columns report the execution times for 20 starts of each of the
four algorithms starting from randomly generated initial solutions on our machines.

From the results we see that TS-LK1 matches each of the solutions obtained by TS (from
Ghosh 2016). The time taken by TS-LK1 is on average about two times the execution time
of TS. The local search algorithms however are much faster. There is no significant difference
in the times required by LS-LK and LS-LK1 and both of them require approximately 5% of
the time required by TS. The quality of solutions output by LS-LK1 were marginally better
than those by LS-LK for the Anjos instances; LS-LK generated solutions that were worse
than those generated by TS in five Anjos instances, whereas the corresponding number was
only two for LS-LK1.

3.2 sko Instances

The next set of instances are the sko instances. They have been used in Anjos and Yen
(2009) for computational experiments for the single row facility layout problem. There are
seven sko instances ranging from instances with 42 tools to instances with 100 tools. We
used a tool magazine with 60 slots when the number of tools were less than 60. Otherwise,
we used a tool magazine with 100 slots. Table 2 presents our results for these instances.
The structure of the table is the same as that of Table 1.

Our computational experience with the sko instances is very similar to that with the
Anjos instances. LS-LK and LS-LK1 were equally fast for these instances, requiring ap-
proximately 5% of the time required by TS, while TS-LK1 took twice as much time as TS.
LS-LK output the worst results, while LS-LK1 and TS-LK output the same solution as TS
for all the sko instances.

Hence, our experience suggests that TS is still the best method for generating good
quality solutions to indexing problems. LS-LK1 produces very good quality solutions in
much less time, and so it may be an algorithm to use if there are time constraints.

4 Summary

In this paper, we study the performance of local search and tabu search algorithms for the
indexing problem. We use the Lin Kernighan neighborhood structure for our algorithms.
This neighborhood structure has been known to provide good solutions for the traveling
salesman problem and the graph partitioning problem.

We introduced the indexing problem and provided a brief literature review in Section
1. In Section 2 we described the Lin Kernighan neighborhood, and local search algorithms
(LS-LK and LS-LK1) and a tabu search algorithm (TS-LK1) using the Lin Kernighan
neighborhood to solve the indexing problem. We described our implementations of the
algorithms and our computational experience with these algorithms in Section 3. Based
on our experiments, we feel that tabu search with 2-exchange neighborhoods is the best
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algorithm to use if we have enough time. For a fast and good solution we suggest local
search using a modified Lin Kernighan neighborhood (LS-LK1).
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T. Dereli, A. Baykasoğlu, N.N.Z. Gindy, and İ.H. Filiz. Determination of Optimal Turret
Index Positions by Genetic Algorithms. Proceedings of 2nd International Symposium on
Intelligent Manufacturing Systems. (1998) pp. 743–750. Turkey.
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