
Balancing U-Shaped Assembly Lines with Resource

Dependent Task Times: A Simulated Annealing

Approach

Sachin Jayaswala,∗, Prashant Agarwal1

aIndian Institute of Management, Vastrapur, Ahmedabad, Gujarat 380 015, India.
Ph: +91-79-6632-4877, Fax: +91-79-6632-6896, E-mail: sachin@iimahd.ernet.in

bDepartment of Industrial Engineering and Management, Indian Institute of Technology, Kharagpur, West
Bengal 721302, India. E-mail: prashant.agarwal@iitkgp.ac.in

Abstract

The advent of Just-in-Time (JIT) and Group Technology philosophies has popularized U-
shaped assembly lines, which help overcome many of the disadvantages, like line inflexibility,
job monotony, large inventories, etc., typically associated with straight assembly lines. Al-
though U-shaped layout has demonstrated it supremacy over the traditional straight layout,
the problem of U-shaped assembly line balancing (ULB) is much more complex. The extant
literature on ULB assumes that each assembly task requires a fixed (or no) equipment and
a fixed number of workers. However, it is often desirable to reduce certain task times by
assigning more workers or alternative equipments at a given workstation. The problem in
such cases is to assign not only the task but also resource alternatives (number of workers
and equipment type) to workstations. Research on such resource dependent U-shaped as-
sembly line balancing (RDULB) is scarce. We address the problem of RDULB and propose
a Simulated Annealing (SA) based metaheuristic, which gives optimal solution for most of
the small-to-medium problem instances. For very large problems, while SA generates a good
feasible solution within half an hour to 1.5 hours, Cplex is unable to find a single feasible
solution even after 10 times the CPU time required by SA.

Keywords: Assembly Line Balancing; Resource; Optimization; Simulated Annealing

∗Corresponding author

IIMA Working Paper No. 2013-11-06 November 7, 2013

1. Introduction & Literature Review

An assembly line is a sequence of workstations at which tasks related to assembly of

a product are performed. Assembly line balancing (ALB), in the simplest sense, involves

optimally (with respect to some objective) partitioning a set of tasks comprising the assembly

of a product to these workstations, subject to the precedence relations among the tasks [2].

A common objective for assembly line balancing is to minimize the number of workstations

for a given cycle time of assembly (Type-I problem). For other objectives and classifications

of ALB, we refer the reader to Scholl [24].

Traditionally, the workstations on an assembly line are arranged in a straight line along

a conveyor belt, and thus the assembly line is called a serial/straight line. However, the

advent of Just-in-Time (JIT) and Group Technology philosophies has popularized U-shaped

assembly lines, which help overcome many of the disadvantages, like line inflexibility, job

monotony, large inventories etc., typically associated with straight assembly lines.

Entran
line

Exit of t

Ent
the

nce of the

the line

trance of
e line

1 2

1

8

2 3

2

7

4

Front of th

Back of th

2

7

5

e line

e line

3

6

6 7

4

5

7 8

4

5

Exit
line

t of the
e

Figure 1: Straight layout Figure 2: U-shaped layout

Figures 1 and 2 depict, respectively, the typical layout of a straight assembly line and

that of a corresponding U-shaped line. The entrance and exit of U-shaped assembly lines are

close together forming an ‘U’, and operators work inside this ‘U’. This allows an operator to

handle two workpieces, one on each side of the line, in the same cycle. Thus, a station k can

contain not only tasks whose predecessors are assigned to one of the stations 1, ..., k, but

also tasks whose predecessors will be processed by the time the workpiece returns to station

k for the second time [20]. Such a workstation that handles two workpieces in the same cycle

(and equivalently the same workpiece in two different cycles) is called a crossover station

(for example, the leftmost workstation in Figure 2 that processes tasks 1 and 8). The pres-

ence of such crossover stations usually increases the feasible task-workstation combinations.

For example, in the U-shaped layout in Figure 2, task 8 can be assigned to the leftmost

1

workstation, which is not otherwise possible in a straight layout. This greater flexibility

in task-workstation combinations often results in a better balancing of the line and fewer

workstation (and hence operator) requirement. Closer workstations also increase the visibil-

ity of the whole production process and communications among operators. Operators thus

get cross-trained on tasks of different workstations, which leads to their job enrichment and

increased flexibility. This increased flexibility permits ease of frequent rebalancing of the

line to quickly respond to changes in market demand/operating environment [24]. Other

benefits associated with U-shaped assembly lines include: productivity improvement, re-

duction in work-in-process inventory, space requirement, and lead-time. Such benefits have

been documented in various studies of U-shaped assembly lines [18, 19, 5, 1].

Although U-shaped layout has demonstrated its supremacy over the traditional straight

layout, the problem of balancing the line in the former case is much more complex due to

greater feasible station-task combinations. The problem of U-shaped line balancing (ULB)

was first studied by Miltenburg and Wijngaard [16]. They developed a Dynamic Program-

ming (DP) formulation to minimize the number of workstations for a given cycle time

(Type-I problem), which could solve problems with up to 11 tasks. For problems of larger

size, they proposed a Ranked Positional Weight Technique (RPWT) based greedy heuristic.

Subsequently, Miltenburg and Sparling [17] developed three exact algorithms for the ULB

problem: one DP based and two Branch & Bound (B&B) based. Urban (1998) developed

the first Integer Programming (IP) based formulation of the ULB problem, using the concept

of phantom precedence diagram. His formulation allowed assignment of tasks to stations

forward on the original precedence diagram, and backward on the phantom precedence dia-

gram. This could solve, using Cplex, problems of up to 45 tasks and 14 workstations, which

could not earlier be solved by DP or B&B based algorithms of Miltenburg and Sparling [17].

Scholl and Klein [25] proposed a B&B based procedure, called ULINO (U-Line Optimizer),

with various bounding and dominance rules to solve different versions (Type-I, Type-II and

Type-E) of the ULB problem. Erel et al. [9] presented a Simulated Annealing (SA) based

metaheuristic for solving large size ULB problems. Gokcen et al. [12] proposed a shortest

route formulation of ULB. Gokcen and Agpak [11] and Toklu and Ozcan [26] developed Goal

Programming formulations of ULB.

All the above cited papers on ULB assume that each assembly task requires a fixed (or

no) equipment and a fixed number of workers. In such a case, the assembly line balancing

problem is essentially that of partitioning a given set of tasks to different workstations.

2

Further, the objective of minimizing the number of workstations for a given cycle time

(Type-I problem) automatically minimizes the total cost. However, it is often desirable

(or even necessary to meet the cycle time requirement) to reduce certain task times by

assigning more workers or alternative equipment at a given workstation. The problem in

such cases is to assign not only the tasks but also resource alternatives (number of workers

and equipment type) to workstations. Faaland et al. [10] called such a problem as resource

dependent assembly line balancing (RDALB). The objective of minimizing the number of

workstations for such problems may not necessarily result in the minimum total cost. Hence,

for RDALB, the objective is to minimize the total cost, given the cycle time.

Most ALB problems in industries are actually RDALB [14]. For example, Faaland et al.

[10] report the design of a JIT line to produce subassemblies for cruise missiles as an RDALB

problem, in which case the managers had to decide not only the tasks but also the type of

wire harness and test equipment at workstations. Kara et al. [14] report another instance

of RDALB problem at a solar collector producer, located in Konya, Turkey. In this case, a

task called ‘glass positioning’ could be performed by a worker in 16 seconds with the help of

an assistant. The same task could be performed by that worker in 9 seconds with the help

of a vacuum gripper.

Abundance of RDALB problems in industries has also motivated several theoretical

research work. Pinto et al. [23] consider a closely related problem of simultaneous assignment

of tasks to stations and choice of process alternatives. They propose a B&B procedure,

which branches by selecting a processing alternative and computes lower and upper bounds

by solving the resulting ALB problem. The effectiveness of the procedure is demonstrated

by its application to redesigning of an assembly line for an auto-industry supplier. Bukchin

and Tzur [3] also present a B&B procedure, which is capable of solving problems consisting

of up to 30 tasks and 10 equipment types. For problems of a larger size, they propose

a heuristic. Nicosia et al. [22] propose a DP and a B&B based solution procedure for

the same problem. Corominas et al. (2008) present the problem of line rebalancing at

a motorcycle assembly plant to increase its production by hiring the minimum number

of temporary workers. Temporary workers need more time to carry out their tasks than

permanent workers, and can work only with other permanent workers. Further, different

task groups are incompatible with each other. The authors model the problem as a binary

linear program (BLP), which is solved optimally by means of the Ilog Cplex 9.0 optimizer.

Moon et al. [21] address the problem of assigning tasks to workstations and simultaneously

3

selecting multi-functional workers with different salaries depending on their skills. They

propose a mixed integer linear program model and a genetic algorithm to minimize the total

annual work station costs and the annual salary of the assigned workers.

All the above cited papers on RDALB apply to a serial layout. Research on resource

dependent U-shaped assembly line balancing (RDULB) is very scarce. Kara et al. [14], to

the best of our knowledge, is the only work on RDULB. They propose an integer program

formulation, which considers alternative equipments and assistants to help regular workers

with their tasks or to reduce their task times. The objective of the problem is to simul-

taneously assign tasks to workstations, and resources (equipments and assistants) to tasks

such that the total cost of workstation and resource utilization is minimized, given the cycle

time, precedence and resource restrictions. However, the resulting formulation has difficulty

solving some problem instances even of the size of 30 tasks and 9 equipment types. This has

motivated the current research to: (i) provide a tighter formulation of the problem; and (ii)

develop an efficient algorithm capable of solving large instances of RDULB in reasonable

time.

The rest of the paper is organized as follows: Section 2 presents the problem description

and its mathematical model, followed by some ways to tighten it. The solution algorithm

is discussed in detail in Section 3, followed by and illustrative example in Section 4 and

computational experience in Section 5. The paper concludes with a summary of results and

discussion of directions for future research in Section 6.

2. Problem Formulation

The problem description is adopted from Kara et al. [14]. The RDULB problem we

consider in this paper has the following features:

• A single product is assembled on the assembly line.

• The precedence relationships among the tasks are given and fixed.

• Every task necessarily needs an operator, and some cannot be processed without ad-

ditional resources (equipment or assistant). Others may be processed with or without

additional resources.

• Task durations are deterministic, but vary with the type of resource (equipment type

or assistant) used. Task durations are likely to be shorter when they use additional

resources.

4

• Task durations are independent of the workstation at which they are performed.

• The equipments are bulky, and hence cannot be moved from one side (front/back)

to the other (back/front) of a crossover workstation. However, regular operators and

assistants can move, and hence can be utilized by different tasks on either side of a

crossover workstation.

• Regular operators are available in sufficient number to operate the workstations but

other resources (equipments and assistants) are limited.

We define the following notations, used to to develop the mathematical model of the problem.

Indices:

i, r, s : task

j : workstation

e : equipment type; e = 0 represents no equipment.

Sets:

T : Set of all tasks

W : Set of all workstations

E : Set of all equipment types

Ei : Set of equipment types that can be used to process task i

PR : Set of precedence relationships: (r, s) ∈ PR, where r is an immediate

predecessor of s

Parameters:

5

NT : Number of tasks; NT = |T |

NW : Number of available workstations; NW = |W |

NE : Number of equipment types; NE = |E|

NEe : Number of equipments of type e available

NA : Number of assistants available

CT : Cycle time

tie0 : Duration of task i if it is processed on equipment e without an assistant

tie1 : Duration of task i if it is processed on equipment e with the help of an assistant

cw : Annual utilization cost of a workstation (regular operator + amortized investment

costs)

ca : Annual employment cost of an assistant

ce : Annual operating cost of equipment e

M : a big number

Variables:

xij : 1, if task i is assigned to the front of workstation j; 0 otherwise

yij : 1, if task i is assigned to the back of workstation j; 0 otherwise

pije : 1, if task i is processed at workstation j using equipment e without an assistant;

0, otherwise

qije : 1, if task i is processed at workstation j using equipment e and with the help of

an assistant; 0 otherwise

zfje : 1, if equipment e is assigned to the front of workstation j; 0, otherwise

zbje : 1, if equipment e is assigned to the back of workstation j; 0, otherwise

uj : 1, if workstation j is utilized; 0, otherwise

kj : 1, if an assistant is assigned to workstation j; 0, otherwise

Using the above notations, the mathematical model for RDULB, as proposed by Kara

et al. [14], can be stated as:

6

[RDULB]:

min
∑
j∈W

(cw.uj + ca.kj) +
∑
e∈E

∑
j∈W

ce(zfje + zbje) (1)

s.t.
∑
j∈W

(xij + yij) = 1 ∀i ∈ T (2)

∑
e∈Ei

(pije + qije) = xij + yij ∀i ∈ T ;∀j ∈ W (3)

∑
j∈W

(NW − j + 1)(xrj − xsj) ≥ 0 ∀(r, s) ∈ PR (4)

∑
j∈W

(NW − j + 1)(ysj − yrj) ≥ 0 ∀(r, s) ∈ PR (5)

∑
i∈T

∑
e∈Ei

(tie0pije + tie1qije) ≤ CT ∗ uj ∀j ∈ W (6)

pije + qije + xij − 1 ≤ zfje ∀i ∈ T ;∀j ∈ W ;∀e ∈ Ei (7)

pije + qije + yij − 1 ≤ zbje ∀i ∈ T ;∀j ∈ W ;∀e ∈ Ei (8)∑
j∈W

(zfje + zbje) ≤ NEe ∀e ∈ E (9)

∑
i∈T

∑
e∈Ei

qije ≤M ∗ kj ∀j ∈ W (10)

∑
j∈W

kj ≤ NA (11)

pije, qije, xij, yij, zfje, zbje, uj, kj ∈ {0, 1} ∀i ∈ T ;∀j ∈ W ; ∀e ∈ Ei (12)

The objective function (1) is the total annual cost of workstation utilization, equipment

operation and assistant employment on the U-shaped assembly line. Constraint set (2)

restricts the assignment of each task to just one side (front or back) of one of the work-

stations. Constraint set (3) requires that each task be completely processed either without

equipment or using only 1 equipment type. Further, a task should be processed either with

or without an assistant. Constraint sets (4) and (5) are precedence constraints among tasks

on the front side and back side, respectively, of the the assembly line. Constraint set (6)

is the cycle time constraint for each workstation. Constraint sets (7) and (8) ensure that a

task is processed on an equipment type at a workstation only if that equipment is assigned

to that workstation. Constraint set (9) are equipment availability constraints. Constraint

set (10) ensures that an assistant cannot be used to process a task at a workstation unless

one is assigned to that workstation. Constraint (11) is the assistant availability constraint.

7

Constraint set (12) are binary constraints on the decision variables.

The mathematical model (1)-(12) of RDULB, for a problem of practical size, involves too

many integer variables and constraints to be solved optimally even by the best commercial

solver available in the industry. The IP formulation of a simple (i.e., not resource dependent)

ULB proposed by Urban (1998) is reported to be too large to solve problem instances of the

size beyond 45 tasks and 14 workstations. The IP formulation of RDULB, which involves

far too many variables and constraints than a similar formulation for ULB, is even more

difficult to solve optimally. Kara et al. [14] report difficulty solving the IP formulation for

RDULB even for some problem instances of the size of 30 tasks and 9 equipment types.

The size of the model can be reduced to some extent by eliminating some of the variables

and constraints through the use of appropriate bounds. For a straight assembly line balanc-

ing problem, lower and upper bounds on the workstation index to which a given task can be

assigned may be used to eliminate variables that represent infeasible assignments. However,

for a U-shaped assembly line, there is no upper bound for any task, since it is theoretically

possible for all the assignments to be made through the phantom diagram (Urban, 1998).

Nonetheless, we can still eliminate some of the variables through the use of lower bounds,

computed as follows:

LBi = min



ti +

∑
k∈{r:(r,i)∈PR}

tk

 /CT

 ,

ti +

∑
k∈{s:(i,s)∈PR}

tk

 /CT


 (13)

where, ti = mine∈Ei
{tie0, tie1}. Using this lower bound, W in (2), (3), (7), and (8) can be

replaced by Wi = [LBi, NW]. Similarly, W in (4) and (5) can be replaced by [LB,NW],

where:

LB = min{LBr, LBs} (14)

The model can be further tightened by avoiding the use of Big M in the model. This can

be done by finding an appropriate value that can be used for Big M in (10). We argue that

NT represents a good value of Big M in (10) as follows. (2) and (3) together imply:

∑
e∈Ei

(pije + qije) ≤ 1 ∀i ∈ T ;∀j ∈ W

8

Summing the above set of equations over T gives the following:

∑
i∈T

∑
e∈Ei

(pije + qije) ≤ NT ∀j ∈ W

The above set of equations further implies:

∑
i∈T

∑
e∈Ei

qije ≤ NT ∀j ∈ W

This suggests that Big M in (10) can be replaced by NT . Further, the following constraint

may be added to ensure that workstation j is not used unless workstation j − 1 is used.

This is to avoid awkward symmetries in the problem, which unnecessarily increases the

computation time.

uj ≤ uj−1∀j ∈ W (15)

With the above substitutions, a tighter mathematical model for RDULB can be stated as:

[RDULB′]:

(1)

s.t.
∑

j∈[LBi,NW]

(xij + yij) = 1 ∀i ∈ T (2’)

∑
e∈Ei

(pije + qije) = xij + yij ∀i ∈ T ;∀j ∈ [LBi, NW] (3’)

∑
j∈[LB,NW]

(NW − j + 1)(xrj − xsj) ≥ 0 ∀(r, s) ∈ PR (4’)

∑
j∈[LB,NW]

(NW − j + 1)(ysj − yrj) ≥ 0 ∀(r, s) ∈ PR (5’)

pije + qije + xij − 1 ≤ zfje ∀i ∈ T ;∀j ∈ [LBi, NW];∀e ∈ Ei (7’)

pije + qije + yij − 1 ≤ zbje ∀i ∈ T ;∀j ∈ [LBi, NW];∀e ∈ Ei (8’)∑
i∈T

∑
e∈Ei

qije ≤ NT ∗ kj ∀j ∈ W (10’)

(6), (9), (11)− (12), (15)

where LBi and LB are given by (13) and (14), respectively.

Our limited computational study does indicate improvement in the computation time

of [RDULB′] compared to [RDULB]. However, [RDULB′] is still too difficult to solve for

9

some problem instances even of the size of 30 tasks and 9 equipment types. In the following

section, we, therefore, develop a Simulated Annealing (SA) based solution that can solve

large problem instances of [RDULB].

3. Solution Algorithm

Our motivation to use SA to solve [RDULB] comes from the literature on its successful

application to a variety of difficult combinatorial optimization problems like the quadratic

assignment problem [6], graph colouring problems [4], packing problems [8], scheduling prob-

lems [28] and cell formation problems [13]. Any SA algorithm has the following three

important components [15]: (i) initial solution generation; (ii) neighborhood solution gen-

eration; and (iii) termination. The scheme used for each of these components with respect

to [RDULB] is described next.

3.1. Initial Solution Generation

Initial solution is generated by assigning tasks one by one, starting with any one of the

tasks that do not have a predecessor, to only one side (front) of the assembly line, subject

to the precedence and Cycle time constraints. A resource (an equipment or an assistant)

is used sparingly, assigned to a workstation only when it is absolutely necessary to process

a task assigned to that workstation. The minimum possible use of resources in the initial

solution allows flexibility in constructing feasible neighborhood solutions in SA. Therefore,

a tie between two or more tasks that are eligible (with respect to precedence and Cycle

time constraints) for assignment to a given workstation is always broken in favour of the

one that does not need an additional resource (an equipment or an assistant). Ties between

two tasks, both of which do not require additional resources is broken arbitrarily. Similarly,

ties between two tasks, both of which require additional resources is also broken arbitrarily.

The above procedure for generating initial solution will thus satisfy all the constraints (2)

- (12) and (15), but may require more than NW workstations since additional resources,

which help save task processing times, are used as sparingly as possible. We, therefore,

allow more than NW workstations to be used, if required by the above procedure for a

feasible initial solution. This, of course, will make the solution suboptimal due to excess

cost of too many workstations. The various steps of the initial solution generation scheme

are illustrated using an example in section 4.

10

3.2. Neighborhood Solution Generation

A neighborhood solution is generated by randomly selecting any one of the following

approaches:

• Insert: Randomly pick a task from a workstation and assign it to a randomly picked

different workstation. Details are provided in Figure 4.

• Swap: Exchange two tasks randomly picked from two different workstations. Details

are provided in Figure 5.

• Insert followed by swap.

• Swap followed by insert.

3.3. Termination

The algorithm terminates by any one of the following criteria:

• Temperature drops below a set threshold, Tmin.

• Acceptance ratio (number of neighborhood solutions accepted/number of neighbor-

hood solutions attempted) at any temperature reaches a minimum threshold value,

Rf .

• No improvement in the objective function value for the last preset number of temper-

ature transitions, MAXITERwi.

The complete SA algorithm for RDULB is described in Figure 3. The details of Insert and

Swap operations for neighborhood solution generation are shown in Figure 4 and Figure 5,

respectively. In the following section, we present an illustrative example to demonstrate the

various elements of SA algorithm, as applied to RDULB.

4. Illustrative Example

We explain the details of the proposed SA algorithm, presented in the previous section,

using a small illustrative example involving 10 tasks (NT = 10) and 3 equipment types (NE

= 3). The data on the precedence relations, possible alternative resources (equipment type

and assistant) and the corresponding operation times for different tasks are presented in

Table 1. Other equipment and cost related data are: NEe = {1, 1, 2} and ce = {24, 16, 52}

for e = {1, 2, 3}; cw = 100, ca = 70, CT = 45 and NW = 5.

11

0. Read and initialize.

0.1. Read RDULB parameters: NT , NW , NE, NEe, NA, CT , Ei, PR, tie0, tie1, cw,
ca, ce, as defined in Section 2.

0.2. Define Simulated Annealing parameters: initial temperature, T0; maximum number
of neighborhood solutions (transitions) attempted at each temperature, Lmax; max-
imum number of neighborhood solutions (transitions) accepted at each temperature,
ATmax; cooling factor, 0 < α < 1; minimum temperature, Tmin; final acceptance
ratio, Rf ; MAXITERwi and MAXTRIAL.

0.3. Initialize iteration (outer loop) counter, i← 0; temperature, Ti ← T0.

0.4. Initialize inner loop counter, l← 0; and accepted number of transitions, AT ← 0.

0.5. Generate initial solution, SOLil, as described in Section 3.1, and determine its ob-
jective function value, OBJ il . SOL

best ← SOLil and OBJbest ← OBJ il .

1. Execute outer loop (1.1–1.4).

1.1. Execute inner loop (1.1.1–1.1.5).

1.1.1. l← l + 1.

1.1.2. Generate a neighborhood solution, SOLil, by randomly choosing any one of
the four options described in Section 3.2, and calculate its objective func-
tion value, OBJ il . Repeat this until a feasible neighborhood solution is found
or MAXTRIAL attempts are reached. If no feasible solution is found in
MAXTRIAL attempts, then go to step 1.1.1.

1.1.3. δ ← OBJ il −OBJ il−1.
1.1.4. If δ ≤ 0 or r ∼ U(0, 1) ≤ e(−δ/Ti), then go to step 1.1.4.1. Else, reject the

neighborhood solution, SOLil ← SOLil−1 and OBJ il ← OBJ il−1, and go to step
1.1.5.

1.1.4.1. Accept SOLil and OBJ il .

1.1.4.2. AT ← AT + 1.

1.1.4.3. If OBJ il < OBJbest, then SOLbest ← SOLil and OBJbest ← OBJ il .

1.1.5. If one of the following conditions holds true: (a) AT ≥ ATmax; (b) l ← Lmax,
then terminate the inner loop, SOLi0 ← SOLil and OBJ i0 ← OBJ il , then l← 0
and AT ← 0, and go to step 1.2. Otherwise, continue the inner loop and go to
1.1.1.

1.2. i← i+ 1.

1.3. Reduce the temperature: Ti ← αTi−1.

1.4. If one of the following conditions holds true: (a) Ti < Tmin; (b) AT/l ≤ Rf ; (c)
the objective function value has not improved for the last MAXITERwi iterations,
then terminate the outer loop and go to step 2. Else, continue the outer loop and
go to step 1.1.

2. Return SOLbest with objective function value OBJbest, and terminate the procedure.

Figure 3: Simulated Annealing (SA) Algorithm for RDULB

12

1. Randomly pick a task, say t. Let it belong to workstation, say j1.

2. Randomly pick a workstation, say j2 such that j2 6= j1.

3. If feasible (with respect to precedence and cycle time constraints), release the re-
source(s) used by t by reassigning other tasks at j1 that share resources with t to
other resources available at j1. The released resource(s) may be assigned to j2 in
step 4 if that makes assignment of t to j2 feasible (with respect to precedence and
cycle time constraints).

4. If feasible (with respect to precedence and cycle time constraints), move t from j1
to j2. Randomly decide whether to move t to front or back side of the workstation
j2.

5. Allocate new resources to t at j2, if necessary and available.

Figure 4: Scheme for Insert Operation

1. Randomly pick 2 tasks, say t1 and t2 such that t2 6= t1 from workstations, say j1
and j2, respectively such that j2 6= j1.

2. If feasible (with respect to precedence and cycle time constraints), release the re-
source(s) used by t1 by reassigning other tasks at j1 that share resources with t1
to other resources available at j1. The released resource(s) may be assigned to j2
in step 3 if that makes assignment of t1 to j2 feasible (with respect to precedence
and cycle time constraints). Similarly, if feasible, release the resource(s) used by t2.
The released resource(s) may be assigned to j1 in step 3 if that makes assignment
of t2 to j1 feasible.

3. If feasible (with respect to precedence and cycle time constraints), move t1 from j1
to j2, and t2 from j2 to j1. For this, randomly choose one of the following options.

(a) assign t1 to front of j2 and t2 to front of j1.

(b) assign t1 to back of j2 and t2 to back of j1.

(c) assign t1 to front of j2 and t2 to back of j1.

(d) assign t1 to back of j2 and t2 to front of j1.

4. Allocate new resources to t1 at j2, if necessary and available. Similarly, allocate
new resources to t2 at j1, if necessary and available.

Figure 5: Scheme for Swap Operation

13

The various steps in the generation of initial solution are detailed in Table 2. To begin

with, tasks 1, 2, 3 and 7 are all eligible for assignment to workstation 1 since none of them has

any precedence constraint, and any of them can fit in the workstation in the given cycle time.

Of these, tasks 1, 3 and 7 are preferred since they can be processed without any equipment or

assistant. As described in section 3.1, this is done to minimize the possible use of resources in

the initial solution, which allows flexibility in constructing feasible neighborhood solutions.

Of the tasks 1, 3 and 7, task 1 is selected randomly. Assigning task 1 to workstation 1 makes

task 4 also eligible for assignment. Of tasks 2, 3, 4 and 7 that are now eligible, tasks 3, 4 and

7 are preferred since they can be processed without any equipment or assistant. Of them,

task 4 is randomly selected in step 2. Tasks in the remaining steps are similarly selected. In

step 5, tasks 2 and 7 satisfy the precedence constraint, but only 7 can fit in the remaining

time available at workstation 1. However, task 7 is not assigned to workstation 1 since it

will necessarily need an assistant to be completed within the remaining time available at

workstation 1. Hence, task 7 is assigned to workstation 2, which does not necessarily require

an assistant to be completed within the cycle time.

The initial solution obtained is presented in Figure 6. The total cost with the initial

solution is 370. The final solution of the SA algorithm is presented in Figure 7. The final

SA solution employs 2 workstations, 1 assistant and 1 unit of equipment type 1, giving a

total cost of 294, which is optimal (confirmed by solving the resulting mathematical model

using Cplex).

Initial Solution

SA Solution

2,5,7,8 ‐> Assistant 3,8‐>Equipment 1 Total Cost ‐> 294

Worker Equipment Workstation Task

1 W=1

Assistant

W=1 W=2

1

13

Task Time

 5 10

10 5 12

42

13 6 8 8

 8

43

W=3

17

 5 12

W=2

45

11 13 6 15

W=1

5 10 12 10

37

Figure 6: Initial Solution for Illustrative Example

5. Computational Experience

We test the efficiency of the proposed SA algorithm and the quality of solution produced

by it by attempting to solve a variety of problem instances of RDULB using SA as well as

14

Table 1: Task Time Data for Illustrative Example

Task
Immediate Assistant Equipment Equipment Equipment Equipment

Predecessors Assigned? Type 0 Type 1 Type 2 Type 3

1 - No 5
Yes

2 - No
Yes 13

3 - No 12 8
Yes

4 1 No 10
Yes

5 2 No 9
Yes 6

6 3 No 10 8
Yes

7 - No 11
Yes 8

8 4, 5 No
Yes 15 8 10

9 6, 8 No 5 3 4
Yes

10 7, 9 No 12
Yes

Initial Solution

SA Solution

2,5,7,8 ‐> Assistant 3,8‐>Equipment 1 Total Cost ‐> 294

Worker Equipment Workstation Task

1 W=1

Assistant

W=1 W=2

1

13

Task Time

 5 10

10 5 12

42

13 6 8 8

 8

43

W=3

17

 5 12

W=2

45

11 13 6 15

W=1

5 10 12 10

37

Figure 7: Final SA Solution for Illustrative Example

using Cplex for the IP model. The SA algorithm is coded and compiled in Visual C++

while the IP model is solved using Ilog Cplex 12.1 Concert Technology in Visual C++.

All the computational experiments are done on a personal computer with 2 GB RAM and

2.4 GHz, Core 2 Duo Intel processor. The parameters of SA algorithm play a crucial

15

T
ab

le
2
:

In
it

ia
l

S
o
lu

ti
o
n

fo
r

Il
lu

st
ra

ti
ve

E
x
a
m

p
le

W
o
rk

T
im

e
T

a
sk

s
T

a
sk

(e
q
u

ip
m

e
n
t)

T
a
sk

E
q
u

ip
m

e
n
t

A
ss

is
ta

n
t

T
im

e
sa

ti
sf

y
in

g
[A

ss
is

ta
n
t]

st
a
ti

o
n

A
v
a
il
a
b

le
p

re
c
e
d

e
n

c
e

c
o
m

b
in

a
ti

o
n

s
A

ss
ig

n
e
d

A
ss

ig
n

e
d

A
ss

ig
n

e
d

?
L

e
ft

c
o
n

st
ra

in
ts

th
a
t

c
a
n

fi
t

1
4
5

1,
2,

3,
7

1(
0)

[N
o]

;
2(

0)
[Y

es
];

1
0

N
o

40
3(

0)
[N

o]
;

3(
1)

[N
o]

;
7(

0)
[N

o]
;

7(
0)

[Y
es

]

1
4
0

2,
3,

4,
7

2(
0)

[Y
es

];
3(

0)
[N

o]
;

4
0

N
o

30
3(

1)
[N

o]
;

4(
0)

[N
o]

;
7(

0)
[N

o]
;

7(
0)

[Y
es

]

1
3
0

2,
3,

7
2(

0)
[Y

es
];

3(
0)

[N
o]

;
3

0
N

o
18

3(
1)

[N
o]

;
7(

0)
[N

o]
;

7(
0)

[Y
es

]

1
1
8

2,
6,

7
2(

0)
[Y

es
];

6(
0)

[N
o]

;
6

0
N

o
8

6(
3)

[N
o]

;
7(

0)
[N

o]
;

7(
0)

[Y
es

]

1
8

2,
7

7(
0)

[Y
es

]
N

on
e

-
-

8

2
4
5

2,
7

2(
0)

[Y
es

];
7(

0)
[N

o]
;

7
0

N
o

34
7(

0)
[Y

es
]

2
3
4

2
2(

0)
[Y

es
]

2
0

Y
es

21

2
2
1

5
5(

0)
[N

o]
;

5(
0)

[Y
es

]
5

0
Y

es
15

2
1
5

8
8(

0)
[Y

es
];

8(
1)

[Y
es

];
8

0
Y

es
0

8(
3)

[Y
es

]

3
4
5

9
9(

0)
[N

o]
;

9(
2)

[N
o]

;
9

0
N

o
40

9(
3)

[N
o]

3
4
0

10
10

(0
)[

N
o]

10
0

N
o

28

16

role in its performance. There is a trade-off between the solution quality and solution

time. SA parameters are finalized after testing with different combinations of values. The

final SA parameter values chosen for different number of tasks are shown in Table 3. The

remaining parameters are set as: ATmax = Lmax/2; T0 = X × (cw + ca + maxe{ce});

Tmin = (min{cw, ca, ce})/4; MAXTRIAL = NT ; MAXITERwi = Lmax.

Table 3: SA Parameters

NT Lmax α Rf X
10 200 0.6 0.02 2
20 600 0.85 0.02 100
30 800 0.95 0.02 500
40 1000 0.96 0.02 1000
50 1200 0.97 0.02 4000

≥ 89 1200 0.98 0.02 8000

We divide the problem instances into three categories: (i) small-to-medium instances,

consisting of 10, 20 and 30 tasks, and 3, 6 and 9 equipment types, respectively; (ii) large

instances, consisting of 40 and 50 tasks, and 12 and 15 equipment types, respectively; and

(iii) very large instances, consisting of 89, 94, 111 and 148 tasks, and 15 or 18 equipment

types. The small-to-medium and large problem instances are used directly from Kara et al.

[14]. For a specified number of tasks and equipment types, the data sets for small-to-

medium and large problem instances are available for 3 different precedence diagrams. Each

precedence diagram corresponds to a given value of flexibility ratio (FR) ((i) FR = 0.25 ±

0.05; (ii) FR = 0.50±0.05; (iii) FR = 0.75±0.05) - an indicator of complexity of precedence

relationships ([24]. For each data set, the problem is solved for 3 different cycle times (CT

= 30, 45, 60), each for 3 different assignments of task times. This gives us 81 (3× 3× 3× 3)

small-to-medium and 54 (2×3×3×3) large problem instances. The scheme used to construct

the task time and cost data for these problem instances are as given below.

- NEe ∼ U(0, 2) ∀e ∈ {E : e 6= 0}.

- tie0 ∼ U(1, 15) and tie1 ∼ U(1, 15) ∀e ∈ Ei.

- tie1 < tie0 ∀e ∈ Ei; tie0 < ti00 and tie1 < ti01 ∀e ∈ {Ei : e 6= 0}.

- cw = 100 and ca = 70.

- ce ∼ U(10, 60) ∀e ∈ {E : e 6= 0}.

17

The computational results for small-to-medium problem instances are presented in Table 4.

As obvious from Table 4, problem instances even of the size of 30 tasks may become too

difficult for Cplex to solve: it is unable to solve 2 such instances. Of the remaining 79

instances, the proposed SA algorithm is able to solve 55 of them to optimality within the

CPU time taken by Cplex. Of the remaining 24, the optimality gap is within 5% for 14 of

them, and within 10% for all of them.

Cplex is, however, unable to find an optimal solution to most of the larger problem

instances (40 and 50 tasks) within a time limit of 3 hours. So, we solve these instances

using the proposed SA algorithm, and then look for the best feasible solution produced

by Cplex at times T, 2T, 4T, 6T, 8T and 10T, where T is the CPU time taken by SA

algorithm. The results for these larger problem instances are presented in Table 5, from

which the following observations can be made: (i) Of the 54 large problem instances, Cplex

could solve to optimality (a) only 10 instances within the same CPU time as SA; (b) only 11

instances within 4 times the CPU time taken by SA; (c) only 15 instances within 10 times

the same CPU time taken by SA. Cplex could not find an optimal solution in the remaining

39 instances even after 10 times the CPU time taken by SA; (ii) Of these 39 instances, Cplex

produced worse or at best as good solution as SA (indicated by a non-negative % gap in

Table 5) for (a) 22 instances within the same CPU time as SA; (b) 15 instances within 2

times the CPU time taken by SA; (c) 11 instances within 4 times the CPU time taken by

SA; (d) 10 instances within 6 times the CPU time taken by SA; (e) 7 instances within 8

times the CPU time taken by SA; (f) 7 instances within 10 times the CPU time taken by

SA.

The very large problem instances are adapted from the Simple Assembly Line Balancing

Problem (SALBP) instances for different number of tasks (89, 94, 111 and 148) available at

www.assembly-line-balancing.de – a general platform for research on assembly line design

and scheduling. For such instances, the additional data for alternative resource requirements

are generated randomly using the following scheme.

- NEe ∼ U(0, 2) ∀e ∈ {E : e 6= 0}.

- tie0 = (100 − d%)ti00 ∀e ∈ {Ei : e 6= 0} and tie1 = (100 − d%)tie0 ∀e ∈ E, where

d ∼ U(20, 50).

- cw = 100 and ca = 70.

- ce ∼ U(10, 60) ∀e ∈ {E : e 6= 0}.

18

Each instance corresponding to a given number of tasks is solved for 3 different cycle times,

giving a total of 12 different instances. The computational results for these very large

problem instances are presented in Table 6. As obvious from Table 6, Cplex is unable to

find a single feasible solution for 11 of the 12 problem instances even after 10 times the CPU

time taken by SA. In contrast, the proposed SA algorithm produces a good feasible solution

(with around 19% improvement, on average, from the randomly generated initial solution)

in between half an hour to 1.5 hours.

6. Conclusions & Future Research

In this paper, we developed a Simulated Annealing (SA) based algorithm to solve large

instances of the resource dependent U-shaped assembly line balancing (RDULB) problem,

which are otherwise too difficult to solve for the commercial mathematical programming

solvers even for problems of the size of 30 tasks and 9 equipment types. The proposed SA

algorithm is able to solve most of the small-to-moderate size problem instances to optimality

or close to optimality very efficiently. A comparison with Cplex for a variety of larger problem

instances suggests that Cplex is unable to beat the proposed SA even after 10 times the

CPU time taken by SA. For very large problem instances (89 tasks and above), SA produces

a good feasible solution (with 19% improvement, on average, from a randomly generated

initial solution) within half an hour to 1.5 hours, while Cplex fails to produce even a single

feasible solution even after 10 times the CPU time taken by SA.

We have demonstrated in this paper that the proposed SA clearly outperforms traditional

Branch & Bound or Branch & Cut methods used by Cplex for large problem instances of

RDULB. Nonetheless, like all other heuristic algorithms, the proposed SA algorithm also

suffers from the drawback that it does not give any information on the optimality gap of

its solutions unless the problem can be solved optimally by Cplex. Thus, developing a

good lower bound for RDULB is an obvious (but challenging) avenue for future research.

Our effort in this direction has so far given us little success. Use of other metaheuristic

approaches like Genetic Algorithm or Tabu Search is another possible avenue for future

research.

Acknowledgements

We would like to sincerely thank Dr. Yakup Kara from Selcuk University, Turkey for

kindly sharing some of the problem data used in this paper.

19

Table 4: Computational Results for Small-to-Medium Problem Instances
Cplex Solution SA Solution % Optimality

NT FR NA NE CT Kmax Optimal Time SA Solution Time Gap =
Solution (OS) (sec) (SAS) (sec) 100*(OS - SAS)/OS

10 0.25 2 3 30 5 370 1.006 370 1.138 0.0000
5 370 4.33 370 0.904 0.0000
5 370 2.218 370 0.764 0.0000

0.50 2 3 30 5 354 1.61 354 1.731 0.0000
5 410 1.197 410 2.433 0.0000
5 410 0.881 410 0.983 0.0000

0.75 2 3 30 5 413 1.203 413 2.418 0.0000
5 382 1.246 382 3.993 0.0000
5 370 5.451 370 1.716 0.0000

20 0.25 4 6 30 6 754 27.058 756 68.124 0.2653
6 584 65.701 584 21.512 0.0000
6 754 15.488 779 22.37 3.3156

0.50 4 6 30 6 711 20.718 737 75.784 3.6568
6 508 95.803 524 47.502 3.1496
6 586 111.055 598 53.118 2.0478

0.75 4 6 30 6 751 10.955 751 30.388 0.0000
6 533 8.446 533 59.276 0.0000
6 681 2.885 681 64.368 0.0000

30 0.25 6 9 30 9 940 312.484 940 164.268 0.0000
10 - >3hrs 1088 239.304 -
9 789 214.027 863 715.309 9.3790

0.50 6 9 30 9 831 233.592 864 437.257 3.9711
11 1041 1856.24 1062 673.47 2.0173
10 895 1313.98 961 374.75 7.3743

0.75 6 9 30 10 893 2493.67 917 303.89 2.6876
10 988 1969.03 1040 135.21 5.2632
11 - >3hrs 1071 121.918 -

10 0.25 2 3 45 5 270 0.448 270 1.092 0.0000
5 270 0.584 270 0.604 0.0000
5 270 0.809 270 0.619 0.0000

0.50 2 3 45 5 270 1.568 270 0.538 0.0000
5 294 1.933 294 0.498 0.0000
5 310 0.972 310 0.648 0.0000

0.75 2 3 45 5 282 0.471 282 0.605 0.0000
5 282 1.766 282 0.637 0.0000
5 270 0.325 270 0.64 0.0000

20 0.25 4 6 45 5 540 76.83 540 4.094 0.0000
5 430 25.627 470 5.002 9.3023
5 540 48.018 556 5.673 2.9630

0.50 4 6 45 5 495 104.692 499 6.698 0.8081
5 370 58.112 370 6.113 0.0000
5 399 13.526 399 7.646 0.0000

0.75 4 6 45 5 481 1.272 481 8.253 0.0000
5 370 41.313 370 6.411 0.0000
5 470 21.721 470 13.416 0.0000

30 0.25 6 9 45 6 640 617.464 640 99.317 0.0000
7 730 94.442 776 133.216 6.3014
6 570 171.569 570 142.119 0.0000

0.50 6 9 45 6 633 621.586 633 120.468 0.0000
7 721 75.566 740 128.518 2.6352
6 603 294.122 615 127.799 1.9900

0.75 6 9 45 6 570 66.128 570 95.416 0.0000
6 740 301.532 740 84.246 0.0000
6 740 322.842 740 84.623 0.0000

10 0.25 2 3 60 2 270 0.128 270 1.716 0.0000
2 270 0.191 270 0.592 0.0000
2 235 0.343 235 2.043 0.0000

0.50 2 3 60 2 238 0.417 238 2.09 0.0000
2 270 0.285 270 0.67 0.0000
2 310 0.403 310 0.624 0.0000

0.75 2 3 60 2 282 0.355 282 0.686 0.0000
2 270 0.448 270 0.655 0.0000
2 270 0.359 270 0.717 0.0000

20 0.25 4 6 60 4 440 7.049 440 16.848 0.0000
4 370 1.921 370 14.398 0.0000
4 440 1.435 440 16.083 0.0000

0.50 4 6 60 4 395 9.158 399 17.16 1.0127
4 295 7.138 296 31.371 0.3390
4 311 0.778 311 173.759 0.0000

0.75 4 6 60 4 381 0.884 381 15.147 0.0000
4 312 1.612 312 97.141 0.0000
4 370 6.007 370 41.184 0.0000

30 0.25 6 9 60 5 540 81.244 540 27.939 0.0000
5 559 9.126 606 293.104 8.4079
5 470 2.636 470 39.592 0.0000

0.50 6 9 60 5 470 1.622 508 31.059 8.0851
5 588 14.519 592 51.448 0.6803
5 470 2.197 503 47.408 7.0213

0.75 6 9 60 5 470 1.06 470 20.748 0.0000
5 534 19.671 570 41.558 6.7416
5 540 28.314 587 258.565 8.7037

- indicates Cplex is unable to find the optimal solution within a 3 hours limit.

20

T
ab

le
5:

C
o
m

p
u

ta
ti

o
n

a
l

R
es

u
lt

s
fo

r
L

a
rg

e
P

ro
b

le
m

In
st

a
n

ce
s

S
A

S
o
lu

t
io

n
C
p
le

x
S
o
lu

t
io

n
(
C
S
)

%
G

a
p

=
1
0
0
*
(
C
S

-
F
S
A

S
)
/
F
S
A

S
F
in

a
l
S
A

T
im

e
,

A
t

A
t

A
t

A
t

A
t

A
t

N
T

F
R

N
A

N
E

C
T

K
m

a
x

S
o
lu

t
io

n
T

T
2
T

4
T

6
T

8
T

1
0
T

(
F
S
A

S
)

(
s
e
c
)

(
s
e
c
)

(
s
e
c
)

(
s
e
c
)

(
s
e
c
)

(
s
e
c
)

(
s
e
c
)

S
A

S
o
lu

t
io

n
C
p
le

x
S
o
lu

t
io

n
(
C
S
)

4
0

0
.2
5

8
1
2

3
0

1
3

1
3
1
0

1
0
0
3
.5
4

5
.3
4

0
.0
0

0
.0
0

0
.0
0

0
.0
0
*

(6
9
6
0
.3
1
)

1
2

1
1
8
3

5
6
4
.7
7

-5
.7
5

-7
.2
7

-7
.2
7

-7
.2
7

-7
.2
7

-7
.2
7

1
4

1
4
6
1

8
0
2
.8
4

3
.0
1

-1
.7
8

-1
.7
8

-1
.7
8

-2
.2
6

-2
.2
6

0
.5
0

8
1
2

3
0

1
4

1
3
1
0

5
1
8
.2
5

2
.1
4

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

1
2

1
1
6
0

5
4
8
.3
8

-5
.3
4

-5
.3
4

-5
.3
4

-5
.3
4

-5
.3
4

-5
.3
4

1
3

1
2
5
5

5
5
6
.7
9

0
.0
0

-1
.2
0

-1
.2
0

-1
.2
0

-1
.2
0

-1
.2
0

0
.7
5

8
1
2

3
0

1
4

1
3
6
2

5
7
7
.7
2

-1
.4
0

-2
.7
9

-2
.7
9

-2
.7
9

-2
.7
9

-2
.7
9

1
2

1
2
1
0

5
1
7
.1
6

0
.0
0

0
.0
0

-0
.1
7

-0
.1
7

-0
.1
7

-0
.1
7

1
5

1
4
2
3

4
1
1
.1
3

0
.9
8

0
.9
8

0
.0
0

-0
.3
5

-1
.4
8

-1
.5
5

5
0

0
.2
5

1
0

1
5

3
0

1
5

1
3
3
2

1
5
2
4
.8
3

3
.4
5

3
.4
5

0
.0
8

0
.0
8

0
.0
8

0
.0
8

1
8

1
7
6
7

4
2
7
9
.4
7

0
.7
4

-3
.2
3

-3
.2
3

-3
.2
3

-3
.2
3

-3
.2
3

1
7

1
6
5
6

1
9
7
0
.0
0

1
.9
9

-0
.6
6

-3
.4
4

-3
.4
4

-3
.4
4

-3
.4
4

0
.5
0

1
0

1
5

3
0

1
8

1
8
7
0

1
7
3
0
.4
3

2
.2
5

0
.5
3

0
.5
3

0
.5
3

-0
.3
7

-0
.3
7

1
8

1
8
1
2

1
5
7
7
.9
3

4
.1
4

2
.4
8

-3
.5
3

-3
.5
3

-3
.5
3

-3
.5
3

1
7

1
6
7
1

1
1
5
4
.6
3

0
.7
2

-3
.6
5

-3
.6
5

-3
.6
5

-3
.6
5

-3
.6
5

0
.7
5

1
0

1
5

3
0

1
6

1
5
8
0

1
1
8
4
.4
3

5
.1
3

0
.7
0

0
.7
0

0
.7
0

0
.7
0

0
.7
0

1
7

1
6
3
2

1
3
4
4
.4
4

0
.0
0

-0
.6
7

-0
.6
7

-0
.6
7

-0
.6
7

-0
.6
7

1
7

1
6
8
0

1
3
4
8
.1
5

4
.1
7

-4
.1
7

-4
.1
7

-4
.1
7

-4
.1
7

-4
.1
7

4
0

0
.2
5

8
1
2

4
5

8
9
2
8

3
8
1
.4
7

-1
.9
4

-1
.9
4

-1
.9
4

-1
.9
4

-1
.9
4

-1
.9
4

8
7
7
0

2
9
3
.2
3

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

8
1
0
1
0

4
0
3
.6
9

-4
.4
6

-6
.9
3

-6
.9
3

-6
.9
3

-6
.9
3

-6
.9
3
*

(3
7
3
5
.0
1
)

0
.5
0

8
1
2

4
5

8
9
4
0

2
5
5
.3
1

-9
.1
5

-9
.1
5

-9
.1
5

-9
.1
5

-9
.1
5

-9
.1
5

8
7
7
0

2
3
7
.8
6

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

8
9
1
7

2
5
0
.8
2

-6
.7
6

-6
.7
6

-6
.7
6

-6
.7
6

-6
.8
7

-6
.8
7
*

(2
1
6
8
.7
3
)

0
.7
5

8
1
2

4
5

8
9
4
0

3
4
1
.1
6

-5
.7
4

-5
.7
4

-5
.7
4

-5
.7
4

-5
.7
4

-5
.7
4

8
8
4
0

2
3
5
.5
3

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

8
9
5
3

3
9
2
.2
4

0
.0
0

-1
.3
6

-1
.3
6

-1
.3
6

-1
.3
6

-1
.3
6
*

(3
7
6
0
.3
5
)

5
0

0
.2
5

1
0

1
5

4
5

1
0

1
0
1
0

7
7
7
.3
8

-5
.4
5

-5
.4
5

-7
.6
2

-7
.6
2

-7
.6
2

-7
.6
2
*

(6
6
7
0
.3
9
)

1
0

1
2
1
0

9
3
8
.7
6

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

1
0

1
1
4
0

8
2
4
.4
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

-1
.8
4

-4
.8
2

0
.5
0

1
0

1
5

4
5

1
0

1
2
6
3

7
7
0
.5
7

1
.3
5

1
.3
5

-4
.2
0

-4
.2
0

-4
.2
0

-4
.2
0

1
0

1
2
1
0

8
1
0
.3
9

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

0
.0
0

1
0

1
1
4
0

8
3
3
.6
9

-2
.6
3

-2
.6
3

-2
.6
3

-2
.6
3

-2
.6
3

-2
.6
3

0
.7
5

1
0

1
5

4
5

1
0

1
1
1
0

6
5
8
.7
7

-7
.0
3

-8
.0
2

-8
.0
2
*

(2
4
6
3
.6
1
)

1
0

1
2
1
0

7
0
2
.4
5

-6
.4
5

-7
.3
6

-7
.3
6

-7
.3
6

-7
.3
6

-7
.3
6

1
0

1
2
1
0

7
2
3
.3
9

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

-5
.7
9

4
0

0
.2
5

8
1
2

6
0

6
7
4
0

4
3
5
.8
8

-4
.8
6
*

(1
8
3
.4
5
6
)

5
5
8
8

3
3
4
.5
3

-3
.0
6
*

(1
6
.3
4
7
)

6
7
4
0

3
5
6
.2
4

0
.0
0
*

(2
1
.3
0
1
)

0
.5
0

8
1
2

6
0

6
7
4
0

4
8
9
.9
5

-7
.8
4
*

(7
0
8
.2
7
3
)

5
5
7
0

3
2
7
.3
9

0
.0
0
*

(1
6
.6
9
2
)

6
7
4
0

2
4
7
.6
2

-7
.5
7
*

(7
8
.5
1
1
)

0
.7
5

8
1
2

6
0

6
7
4
0

4
0
3
.5
8

-0
.1
4
*

(1
0
0
.5
2
)

6
6
4
0

3
8
5
.9
0

-5
.9
4
*

(5
4
.6
5
2
)

6
7
4
0

5
0
6
.4
7

0
.0
0
*

(7
4
.6
6
1
)

5
0

0
.2
5

1
0

1
5

6
0

7
8
1
0

8
8
3
.7
5

-8
.6
4

-8
.6
4

-8
.6
4

-8
.6
4

-8
.6
4

-8
.6
4

8
9
4
0

1
1
8
0
.8
3

0
.0
0

0
.0
0

-0
.1
1

-1
.2
8

-2
.1
3

-2
.1
3

8
8
6
3

1
0
5
0
.2
4

-2
.6
7

-2
.6
7

-2
.6
7

-2
.6
7

-2
.6
7

-2
.6
7

0
.5
0

1
0

1
5

6
0

8
1
0
1
0

1
0
2
9
.1
0

-6
.9
3

-6
.9
3

-6
.9
3

-6
.9
3

-6
.9
3

-6
.9
3

8
1
0
5
2

8
1
0
.1
5

-1
7
.2
1

-1
7
.2
1

-1
7
.2
1

-1
7
.2
1

-1
7
.2
1

-1
7
.2
1

8
9
4
0

7
9
3
.7
7

-1
0
.6
4

-1
0
.6
4

-1
0
.6
4

-1
0
.6
4

-1
0
.6
4

-1
0
.6
4

0
.7
5

1
0

1
5

6
0

7
8
4
0

9
0
9
.0
7

-2
.2
6

-3
.5
7

-3
.5
7

-3
.5
7

-3
.5
7

-3
.5
7

9
8
5
1

8
1
8
.4
0

-1
.2
9

-1
.2
9

-1
.2
9

-1
.2
9

-1
.2
9

-1
.2
9

8
8
4
0

2
7
3
0
.3
3

0
.0
0

*
(2

3
3
.4
2
6
)

∗
in

d
ic

at
es

C
p

le
x

so
lu

ti
on

is
op

ti
m

al
;

n
u

m
b

er
w

it
h

in
p

ar
en

th
es

is
in

d
ic

a
te

s
th

e
co

rr
es

p
o
n

d
in

g
C

P
U

ti
m

e.

21

T
ab

le
6:

C
om

p
u

ta
ti

o
n

a
l

R
es

u
lt

s
fo

r
V

er
y

L
a
rg

e
P

ro
b

le
m

In
st

a
n

ce
s

S
A

S
o
lu

ti
o
n

C
p
le
x

S
o
lu

ti
o
n

(C
S
)

%
G
a
p

=
1
0
0
*
(C

S
-
F
S
A
S
)/

F
S
A
S

In
st
a
n
c
e

N
T

N
A

N
E

C
T

K
m

a
x

In
it
ia
l
S
A

F
in

a
l
S
A

T
im

e
,

%
im

p
r
o
v
e
m

e
n
t

A
t

A
t

A
t

A
t

A
t

A
t

S
o
lu

ti
o
n

S
o
lu

ti
o
n

T
=

1
0
0
*
(I
S
A
S

-
T

2
T

4
T

6
T

8
T

1
0
T

(I
S
A
S
)

(F
S
A
S
)

(s
e
c
)

F
S
A
S
)/

IS
A
S

(s
e
c
)

(s
e
c
)

(s
e
c
)

(s
e
c
)

(s
e
c
)

(s
e
c
)

L
u
tz
3

8
9

1
0

1
5

7
5

2
5

3
2
0
0

2
5
4
2

3
9
7
7
.9
5

2
0
.5
6

-
-

-
-

-
-

1
0
0

1
9

2
2
9
0

1
9
2
4

3
4
0
5
.4
2

1
5
.9
8

-
-

-
-

-
-

1
5
0

1
5

1
7
6
0

1
5
1
8

2
7
2
2
.0
7

1
3
.7
5

1
7
.9
8

1
7
.9
8

2
.1
1

-4
.4
1

-6
.1
9

-2
0
.2
9

M
u
k
h
er
je
e

9
4

1
0

1
5

2
0
0

2
5

2
8
9
0

2
3
8
4

1
9
4
0
.9
8

1
7
.5
1

-
-

-
-

-
-

2
5
0

2
0

2
1
5
0

1
9
6
6

1
5
8
0

8
.5
6

-
-

-
-

-
-

3
0
0

1
6

1
9
9
0

1
6
7
0

1
3
8
6
.2
6

1
6
.0
8

-
-

-
-

-
-

A
R
C
1
1
1

1
1
1

1
2

1
8

7
0
0
0

3
0

3
1
6
0

2
4
8
4

2
7
0
0

2
1
.3
9

-
-

-
-

-
-

8
0
0
0

2
3

2
9
3
0

2
2
2
3

2
5
9
9
.4
7

2
4
.1
3

-
-

-
-

-
-

8
5
0
0

2
3

2
9
0
0

2
0
7
8

2
2
4
3
.4
8

2
8
.3
4

-
-

-
-

-
-

B
a
rt
h
o
l2

1
4
8

1
5

1
8

1
5
0

3
2

3
9
8
0

3
3
2
6

4
9
1
2
.2
7

1
6
.4
3

-
-

-
-

-
-

2
0
0

2
5

3
3
1
0

2
5
5
2

3
7
0
6
.2
1

2
2
.9
0

-
-

-
-

-
-

2
5
0

1
8

2
7
1
0

2
0
6
5

3
6
5
4

2
3
.8
0

-
-

-
-

-
-

-
in

d
ic

at
es

C
p

le
x

is
u

n
ab

le
to

fi
n

d
an

y
fe

as
ib

le
so

lu
ti

on

22

References

[1] Aase G R, Olson J R and Schniederjans M J (2004). U-shaped assembly line layouts
and their impact on labor productivity: An experimental study. European Journal of
Operational Research 156(3): 698–711.

[2] Becker C and Scholl A (2006). A survey on problems and methods in generalized assembly
line balancing. European Journal of Operational Research 168(3): 694–715.

[3] Bukchin J and Tzur M (2000). Design of flexible assembly line to minimize equipment
cost. IIE Transactions 32(7): 585–598.

[4] Chams M, Hertz A and Werra D de (1987). Some experiments with simulated annealing
for colouring graphs. European Journal of Operational Research 32(2): 260–266.

[5] Cheng C, Miltenburg J and Motwani J (2000). The effect of straight- and U-shaped lines
on quality. IEEE Transactions on Engineering Management 47(3): 321–334.

[6] Connolly D T (1990). An improved annealing scheme for the QAP. European Journal of
Operational Research 46(1): 93–100.

[7] Corominas A, Pastor R and Plans J (2008). Balancing assembly line with skilled and
unskilled workers. Omega 36(6): 1126–1132.

[8] Dowsland K A (1993). Some experiments with simulated annealing techniques for pack-
ing problems. European Journal of Operational Research 68(3): 389–399.

[9] Erel E, Sabuncuoglu I and Aksu B A (2001). Balancing of U-type assembly systems using
simulated annealing. International Journal of Production Research 39(13): 3003–3015.

[10] Faaland B H, Klastorin T D, Schmitt T G and Shtub A (1992). Assembly Line Balancing
with Resource Dependent Task Times. Decision Sciences 23(2): 343–364.

[11] Gokcen H and Agpak K (2006). A goal programming approach to simple U-line bal-
ancing problem. European Journal of Operational Research 171(2): 577-585.

[12] Gokcen H, Agpak K, Gencer C and Kizilkaya E (2005). A shortest route formulation of
simple U-type assembly line balancing problem. Applied Mathematical Modelling 29(4):
373–380.

[13] Jayaswal S and Adil G K (2004). Efficient algorithm for cell formation with sequence
data, machine replications and alternative process routings. International Journal of
Production Research 42(12): 2419–2433.

[14] Kara Y, Ozguven C, Yalcin N and Atasaguna Y (2011). Balancing straight and U-
shaped assembly lines with resource dependent task times. International Journal of Pro-
duction Research 49(21): 6387–6405.

[15] Kirkpatrick S, Gelatt C D and Vecchi M P (1983). Optimization by simulated annealing.
Science 220(4598): 671–680.

[16] Miltenburg G J and Wijngaard J (1994). The U-line line balancing problem. Manage-
ment Science 40(10): 1378–1388.

23

[17] Miltenburg J and Sparling D H (1994). Optimal solution algorithms for the U-line
balancing problem. Working Paper, McMaster University, Hamilton, Canada.

[18] Miltenburg J (2000). The effect of breakdowns on U-shaped production lines. Interna-
tional Journal of Production Research 38(2): 353–364.

[19] Miltenburg J (2001). U-shaped production lines: A review of theory and practice.
International Journal of Production Economics 70(3): 201–214.

[20] Monden Y (1998). Toyota production system - An integrated approach to just-in-time.
Kluwer: Dordrecht.

[21] Moon I, Logendran R and Lee J (2009). Integrated assembly line balancing with resource
restrictions. International Journal of Production Research 47(19): 5525–5541.

[22] Nicosia G, Pacciarelli D and Pacifici A (2002). Optimally balancing assembly lines with
different workstations. Discrete Applied Mathematics 118(1-2): 99–113

[23] Pinto P A, Dannenbring D G and Khumawala B M (1983). Assembly line balancing
with processing alternatives: An application. Management Science 29(7): 817–830.

[24] Scholl A (1999). Balancing and sequencing assembly lines. Physica: Heidelberg.

[25] Scholl A and Klein R (1999). ULINO: Optimally balancing U-shaped JIT assembly
lines. International Journal of Production Research 37(4): 721-736.

[26] Toklu B and Ozcan U (2008). A fuzzy goal programming model for the simple U-line
balancing problem with multiple objectives. Engineering Optimization 40(3): 191–204.

[27] Urban T L (1998). Note. Optimal balancing of U-shaped assembly lines. Management
Science 44(5): 738–741.

[28] Van Laarhoven P J M, Aarts E H L and Lenstra J K (1992). Job shop scheduling by
simulated annealing. Operations Research 40(1): 113–125.

24

