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Abstract

In this paper we study a setting where players of a sequential-move game may
have heterogeneous skill. Skill is captured by payoff responsiveness in quantal response
models. Mckelvey and Palfrey (1998) provide the Quantal Response Equilibrium for
extensive-form games (AQRE) where all players are assumed to have homogeneous
skill. In this paper we extend the AQRE by modeling heterogeneous skill and uncer-
tainty and belief-updating (BU) about opponents’ skills. First, we provide an equi-
librium model incorporating skill-heterogeneity and uncertainty but not BU—this is
called Heterogeneous AQRE (or HAQRE). Next, we incorporate naive disequilibrium
belief-updating (BU) to define the HAQRE-BU. We show that these concepts exist,
and in the context of finite perfect information games, they are unique, and they yield
simple data applicability without fixed-point calculations. We use experimental data
from a sequential-move game where players with different experience-levels interacted
(Rampal (2020)) to show that modeling heterogeneity and belief updating about skills
can each yield better data-fit in such settings.

Keywords: Quantal response; Sequential-move games; Heterogeneous skill; Belief updating.
JEL: D91, C72, D83

1 Introduction

The Quantal Response Equilibrium (QRE) by McKelvey and Palfrey (1995) has had wide
applicability in organizing behavioral data from simultaneous-move games (see Goeree,
Holt, and Palfrey (2016) for a survey). QRE models a scenario where players noisily best
respond. Players have a positive chance of playing every available strategy, not just the best
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responses, and they choose each strategy with a probability proportion that is increasing in
the expected payoff from that strategy, ceteris paribus. Given that QRE is an equilibrium
approach, these expected payoffs account for the fact that the opponents are also playing
noisy best responses. The skill of a player is captured by the player’s lack-of-noise in best
responding, or the player’s payoff-responsiveness. The agent normal-form version of the
Quantal Response Equilibrium (AQRE for short) by Mckelvey and Palfrey (1998) extended
QRE to extensive-form games. The AQRE has also been applied to several sequential games
(e.g., Ivanov, Levin, and Peck (2009); Tingley and Wang (2010)).

Both QRE and AQRE assume a homogeneous skill level across players. But, skills can
be heterogeneous across players for a variety of reasons, for example, experience (Rampal
(2020)), or cognitive differences in general (Camerer, Ho, and Chong (2004)). Rogers,
Palfrey, and Camerer (2009) provide the Heterogeneous QRE (or HQRE) which models
heterogeneity and uncertainty regarding skill among the players within the QRE setting
of simultaneous-move games. The HQRE has provided insights regarding several scenarios
like auctions (Camerer, Nunnari, and Palfrey (2016)) and investment bubbles (Moinas and
Pouget (2013)). Studies analyzing capacity allocation games (Chen, Su, and Zhao (2012);
Cui and Zhang (2018)) have also argued for the applicability of HQRE.

We attempt to make an analogous contribution for sequential-move games as Rogers,
Palfrey, and Camerer (2009) did for simultaneous-move games.1 In this paper, we restrict
attention to finite perfect-information games and finitely repeated games. We provide a
model where players of such sequential-move games can have heterogeneity in skill, and they
are uncertain about each opponent’s skill level. We call this the HAQRE. As we are dealing
with sequential-move games, we also model belief updating (BU) about the opponent’s
skill within a single play of the game, a feature absent from simultaneous-move games.
Finally, among these theoretical models, we study those pertaining to perfect-information
games using experimental data from Rampal (2020), which tested such games among players
with heterogeneous experience-levels. We find that both features, heterogeneity and belief
updating yield significant improvements in data-fit relative to their respective baselines.

The importance or need for incorporating heterogeneity in the AQRE model has been
directly mentioned by several studies in the literature. Rogers, Palfrey, and Camerer (2009)
state: “Another important area for research is extension of these ideas (heterogeneity) to
extensive form games” (page 1462). Ivanov, Levin, and Peck (2009) study an extensive-form
investment game and find that their classification of subjects as following certain behavioral
rules-of-thumb fits the data better than the AQRE. But, they mention that “a heterogeneous
version of (A)QRE might provide a better fit in our experiment than the symmetric QRE”

1Rogers et al. (2009) also provide a theoretical framework to understand the links between the Level-k
and quantal response models. In this paper we do not make an analogous contribution on that dimension
for sequential-move games.
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(footnote 37, page 1499).
Despite the need for incorporating heterogeneity outlined by the literature, in the AQRE

setting “extending hierarchical or recursive approaches to extensive form games is less
straightforward” (Rogers, Palfrey, and Camerer (2009), page 1462). One key challenge is
that one cannot use the agent-normal-form approach as utilized to extend QRE to extensive-
form games. The agent-normal-form approach is to consider each player at each move a
different player, but when each player can be one of several skill-types, the agent-normal-
form seems unsuitable. This is because if a player Ann can be one of two types (high or
low skill), then for any skill realization, she should be the same skill-type at all her moves.
By contrast, the agent-normal-form approach would consider Ann at stage-1 a different
player from Ann at stage-3. Furthermore, to incorporate belief updating meaningfully, each
opponent of Ann should account for the fact that the same player, Ann, is moving at all
her moves.

Our modeling approach can be illustrated by how we treat perfect information games.
Without belief updating, HAQRE is simple. We start with a finite perfect-information game
and assume that the “true game” is a distorted version of the perfect-information game:
in “truth” each player can have different levels of skill. Each such skill-type is captured
by a particular λ payoff-responsiveness value in the logistic model. This converts the game
into a game of incomplete information with observable actions. The distribution over the
skill-types of each player is common knowledge, but the realized skill-type of each player
is private information. Each type of the last mover chooses his last-stage mixed strategy
according to his skill-type. The penultimate mover takes the last stage calculation into
account and assumes that the last-mover’s skill distribution is as given by the commonly
known prior. This backward induction procedure can be applied across all stages of the
game, where at each stage, each player-type moving there believes that the opponent’s skill-
type distribution follows the prior. It is straightforward to show that the HAQRE exists
and it is unique.

We incorporate a naive disequilibrium version of belief-updating (BU) to define the
HAQRE-BU. Naivete is incorporated through the assumption that each player-type assumes
she is the only one belief updating. In particular, each player-type assumes that others are
playing the unique non-BU HAQRE. In truth, every player-type uses the non-BU HAQRE
to update beliefs and plays sequentially rational best responses to the non-BU HAQRE
strategies of others. Thus, each player-type can be incorrect in her updated beliefs about
each opponent’s type distribution as well as her beliefs about their strategies. The benefit of
this naivete and disequilibrium assumption is that we do not have to worry about boundedly
rational player-types having to account for reputation effects (e.g., as in Kreps et al. (1982)),
that may require incongruous sophistication.

3



For perfect-information games, both HAQRE versions (BU and non-BU) can be solved
by simple backward-induction-like recursion without requiring complicated fixed-point cal-
culations of a set of quantal response functions, as needed in QRE, AQRE, and HQRE.
Further motivation for the naive-belief-updating assumption comes from the indirect em-
pirical evidence from Kubler and Weizsacker (2004) (KW for short). KW study an infor-
mation cascades game (a tweaked version of the Anderson and Holt (1997) game); they
find that players “behave as if disregarding the fact that their predecessors often use the
information that is conveyed by third subjects’ decisions” (KW, page 437). Analogously,
in HAQRE-BU, we assume each player updates beliefs about opponents’ types, but doesn’t
expect others to do the same.

It is simple to incorporate subjective prior beliefs like truncated downward-looking be-
liefs in HAQRE and HAQRE-BU. Thus, we define the HAQRE, HAQRE-BU, and their
subjective-prior-belief versions. It is straightforward to show that each of these concepts
exists, and is unique, both for the logistic versions of QRE as well as for general error
distributions.

We extend the HAQRE (with and without BU models) to finitely repeated simultaneous-
move games, an important class of extensive-form games. While existence holds, uniqueness
doesn’t hold here, and the computation of each HAQRE can be complicated since we have
to deal with fixed-point calculations. But given the importance of finitely repeated games,
our model provides an alternative behavioral theory that can be tested in future research.

We evaluate the HAQRE and related models on experimental data from tests of perfect-
information sequential games. In the games we analyze, players with different degrees of
experience interacted but players were uncertain about the experience-level of the opponent
(Rampal (2020)). The setting provides both an illustration and motivation for our models
since heterogeneity in experience-level, a common real-world phenomenon, may well cause
differences in skill. We find that accounting for heterogeneity, by comparing HAQRE with
AQRE, yields a significant improvement in data-fit. Additionally accounting for belief
updating, by comparing HAQRE-BU with HAQRE, also yields a significant improvement
in data-fit. Finally, we also find that allowing for subjective prior beliefs can further improve
data fit.

2 Related Literature

The model of Noisy Introspection adapted to extensive-form games in Kubler and Weiz-
sacker (2004), which builds on Anderson and Holt (1997), nests the AQRE model (Mckelvey
and Palfrey (1998)) as a special case. In the KW model, each player’s responsiveness to
her own payoff (λ1) is different from her belief about opponents’ payoff responsiveness (λ2),
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and her belief about each opponent’s beliefs about other opponents’ payoff responsiveness
(λ3), and so on.2 KW find evidence of this heterogeneity in payoff-responsiveness across
higher order beliefs. The key difference in the KW model and the present paper is that
KW model uncertainty and belief updating about the underlying payoff-relevant state while
entertaining no uncertainty about opponents’ payoff responsiveness. In contrast, we study
uncertainty and belief updating regarding opponents’ payoff responsiveness, with the payoff
structure known. Other applications of the noisy introspection model have been in simul-
taneous move games (e.g., Goeree, Louis, and Zhang (2018) study the 11-20 game) unlike
the sequential-move games studied here.

Our model of HAQRE for finitely repeated games is related to other studies on the
dynamics of beliefs in the bounded rationality literature that deal with learning across
repetitions of simultaneous-move games (Nyarko and Schotter (2002); Mengel (2014)) or
sequential-move games (Ho and Su (2013); Chen, Su, and Zhao (2012); Breitmoser, Tan,
and Zizzo (2014)). But these studies often model no heterogeneity (e.g., Breitmoser, Tan,
and Zizzo (2014)). Furthermore, we model belief updating about the opponent’s skill level,
as captured by their payoff responsiveness, which is not studied by these papers. Finally,
in our HAQRE model for perfect information games, we allow for updating of beliefs about
the opponent’s type within the play of a sequential-move game, on the basis of preceding
moves. By contrast, these papers (and our finitely repeated games model) study belief
changes across repetitions of the same game.

Note that we are modeling the beliefs regarding opponents’ payoff responsiveness not
the payoff themselves, which are certain and common knowledge. Belief updating about
the opponent’s payoff structure (not payoff responsiveness) is a standard feature of modern
game theory of extensive-form games with uncertainty, and it has been studied empirically
(e.g., Carrillo and Palfrey (2009)).

In other related work, Friedman (2020) endogenizes the choice of λ or skill of each player
in a two-stage model. But unlike our paper, Friedman (2020) does not model uncertainty
about payoff responsiveness or updating about the same across the different stages. Fried-
man (2022) complements the QRE approach, of explaining choice data using noisy actions,
by introducing the noisy belief equilibrium (NBE) which allows for noisy beliefs about the
opponent’s actions but no noise in best response. These noisy beliefs are restricted to satisfy
certain axioms. In our HAQRE-BU model, due to the naivete assumption, beliefs about
the opponent’s strategy can be incorrect. Thus, our motivation for noisy beliefs is quite
different, with ours being a disequilibrium approach, which means beliefs can be biased, a
feature ruled out by NBE.

2also see Goeree and Holt (2004) for an early Noisy Introspection model, and Goeree et al. (2016) for a
discussion of this literature.

5



3 Model

Consider an arbitrary finite sequential-move game with perfect information and perfect
recall Γ, which is known henceforth as the base game. The base game Γ is defined as a
collection of the following components.3 A finite player-set, N . A finite set of finite histories,
H. A history h ∈ H is a finite sequence of (pure) actions, e.g., h = (as)s=1,...,S . The sth

action, as, is said to be taken at the sth stage of the game. Subsequences/subhistories are
defined in the usual fashion. Z denotes the set of terminal histories, with the elements
of Z denoted as z. Each sequence/history in (H\Z) is a singleton information set. A set
of possible pure actions in the game, A, and an action correspondence A(.) which maps
h ∈ (H\Z) to an action set at h, A(h) ≡ {a ∈ A | (h, a) ∈ H}. A player function P (.)
mapping non-terminal histories to the player moving there. Finally, a Bernoulli utility
function ui for each player i ∈ N ; ui maps terminal histories to real numbers. Thus, Γ is
defined as {N, H, P, A, {ui}i∈N }.

The Agent Quantal Response Equilibrium (AQRE) model of Mckelvey and Palfrey
(1998) extends the Quantal Response Equilibrium of McKelvey and Palfrey (1995) to ex-
tensive form games. The AQRE model introduces a payoff disturbance error term to the
expected payoff associated with each action of each player at each possible move of that
player. Let H i be all the information sets where player i moves, let the kth information set
in H i be denoted hi

k. Let ui(a, b | hi
k) be the expected payoff of player i from playing action

a at hi
k given that the behavioral strategies for all players moving at subsequent information

sets is as per the behavioral strategy profile b. Then, player i perceives that her payoff after
action a is: ûi(a, b | hi

k) = ui(a, b | hi
k) + ϵika, where ϵika is the value of the error term after

action a from history hi
k.

In an AQRE b, each player i, at each of her moves hi
k takes the action that she perceives

will yield the highest possible expected payoff among the actions available at that move,
given that all players are playing according to the behavioral strategy profile b. Thus, in
an AQRE b, the probability that i will play a at hi

k is given by

b(a|hi
k) = Pr(a yields max expected payoff to i among A(hi

k)|b, hi
k) =

= Pr[(ϵika)a∈A(hi
k

)|ui(a, b | hi
k) + ϵika ≥ ui(a′, b | hi

k) + ϵika′ ∀a′ ∈ A(hi
k)]. (1)

In the common logit formulation of AQRE, ϵika is assumed i.i.d., for all i, k, and a, according
to type I extreme value distribution with c.d.f. F (ϵika) = e−e−λϵika . Thus, the probability

3See Osborne and Rubinstein (1994) for a more complete definition of certain terms.
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b(a|h) assigned to action a at any history h ∈ H i in a logit-AQRE is:

b(a|h) = Pr(a yields max expected payoff to i among A(h)|b, h) =

= exp(λūi(a | b, h))∑
a′∈A(h) exp(λūi(a′ | b, h)) . (2)

Informally, λ captures a player’s payoff responsiveness or skill: for a given λ ≥ 0, each
action receives a probability weight proportional to the expected payoff ūi(a, b | h) from
that action relative to other actions in A(h). As λ increases, each player at each move
puts more probability weight on the response whose expected payoff is the highest. So, the
parameter λ generates a unique logit-AQRE b.

In this paper we model the scenario where there is uncertainty about the skill/payoff-
responsiveness or, more technically, error distributions of other players. This means that
the base game of complete and perfect information is converted into a game of incomplete
information with observable actions ΓI . In ΓI , each player of the base game can be one of
several types where type implies a particular error distribution (henceforth referred to as
“skill”) with which she perceives her expected payoff. Note that ΓI can also be reinterpreted
as a game of imperfect information with uncertainty about Nature’s actions in selecting the
skill-type of each player. In ΓI each player knows her own type, but each player is uncertain
about her opponent’s type. Since the construction of an incomplete-information game is
standard, we provide a definition that skips over several formalities.

First consider the logistic case. The incomplete information game ΓI can be defined
from the base game Γ as follows. For each player i ∈ N of Γ, there is a set of player-types
Λi = {λ1

i , ..., λ
m(i)
i }, where 1,.., m(i) are natural numbers, m(i) denotes the total number

of types of player i, and for natural numbers n1 and n2, n1 < n2 ≤ m(i) implies λn1
i < λn2

i .
The inequality λn1

i < λn2
i can be interpreted as: type λn1

i is less skillful than λn2
i . The

common knowledge prior probability distribution over the types of each player i is given by
πi for i ∈ N , and for i ̸= j, πi is independent of πj for all players i, j ∈ N .

3.1 Example 1: Logistic HAQRE

Consider an example of a two-player base game Γ illustrated in Figure 1. Suppose instead
of a common λ for both players, as in the logit-AQRE, we have two possible levels of λ

for either player. For player 1, λ1 ∈ Λ1 ={λL
1 , λH

1 }, and for player 2, λ2 ∈ Λ2={λl
2, λh

2}.
Further, suppose the probability distributions on Λ1 and Λ2, given by π1 and π2, are common
knowledge. We now describe the logit version of heterogeneous AQRE, or HAQRE for short,
with two possible λ-values for each player; this generates the imperfect information game
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Figure 1: A base game example

ΓI (not shown) corresponding to the base game Γ in Figure 1.

Step 1: We will construct the HAQRE recursively, backwards from the last stage to the
first stage. Player 2 moves at the fourth (last) stage. So, consider h4, an arbitrary non-
terminal history reaching the fourth stage (with three preceding actions). Recall that there
are two types of player 2: λ2 ∈ {λl

2, λh
2}. The probability that any action a ∈ A(h4) will

be played at h4, is determined by (2) and the appropriate λ2 value. So, if λ2 = λh
2 , then

player-2 plays a ∈ A(h4) with the probability

b(a|h4, λh
2) = exp(λh

2 ū2(a | h4))∑
a′∈A(h4) exp(λh

2 ū2(a′ | h4))
(3)

and if λ2 = λl
2 then

b(a|h4, λl
2) = exp(λl

2ū2(a | h4))∑
a′∈A(h4) exp(λl

2ū2(a′ | h4))
. (4)

Notice that at the last stage, we didn’t need any input about the rest of the strategy
profile to calculate payoffs from any action; thus, ū2(a | h4) is the terminal payoff in Γ from
choosing a at h4. Clearly, this holds true for all actions at “penultimate nodes”, i.e., actions
which yield a terminal history. Thus, in Figure 1, (3) and (4) can be used to calculate the
probabilities with which the λh

2 and λl
2 types of player 2 will play E and F at stage-4.

Step 2: Consider player 1 moving at an arbitrary move h3 at stage-3. In the spirit of
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backward induction, we will assume player 1 knows that player 2 will play according to
b(a|h4, λ2) in stage 4, for λ2 ∈ {λh

2 , λl
2}, as calculated in (3) and (4), for all a in A(h4) and

for all h4 in stage 4. Let b4 denote this strategy profile, constructed in step 1, for either type
of player-2 at stage 4. Note that player 1 doesn’t know the type of player 2, and we assume
player 1 believes that the probabilities with which player 2 is λh

2 or λl
2 are given by the

prior, π2(λh
2) and π2(λl

2), respectively. Thus, for an action a at h3 that doesn’t terminate
the history, player 1 uses the prior π2 and b4 to calculate the expected payoff of a; this
expected payoff can be denoted as ū1(a | h3, b4, π2). Thus, using (2), the probabilities with
which the types λH

1 and λL
1 of player 1 will choose the different actions available at h3 are

given by:

b(a | h3, λ1) = exp(λ1ū1(a | h3, b4, π2))∑
a′∈A(h3) exp(λ1ū1(a′ | h3, b4, π2)) for λ1 ∈ {λH

1 , λL
1 }. (5)

For actions that terminate a history (e.g., action D) the expected payoff is simply determined
by the action and the history, like in step 1.

Step 3: Let the strategy profile constructed in steps 1 and 2 for stages 4 and 3 be denoted
b3. Consider player 2 moving at an arbitrary move h2 at stage-2; her expected payoff from
an action depends on the subsequent strategy profile b3 and her beliefs over player-1’s type
(given by the prior, π1): ū2(a | h2, b3, π1). Notice that player-2 of type λ2 knows her own
type, thus she knows the probabilities with which she will play stage-4 actions, as specified
by the components of b3 pertaining to her own value of λ2. Regarding player-1, player-2
needs to know the components of b3 specifying the strategies of both player-1 types at
stage-3, as well as the prior probability distribution over player-1’s types. Thus, analogous
to (5), for λ2 ∈ {λh

2 , λl
2}, we have:

b(a | h2, λ2) = exp(λ2ū2(a | h2, b3, π1))∑
a′∈A(h2) exp(λ2ū2(a′ | h2, b3, π1) for λ2 ∈ {λh

2 , λl
2}. (6)

Step 4: Consider player 1 moving at h1 at stage-1. The expected payoff of player-1 of
type λ1 from an action a at h1 can be denoted as ū1(a | h1, b2, π2), where b2 denotes the
strategy profile for stages 2-4, calculated in steps 1-3. Note that player 1 calculates the
second-stage strategy component of b2 as if she was in player-2’s mind at player-2’s stage-2
move. Therefore, at stage-1, player 1 calculates b2 exactly as described in step 2 (which
includes accounting for π1). Similar to preceding steps, we have:

b(a | h1, λ1) = exp(λ1ū1(a | h1, b2, π2))∑
a′∈A(h1) exp(λ1ū1(a′ | h1, b2, π2)) for λ1 ∈ {λH

1 , λL
1 }. (7)
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The HAQRE is the strategy profile b constructed in the Steps 1-4 above from the behavioral
strategy for each stage of the game.■

There are two notable issues in Example 1. First, note that we have not modeled
possible belief updating that players can do about the opponent’s λ on the basis of the
opponent’s preceding moves. This is an issue unique and important for sequential-move
games. Furthermore, unlike the AQRE where players at different moves are treated as
essentially different players, in the HAQRE the same player at a different move is recognized
as the same player. Thus, exploring belief updating is both possible and important. We
do this by defining the HAQRE-BU (with belief updating) formulation in the next section.
The second issue is that, as in Rogers, Palfrey, and Camerer (2009) formulation of truncated
heterogeneous QRE, it is possible that some player-types with a certain λ may only allow
for the possibility of opponents with λ lower than a certain threshold, i.e., a truncated
HAQRE. We define and discuss the truncated HAQRE in the next section.

4 Heterogeneous AQRE and belief updating

Consider an arbitrary S-staged finite base game of complete and perfect information Γ, and
the associated incomplete-information game with observable actions: ΓI . In this section, we
define the HAQRE, HAQRE-BU, and the truncated HAQRE for ΓI with the logistic error
distribution and “general” error distributions for finite perfect information base games.

4.1 Logistic Heterogeneous AQRE without belief updating

The logistic version of HAQRE (without belief updating) is a behavioral strategy profile for
ΓI which specifies for each type of each player, the (possibly mixed) action they will take
at each move. The definition is a generalization of the HAQRE construction in Example 1.

Definition 1 (Logistic HAQRE). The Logistic HAQRE of an S-staged ΓI is a behavioral
strategy profile b which is defined by recursive construction as follows.
Step 1. Consider an arbitrary stage-S history hS with (S − 1) preceding actions. The
player moving there is P (hS). The probability that each type λP (hS) of P (hS) chooses an
arbitrary action a ∈ A(hS) is given by

b(a|hS, λP (hS)) =
exp[λP (hS)ūP (hS)(a | hS)]∑

a′∈A(hS) exp[λP (hS)ūP (hS)(a′ | hS)] . (8)

Step s, for s ∈ {2, .., S}. Consider an arbitrary stage-(S − s + 1) history h(S − s + 1);
call it hs for short. The player moving there is P (hs). At step s, we have completed steps
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1 through (s − 1), in which we have calculated b(a|hs′, λP (hs′)) for any non-terminal history
hs′ at stage-s′ with s′ ∈ {S − s + 2, .., S} for all types λP (hs′) of P (hs′) for all a ∈ A(hs′).
Let these behavioral strategies constructed in steps 1 through (s−1) be denoted as bs. Then,
type λP (hs) of P (hs) can calculate the expected payoff of her action a ∈ A(hs) using bs, the
probability distributions over other players’ types, π−P (hs), and her own type that she knows;
let this expected payoff be denoted:

ūP (hs)(a | hs, bs, π−P (hs), λP (hs)).

So, in the Logistic HAQRE, the probability that each type λP (hs) of P (hs) chooses an arbi-
trary action a ∈ A(hs) is given by

b(a|hs, λP (hs)) =
exp[λP (hs)ūP (hs)(a | hs, bs, π−P (hs), λP (hs))]∑

a′∈A(hs) exp[λP (hs)ūP (hs)(a′ | hs, bs, π−P (hs), λP (hs))]
■ (9)

The definition yields certain properties of the Logistic HAQRE.

Proposition 1 (existence and uniqueness). For any finite game of incomplete information
with observable action generated from a base game of complete and perfect information,
there exists a unique logistic HAQRE.

Proof. Consider Definition 1 specifying the recursive construction of the Logistic HAQRE
b for an arbitrary ΓI constructed from an underlying base game Γ. In step 1, for each type
λP (hS) of P (hS) and for any action a ∈ A(hS), b(a|hS, λP (hS)) is well defined and uniquely
determined by (8). Furthermore, in step-s, with s ∈ {2, .., S} we consider an arbitrary
stage-(S − s + 1) history h(S − s + 1), or hs for short, and for each type λP (hs) of P (hs) and
for each action a ∈ A(hs) we define b(a|hs, λP (hs)) using (9). Note that the probability with
which a is played at hs by λP (hs), b(a|hs, λP (hs)), is well defined and uniquely determined
by (9). Thus, repeating step s from step 2 until step S yields a well defined and unique
logistic HAQRE for ΓI . ■

It is straightforward to define the logistic HAQRE for general error distributions (while
still maintaining the i.i.d. error assumption) and to show that such a “general HAQRE”
exists. This point is summarized in Fact 1. We refer the reader to the Appendix to see this
model.

Fact 1: For every ΓI , the general HAQRE exists, and it is unique.
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4.2 Logistic HAQR (dis)Equilibrium with belief updating

In a sequential-move game with incomplete information, as our ΓI , if there is an opportunity
to observe preceding actions, then there is an opportunity to form updated beliefs about
the opponent’s type. In the logistic HAQRE with belief updating (HAQRE-BU) defined in
this subsection, we incorporate this belief updating.

Inspired by the findings of Kubler and Weizsacker (2004) (discussed in the Introduc-
tion) the belief updating we model in the HAQRE-BU is of a naive nature, which yields
a disequilibrium concept. We assume that each player-type updates beliefs after observ-
ing preceding actions, but each player-type assumes she is the only one updating beliefs.
In effect, she does not account for opponents’ types performing the analogous belief up-
dating. Thus, player-types don’t account for the “reputation effects” of their actions (see
Kreps et al. (1982) and the subsequent literature on reputation). Instead, each player-type
assumes that each type of each opponent holds prior beliefs at all of her/his moves.

The rationale for this choice is incorporating simplicity in the reasoning process of each
player-type. In particular, it seems that a full scale belief updating and reputation model
would involve a very high level of cognitive sophistication from player-types, a feature that
seems incompatible with bounded-rational players who perceive their expected payoffs with
mistakes.

Each player-type needs a reference strategy profile (that she thinks opponent-types are
playing) to update beliefs about which type of each opponent could have played the actions
she observes before her move. We assume that each player-type assumes that all other
player-types are always following the HAQRE strategy profile since they are playing using
prior beliefs throughout the game. Note that this is a generically incorrect assumption by
player-types that everyone else follows the HAQRE strategy profile while each one actually
plays the HAQRE-BU strategy profile. Thus, it should be noted that HAQRE-BU is really a
disequilibrium approach: player-types are generically wrong about others’ beliefs and their
strategies.

For ease-of-use, we first state the definition of HAQRE-BU informally. The HAQRE-
BU of ΓI is an assessment with two components: (i) a profile of beliefs, and (ii) a strategy
profile. The HAQRE-BU satisfies the following.
(1) The belief profile is such that, at each information set, the beliefs are calculated using
Bayes’ rule with the following inputs: the common-knowledge prior, the unique HAQRE of
ΓI , and the actions preceding that information set.
(2) The strategy profile is such that, at each information set, the mixture over the action
set chosen is a logistic response to the expected payoffs from the actions in that set. These
expected payoffs are calculated using the HAQRE-BU beliefs (calculated in (1)), assuming
that other player-types are playing the unique HAQRE of ΓI , and that the player-type
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herself will follow her HAQRE-BU strategies at her subsequent moves.4 Due to the latter,
a backward-induction recursive procedure is needed for the construction of HAQRE-BU.

Now we formally define this logistic HAQRE-BU with naive beliefs.

Definition 2 (Logistic HAQRE-BU). Logistic HAQRE with belief updating (HAQRE-BU)
is a behavioral strategy profile b and a profile of beliefs µ =(µλi

)λi∈Λi and i∈N for ΓI . We
first define µ. Consider the unique Logistic HAQRE strategy profile of ΓI , denoted bH .
Throughout Definitions 2 and 2a fix an arbitrary information set hs with some player-
type λP (hs) moving there. The HAQRE-BU belief of λP (hs) is calculated through Bayesian
updating using the prior distribution and the HAQRE strategy profile bH . Thus, we have
for all i ̸= P (hs) and all λi ∈ Λi,

µλP (hs)(λi|hs, bH , π) = Pr(hs and λi|π, bH)∑
λ′

i∈Λi
Pr(hs and λ′

i|π, bH) . (10)

Now we construct the HAQRE-BU strategy profile b. Conditional on reaching the infor-
mation set hs, λP (hs)’s (referred to as “her”) expectation of payoffs from an arbitrary ac-
tion a ∈ A(hs) is a function of: (i) her beliefs over opponents’ types, which are given by
µλP (hs); (ii) her expectation about all opponent-types’ behavioral strategies at subsequent
moves, which are as per the HAQRE bH ; and finally (iii) her expectation about her own
actions at her own subsequent moves (if such moves exist), which we denote as bλP (hs) (Def-
inition 2a, below). Let λP (hs)’s expectation of payoffs from an arbitrary action a ∈ A(hs)
be denoted

ūP (hs)(a | hs, bH , µλP (hs) , bλP (hs)).

Then in HAQRE-BU, λP (hs) at her move hs chooses a ∈ A(hs) with probability

b(a|hs, λP (hs)) =
exp[λP (hs)ūP (hs))(a | hs, bH , µλP (hs) , bλP (hs))]∑

a′∈A(hs) exp[λP (hs)ūP (hs))(a′ | hs, bH , µλP (hs) , bλP (hs))]
. (11)

Finally, we define bλP (hs) , the expectations of λP (hs) about her own actions at her own
subsequent moves. This is constructed recursively: start from the last moves of λP (hs), use
the logit rule to specify probabilities of actions there (with the expected payoffs calculated
exactly as done in Definition 2 using bH and µλP (hs)), fix that, and work backwards to
preceding moves of λP (hs), and continue this recursion all the way to hs. Due to finiteness
of the game, this procedure is well defined. We state this formally in Definition 2a.

4When performing the backward-induction calculations, each player-type accounts for the fact that, at
subsequent stages, her own beliefs will have been further updated and will be possibly different from her
current beliefs.
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Definition 2a (defining bλP (hs)): First, consider those moves hsL of λP (hs) such that there
are no subsequent moves of λP (hs) in any possible subsequent histories from hsL.5 For all
a ∈ A(hsL), fix

bλP (hs)(a|hsL, λP (hs)) =
exp[λP (hs)ūP (hs))(a | hsL, bH , µλP (hs))]∑

a′∈A(hsL) exp[λP (hs)ūP (hs))(a′ | hsL, bH , µλP (hs))]
.

6Next, for each hsL, consider the move of λP (hs) immediately preceding hsLon the path from
hs to hsL; label this hsL−1.7 For all a ∈ A(hsL−1):

bλP (hs)(a|hsL−1, λP (hs), bλP (hs)(hsL)) =

=
exp[λP (hs)ūP (hs))(a | hsL−1, bH , µλP (hs) , bλP (hs)(hsL))]∑

a′∈A(hsL−1) exp[λP (hs)ūP (hs))(a′ | hsL−1, bH , µλP (hs) , bλP (hs)(hsL))]
(12)

where we use bλP (hs)(hsL) constructed in the first step for all hsL. Repeating the second step
for the move of λP (hs) immediately preceding each hsL−1, and thereafter proceeding similarly
and recursively to hs yields bλP (hs).

Proposition 2 (existence and uniqueness of logistic HAQRE-BU). For any finite game of
incomplete information with observable action generated from a base game of complete and
perfect information, there exists a unique logistic HAQRE-BU.
Proof. First, note that the HAQRE bH used to construct the logistic HAQRE-BU (b, µ)
exists, and is unique. Thus, by (10), µ is unique and well defined since each node of ΓI is
reached with strictly positive probability under bH . Next, note that if bλP (hs) is well defined
and unique for each hs and λP (hs), then the proof is complete.

To see that bλP (hs) is indeed well defined and unique, note the following. The first step
of the construction of bλP (hs) utilizes the well-defined and unique bH and µλP (hs) ; this yields
a well defined and unique bλP (hs)(a|hsL) for all a ∈ A(hsL). Consequently, in the recursive
construction of bλP (hs) , at each subsequent step, the required components of bλP (hs) are well
defined and unique. Thus, the recursive construction of bλP (hs) yields a well defined and
unique bλP (hs) , which means that the logistic HAQRE-BU for ΓI , (b, µ), is well defined (i.e.,

5Formally, hsL is that history such that hs is a sub-history of hsL and there is no history hs′ ̸= hsL of
ΓI such that λP (hs) moves at hs′ and hsL is a strict sub-history of hs′.

6Note that µλP (hs) (hsL) implies that the component of the beliefs of λP (hs) used here is the HAQRE-BU
belief distribution of λP (hs) at hsL. That is, at hs, λP (hs) recognizes how her beliefs would have been updated
by the time she moves at hsL.

7Formally, hsL−1 is that history such that (i) hs is a sub-history of hsL−1, (ii) hsL−1 is a subhistory of
hsL, and there is no sub-history hs′ ̸= hsL−1 of hsL such that λP (hs) moves at hs′, hs is a sub-history of
hs′, and hsL−1 is a sub-history of hs′.
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it exists) and (b, µ) is unique. ■

It is straightforward to define the logistic HAQRE-BU for general error distributions
(while still maintaining the i.i.d. error assumption) and to show that such a “general
HAQRE-BU” exists. This point is summarized in Fact 2. We refer the reader to the
Appendix to see this model.

Fact 2: For every ΓI , the general HAQRE-BU exists, and it is unique.

4.3 Subjective and Truncated logit-HAQRE

It may be the case that each type of each player has subjective prior beliefs over each
opponent’s types. We denote this as subjective HAQRE, or SHAQRE. A special case of in-
terest is where each player-type believes that each opponent-type is less skillful than herself.
This is of special interest since it is the analogous extensive-form version of the Truncated
Heterogeneous QRE (THQRE), which Rogers, Palfrey, and Camerer (2009) define. While
Rogers, Palfrey, and Camerer (2009) define the THQRE for arbitrary truncation points, we
focus on only “downward looking” beliefs in our analogous model. They show that THQRE
(with downward looking beliefs) helps connect the QRE and Level-k models. We define our
analogous Truncated HAQRE below, and put the more general Subjective HAQRE (which
can be used to model arbitrary truncation points), with and without belief updating, in the
Appendix.

To repeat the motivation for the truncated model provided by Rogers, Palfrey, and
Camerer (2009), there are some reasons why truncated beliefs represent a reasonable con-
straint on players’ beliefs: one is that if a player with low λ can compute what players
with higher values of λ do, she may well target such higher-type behavior for herself. Sec-
ond, evidence from the psychology literature indicates that people are often overconfident
(e.g. Kahneman and Tversky (1973); Camerer and Lovallo (1999)). Furthermore, Kubler
and Weizsacker (2004) find that subjects on average attribute a lower response precision to
their opponents than they have themselves. Finally, the benefits of considering the existence
of more λ-types when computing expected payoffs might not justify its cognitive costs.

The Truncated Logistic-HAQRE is designed to capture the idea that player i of skill-
type or payoff-responsiveness λn

i assumes that each player j has a lower type, i.e. λj ≤ λn
i

holds for all λj ∈ Λj , and all j. Let player-type λn
i ’s beliefs be denoted by µλn

i
. If some

player j has some types that are lower than λn
i , then λn

i believes that the probability of
each such type is equal to that type’s probability conditional on being a type lower than
λn

i (where these calculations use the true prior); this is specified by (13) below. In case
the true distribution of types of a given opponent does not contain any type lower than

15



λn
i , then λn

i considers that the opponent’s type is the same as her own type. Assumption 1
specifies these beliefs of each player-type in the Truncated Logistic-HAQRE.

Assumption 1. In the Truncated Logistic-HAQRE, type λn
i of player i believes the fol-

lowing probability distribution on each player-j’s types. If there is no λj ≤ λn
i in Λj , then

λn
i ’s belief about j’s type is given by µλn

i
(λm

j ) = 1 if and only if λm
j = λn

i . Otherwise, λn
i ’s

belief about j’s type is as follows:

µλn
i
(λm

j ) =
πj(λm

j )∑
λm′

j ≤λn
i

πj(λm′
j )

if λm
j ≤ λn

i ; otherwise µλn
i
(λm

j ) = 0. (13)

Note that we are again in disequilibrium territory since beliefs of player-types can be
incorrect. Furthermore, each player-type’s beliefs about the distribution of types across
players are distinct from the beliefs of each other player-type, except for those opponent-
types who share her own payoff responsiveness. Since we are in a setting where players are
boundedly rational (specifically, players perceive their payoffs with mistakes), we want to
avoid complications related to higher-order beliefs. To that end, we assume the following.
In this Truncated Logistic-HAQRE (THAQRE for short) setting, we assume that when any
given player-type λn

i calculates her expected payoff from a certain action at a certain move
of hers, she assumes that all player-types moving at subsequent moves will act “as if” they
hold the same beliefs over other players’ types as her own beliefs about those players’ types.

Note that higher-order beliefs are not an explicit part of the definition of a THAQRE,
yet these are tacitly present while applying THAQRE to data. This inaccuracy of tacit
higher-order beliefs, on top of inaccurate first-order beliefs, brings us into further dise-
quilibrium territory. Now, we formally define the Truncated Logistic-HAQRE using the
Logistic HAQRE.

Definition 3. The Truncated Logistic-HAQRE is a behavioral strategy profile bT for ΓI .
For each player-type λn

i , let µλn
i

be the subjective prior of λn
i satisfying Assumption 1. Let

ΓI′ be a game identical to ΓI except that the common-prior of ΓI is replaced by µλn
i

instead
of π. The Truncated Logistic-HAQRE behavioral strategy of λn

i for ΓI , denoted bT (λn
i ), is

given by λn
i ’s Logistic HAQRE behavioral strategy b′(λn

i ) for ΓI′.

Notice that according to Definition 3, to construct the Truncated Logistic-HAQRE, one
can follow the steps s ∈ {1, .., S} of the construction of the logistic HAQRE in Definition
1, except the following change. Instead of the true probability distributions over other
players’ types, π−P (hs), being used by λP (hs) to calculate his expected payoff from each
action a ∈ A(hs), Assumption 1 is used to define µλP (hs) , the probability distribution over
opponents’ types believed by λP (hs) that he uses to calculate his own expected payoff from
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a. But also, λP (hs) acts as if tacitly using µλP (hs) to form higher-order beliefs. That is, each
player-type tacitly uses (in the recursive backward induction procedure) his own subjective
beliefs to model how the player in the next stage is modeling the player who follows the
latter, and so on. This is why we have to replace the common-prior of ΓI with each
player-type’s own subjective belief to define that player-type’s strategy in the Truncated
Logistic-AQRE (THAQRE). Due to the use of the Logistic HAQRE in defining THAQRE,
and due to Proposition 1 (existence and uniqueness of the Logistic HAQRE), we have the
following.

Proposition 3 (existence and uniqueness of the Truncated Logistic HAQRE). For any
finite game of incomplete information with observable action generated from a base game of
complete and perfect information, there exists a unique Truncated Logistic HAQRE.
Proof: For each player-type λn

i , bT (λn
i ) is given by λn

i ’s Logistic HAQRE behavioral strat-
egy b′(λn

i ) for ΓI′. Since b′(λn
i ) exists and is unique by Proposition 1, Proposition 3 holds.■

5 HAQRE for repeated games

An important class of extensive-form games is finitely repeated simultaneous-move games.
Here we shall focus on finitely repeated games with observable actions, where the actions
taken by each player in each stage are common knowledge before all subsequent stages.
This class of games includes the finitely repeated prisoner’s dilemma, Cournot, hawk-dove,
matching-pennies, and many other important finitely repeated games. To reiterate, we are
interested in modeling scenarios where such repeated games are being played by players
with possibly different skill levels, and play in the preceding stages provides players an
opportunity to update beliefs about the skill level of each opponent.

Formally, the n-staged repeated game consists of the stage game G repeated n times.
The stage game is defined as: G ≡ {N ; (Ai)i∈N ; ui : A → R for each player i}, which
contains the following—the player set N , the action set Ai for each player i, and the payoff
function ui mapping A = ×i∈N Ai to real numbers. A k-staged history is (a1, ..., ak−1),
where as denotes the action profile played in the sth stage. At each stage, i.e., at each
repetition of G, the history of all the preceding stages is common knowledge. Thus, the
base game is Γ = {G, n}, which means Γ is the stage game G repeated n times. We will
assume that there is no discounting within Γ, and a player’s payoff in Γ is the sum of that
player’s payoff in each of the n stages.8a

To model heterogeneity and uncertainty about each opponent’s skill, we convert Γ into
the incomplete information game ΓI . The incomplete information game ΓI can be defined

8a,bThe general case is straightforward to model, but it is not included in this draft.
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from the base game Γ as done earlier, with each player i ∈ N of Γ replaced by a set of
player-types. This set of player-types is given by Λi = {λ1

i , ..., λ
m(i)
i } in the logistic case.8b

The common knowledge prior probability distribution over the types of each player i is
given by πi for i ∈ N , and for i ̸= j, πi is independent of πj for all players i, j ∈ N .

5.1 Defining the HAQRE for repeated games

For each stage GI(s) of ΓI , the HAQRE (without BU) specifies a discrete version of the
HQRE of Rogers, Palfrey, and Camerer (2009). That is, the HAQRE is a behavioral
strategy profile b that specifies that each type of player i, say λr

i , chooses actions with
probabilites proportional to the expected payoff from each action. This expected payoff
is calculated on the basis of the prior beliefs over other players’ types (given that there
is no belief updating), and given their respective HAQRE behavioral strategies in GI(s).
Due to backward induction, without belief updating, the behavioral strategies in any stage
are independent of the history of play reaching that stage. Thus, the HAQRE (without
belief updating) is simply a discrete HQRE in each stage; no player-type has to consider
different “paths” originating from different actions as in the HAQRE corresponding to
perfect information games. The formal definition of the HAQRE b for repeated games is as
follows.

Definition 4 (HAQRE for finitely repeated games). For an arbitrary stage of ΓI , denote
by ūλr

i
(ai | b−λr

i
, π) the expected payoff of λr

i from action ai in that stage, given that other
player-types’ behavioral strategy is given by b−λr

i
, and π denotes the prior. For each player

i ∈ N , each player-type λr
i ∈ Λi chooses each action ai ∈ Ai with the probability

bλr
i (ai|b−λr

i
, π) =

exp[λr
i ūλr

i
(ai | b−λr

i
, π)]∑

a′
i∈Ai

exp[λr
i ūλr

i
(a′

i | b−λr
i
, π)] . (14)

Since Definition 4 is a straightforward application of the HQRE of Rogers, Palfrey, and
Camerer (2009), by their Theorem 1, we have the following Proposition.

Proposition 4: The HAQRE for finitely repeated games exists.

The HAQRE may not be unique, since even the HQRE for a stage game may not
be unique. This can be seen by considering the hawk-dove game, which has two Nash
equilibria. If there is little or no heterogeneity in λ there may be multiple HQRE, each in
the “neighbourhood” of the multiple Nash equilibria of games like the hawk-dove game.
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Next, we define the HAQRE-BU (with belief updating) for repeated games. We again
model naive belief updating and take a disequilibrium approach. That is, each player-type
incorrectly believes he is the only one performing belief updation. Specifically, each player-
type incorrectly believes that all others hold prior beliefs throughout the game. This helps
us avoid issues related to reputation building.

Thus, each player-type expects that in each stage, others’ strategies are selected from
some HQRE (where the HQRE uses the prior). This expected strategy profile is what
the player-type uses to perform belief updating using Bayes’ rule. Within this setup, in a
given stage, a player-type’s subjective expected payoff from an action is calculated using
her updated beliefs, and her HQRE-based expectation about others’ behavioral strategy for
that stage. This expected payoff is used to calculate her logistic best response to arrive at
the HAQRE-BU strategy profile.

Formally, the HAQRE-BU for finitely repeated games consists of a belief profile µ and
a strategy profile b. Consider an arbitrary player-type’s belief about the HQRE that is
played in each stage GI(s) of ΓI . Let this belief of λr

i about this strategy profile be de-
noted b̂−λr

i
. Denote the belief of an arbitrary player-type λr

i about the likelihood that
some opponent’s type is λk

j , at an arbitrary stage s, following an arbitrary history as−1 by
µλr

i
(λk

j |as−1, b̂−λr
i
, π). Let the subjective expected payoff of the player-type λr

i in stage s

from action ai ∈ Ai be given by ūλr
i
(ai | b̂−λr

i
, µλr

i
), and calculated by the standard method.

Definition 5 (HAQRE-BU for finitely repeated games). For an arbitrary stage s of ΓI ,
given an arbitrary history of play as−1, the belief of an arbitrary player-type λr

i about another
player-type λk

j is given by the Bayes rule:

µλr
i
(λk

j |as−1, b̂−λr
i
, π) =

Pr(λk
j and as−1|b̂−λr

i
, π)

Pr(as−1|b̂−λr
i
, π)

. (15)

And the logistic response of λr
i puts the following probabilities on each action ai ∈ Ai:

bλr
i (ai|b̂−λr

i
, µλr

i
) =

exp[λr
i ūλr

i
(ai | b̂−λr

i
, µλr

i
)]∑

a′
i∈Ai

exp[λr
i ūλr

i
(a′

i | b̂−λr
i
, µλr

i
)]

. (16)

Due to the use of HQRE in each stage while forming beliefs and calculating expected
payoffs, the existence of HAQRE-BU follows. But due to the possible multiplicity of HQRE,
the uniqueness of HAQRE doesn’t hold.

Proposition 5: The HAQRE-BU for finitely repeated games exists.

Due to finite repetitions, backward induction, and naive belief updating, in each stage
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a player-type maximizes payoffs only for that stage. A player-type does not need to con-
sider any effects of his actions on subsequent behavior—an important consideration in the
HAQRE (BU and non BU) for perfect-information games. Thus, in both versions of HAQRE
for repeated games we don’t need the recursive construction process. Note that, when there
are multiple HAQRE, the expectation about others’ strategies can be different for different
player-types; i.e., b̂−λr

i
can be different from b̂−λk

j
. Thus, the beliefs over a third player’s

types can be different across player-types at the same stage. This may provide too many
degrees of freedom to researchers in games with multiple HAQRE. Thus, certain consistency
conditions may be needed in such cases, e.g., that two players must agree on their belief
about a third player’s strategy.

Both notions of HAQRE, with and without BU, should be investigated in the important
finitely-repeated-game context. Their data-fit can be compared with the data-fit of alternate
behavioral models using appropriate empirical settings. By design, the HAQRE models
should be most useful when there is a reason for heterogeneity in skill among the players.
In what follows, we investigate the HAQRE and related models in the context of finite
perfect information base games. The investigation of these models for finitely repeated
games is left for future research.

6 Data application

The present work investigates whether accounting for heterogeneity in skill or payoff-
responsiveness is important to model behavior in sequential-move games using QRE. For
this data investigation, we focus on a base game of complete and perfect information.
Specifically, we use the data from the incentivized Experiment 2 by Rampal (2020). This
experiment was designed to study behavior in a sequential-move game in the presence of
(induced) heterogeneity in skills across subjects and uncertainty about the opponent’s skill-
level.

Design: The experiment used an alternate-move two-player game called Avoid 13 and
a variation of it called Computer 13. First, we focus on the Avoid 13 game. The first stage
of the Avoid 13 game was used to decide the order of moves. Let us refer to the stages post
the order-of-moves decisions as A13. In A13, the two players alternately choose to remove
either 1, or 2, or 3 items from an imaginary box initially containing 13 items. The player
who removes the last item(s) loses, and the opponent wins a prize. Therefore, Avoid 13 is a
winner-take-all game. Backward induction provides a second-mover advantage in A13. In
effect, a perfectly-playing second-mover can guarantee herself a win by removing, at each
move, 4 minus the opponent’s immediately-preceding choice. As illustrated in Figure 2, this
procedure forces the opponent to remove the last item.
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Figure 2: Second-mover’s sure-win strategy in A13.

The prize for winning as first-mover is 500 experimental currency, and is larger than
the prize for winning as second-mover: 200 experimental currency. To decide the order of
moves in A13, the first stage of Avoid 13 is the “FS” stage: in this stage, both players
simultaneously report whether they want to be the “First mover” (or F) or the “Second
mover” (S); the decision of one of the players is selected at random and implemented. The
decisions (henceforth “FS choices”) remain private to each player. All subsequent moves in
A13 are public information.

The Computer 13 game (C13 for short) is similar to Avoid 13, except for three key
modifications. First, in C13 the human subject plays against a perfect-playing computer
(i.e., the computer perfectly applies backward induction). Second, there is no extra incentive
to win as the first-mover—there is a fixed prize for winning: 500 experimental currency.
Last, the human player unilaterally decides whether to be the first or the second mover.
Thus, a win in C13 is a strong signal that a player understands the relevant backward
induction, and a loss in C13 is a clear signal that a player may have a weakness in the
necessary backward induction. Each round in a session consisted of two “parts.” First, each
of the paired subjects played the C13 game against their respective computers, then they
played the Avoid 13 game against each other.

The heterogeneity in skills across subjects was induced as follows. A session of the
experiment contained between 8 and 18 subjects, who were split into two types: Experienced
(Exp for short) and Inexperienced (Inexp). Each subject went through two sub-sessions. In
the first sub-session (training sub-session), half the subjects were randomly selected to be
made into Exp subjects; these subjects played 8 rounds (with random re-matching within
the designated Exp subject pool) of the C13-Avoid 13 game. Meanwhile, Inexp subjects
were kept unaware of Avoid 13 or C13, and instead they played an unrelated bargaining
game. In the second sub-session (the combined sub-session), the Inexp subjects were mixed
with the Exp subjects, and the entire subject pool for that session was randomly stranger
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re-matched into pairs at every round. The combined sub-session contained 6 rounds. Thus,
an experimental session had 14 rounds in total.

The design also made beliefs important. In any round, the Exp or Inexp status of the
opponent for that round was unknown. The overall proportion of Exp/Inexp subjects in
each experimental session was publicly announced, about 50 percent each of Exp and Inexp.
However, after the play of C13 by each subject and before the FS stage of Avoid 13, Exp
subjects were privately given the opportunity to look at opponent’s outcome (Win or Loss)
and the latter’s history of moves in C13. This opportunity was not given to Inexp subjects.
Therefore, an Exp subject had the opportunity to update her beliefs about the opponent’s
type before the FS choice stage of Avoid 13. The Inexp subject could not update beliefs
on the basis of the opponent’s C13 history, but they could update beliefs on the basis of
opponent’s choices in A13. All aspects of the design were publicly announced to all subjects.
See Rampal (2020) for more details.

6.1 Applicability of HAQRE and related models

We focus our analysis on the combined sub-session, where Exp and Inexp were mixed and
randomly paired. No subject knew the Exp/Inexp status of the opponent in any round.
But, they knew the proportions of such subjects in the population (the prior), and they had
different degrees of information on the opponent’s preceding choices.

Since half of the subjects were given more experience with the game in the training
sub-session, we interpret differences in experience-level (Exp vs Inexp) as differences in
skill. In effect, we assume that the two different levels-of-experience are associated with two
different payoff responsiveness: λExp being the common payoff-responsiveness parameter
for experienced subjects, and analogously λInexp for the inexperienced subjects. Thus, the
heterogeneity in experience captures heterogeneity in skill or payoff responsiveness.

Since the number of subjects in each category (about 50 percent each) was publicly
announced in each session, it seems appropriate to model the Experiment 2 combined sub-
session setting as a common prior belief setting. Thus, we will assume that in each round,
initially each subject believed that there was a 50 percent chance each that her opponent
was Exp or Inexp.

Exp subjects could update beliefs on the basis of the opponent’s play in C13. Both
Exp and Inexp subjects observed all actions during the A13 stage of Avoid 13. Thus, both
Exp and Inexp subjects had the opportunity to update beliefs about the skill-type of their
opponent after each action of the latter. We account for all this possible belief updating
(BU) in the BU versions of the models described earlier.
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7 Results

There are two key aspects of the theory we want to invesitgate using data fit, as measured
by maximized likelihood: is heterogeneity in skill important? Is belief-updating about the
opponent’s skill important? To answer the first question, we compare the AQRE with
HAQRE; for the second question, we compare HAQRE with HAQRE-BU.

7.1 Likelihood comparison

We restrict our attention to the combined sub-session of Experiment 2 in Rampal (2020),
where a difference in experience-level among subjects was induced, as described above. The
data has 295 observations of rounds among different subject pairs. Each round had two
parts: each pair of subjects first played C13 against respective computers, then played Avoid
13 against each other. An “outcome” of an experimental round is the combination of the
win or loss outcome in C13 of the matched pair, the FS choice of each subject within the
pair, and the sequence of moves taken by both subjects in Avoid 13 until the last item is
removed.9

The optimal likelihood and the corresponding λ parameters of each model were obtained
using maximum likelihood estimation (MLE). In the MLE exercise, we use the logit spec-
ification of the models. For AQRE, the MLE produces a single λ parameter, whereas for
the HAQRE and HAQRE-BU models the optimal λ parameters are λinexp and λexp. In
both HAQRE and HAQRE-BU, the common prior is π = 0.5. In the HAQRE-BU model,
the belief of each subject is endogenously updated within a single play of the C13-Avoid 13
game, as per Definition 2 and the information available (as specified in the design).

Impact of heterogeneity

The AQRE model is nested in the HAQRE model (setting λinexp = λexp in HAQRE yields
the AQRE). Thus, to compare the data-fit of HAQRE vs AQRE using MLE, we use the
Likelihood-Ratio test. We also compare the models in terms of the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC). The results and parameters
are shown in Table 1.

The HAQRE model that accounts for heterogeneity yields a significantly better data-fit
(p-value < 0.00001), with λexp estimated to be 0.015 and λinexp = 0.009. On the other
hand, for AQRE, the homogeneous λ = 0.011. This provides evidence that incorporating
heterogeneity in skill or payoff-responsiveness across players can be important for QRE-
based models for sequential-move games. In this setting, the importance comes from the

9We do not account for possibly different sequences of moves in C13. We only make four categories of the
observed outcome from C13—based on whether each player within the pair win or lose against the computer.
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Results/Parameters AQRE HAQRE
LogLikelihood −2453.44 −2403.32
AIC 4908.8 4810.6
BIC 4912.5 4818.0
λinexp 0.011649 0.009271
λexp 0.015214
p-value (H0 : AQRE = HAQRE) 1.35 × 10−23

Table 1: MLE comparison between AQRE and HAQRE.

fact that players have heterogeneous experience levels, which can be a common occurrence
in real-world interactions.

Within-the-play belief updating

Recall that in the experimental setting, Exp subjects had an additional opportunity to
update beliefs: they observed the opponent’s outcome (Win or Loss) against the computer
(C13). Subsequently, both Exp and Inexp subjects could update their beliefs about the
skill-type of the opponent by observing actions at each move of one’s opponent during the
A13 part of the game.

Let’s illustrate the updating. Suppose that an Exp subject i holds a belief about the
skill-types of her opponent j, which can be λinexp

j or λexp
j , and her prior belief is given by the

commonly known prior distribution: 0.5 probability of each type. From the prize for winning
in C13, she calculates the probability Pr(opponent loses in C13 | opponent is Inexp) that
her opponent loses in C13 conditional on being of type λinexp

j . She repeats this step for
the type λexp

j of the opponent and uses the prior to calculate the unconditional probability
Pr(opponent loses in C13). Thus, if the Exp subject observes that her opponent’s outcome
in C13 is Loss, she updates her beliefs about the opponent’s skill-type using Bayes’ rule as
follows:

Pr(opponent is Inexp | opponent lost in C13) =

Pr(opponent loses in C13 | opponent is Inexp)πj(inexp)
Pr(opponent loses in C13) .

In the HAQRE-BU model, we assume that all players update beliefs at every opportunity.
The belief updating at other moves also follows the Bayes’ rule. Take the experimental
outcome LWSS323131: i.e., the First mover (in Avoid 13) lost in C13, the Second mover won
in C13, both reported the intention to be “second mover”, then players alternately removed
3, 2, 3, 1, 3, and 1 item(s). This outcome is particularly instructive of the mechanics of
belief updating. Figure 3 illustrates that different magnitudes of updating are expected
at different moments of the game. Let player 1 and player 2 stand for the selected first
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Figure 3: Belief profile corresponding to the outcome LWSS323131 among Exp players.

and second mover in Avoid 13, respectively. (i) After observing that the opponent lost
against the perfect-playing computer, player 2’s belief diverges radically from the prior—
the updated belief puts almost probability 1 on player 1 being inexperienced. (ii) Decisions
of the FS stage are not revealed, but one can update beliefs on the basis of one’s own choice
of F or S and the position one obtains.10 (iii) When player 2 makes a mistake with 10
items left (a winning position), player 1’s belief on player 2 being inexperienced increases
substantially, as expected. (iv) Moves from losing positions or perfect-plays (from winning
positions) have little impact on beliefs.

We use Vuong (1989) test for non-nested models to compare the optimal likelihoods
of HAQRE and HAQRE-BU. The results and corresponding parameters are presented in
Table 2, along with the AIC and BIC estimates.

Results/Parameters HAQRE HAQRE-BU
LogLikelihood −2403.32 −2391.00
AIC 4810.6 4786.0
BIC 4818.0 4793.4
λinexp 0.009271 0.008925
λexp 0.015214 0.016196
p-value (H0 : HAQRE = HAQRE-BU) 0.0268

Table 2: MLE comparison between HAQRE and HAQRE-BU.

The HAQRE-BU model that allows for the dynamic belief updating by players about the
opponent’s payoff-responsiveness provides significant improvement in the data fit (p−value
= 0.027). This result suggests that accounting for both heterogeneity in skills and belief-
updating about the opponent’s skill on the basis of preceding moves can be important to

10Thus, we see that player 1, who ends up in the first mover position despite choosing S updates slightly
more than the second mover, player 2. Player 1 knows that the other must have chosen S; but player 2
cannot know whether his opponent chose F or whether the random assignment decided his second mover
position.
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explain behavior in sequential-move games using QRE. The importance of BU is demon-
strated here in a setting where it is common knowledge that players with heterogeneous
experience-levels are playing in the population.

Truncated and subjective beliefs

In this paper, we have also modeled subjective-prior formulations of HAQRE and HAQRE-
BU. Recall that in the Truncated HAQRE model (THAQRE) only “downward-looking”
beliefs are permitted. That is, player i with skill λi places 0 probability on types λj such
that λj > λi holds.

To model THAQRE in Rampal (2020)’s experimental setting, we assume that Inexp
players presume that the opponent has the same payoff responsiveness as their own. Thus,
an Inexp player i uses a degenerate probability distribution πj(λinexp

j ) = 1 when computing
expected payoffs. Moreover, as described in the model of THAQRE, Inexp players assume
that opponents also calculate expected payoffs using this degenerate distribution. On the
other hand, an Exp player i still uses the prior distribution π = 0.5 on {λexp

j , λinexp
j }.

The THAQRE model yields improvement in data-fit when compared to the AQRE model
(p−value = 0.014 in the Likelihood-Ratio test), which again corroborates to the importance
of accounting for heterogeneity. On the other hand, THAQRE fits the data significantly
worse than the HAQRE model (p−value = 0.0003 in Vuong (1989) test). This indicates
that, in Rampal (2020)’s experiment, the publicly announced proportion of Exp/Inexp
subjects is taken into account in prior-belief formation by Inexp players and prevails over
the underlying reasons behind the hypothesis of truncated beliefs.

Subjective-priors can occur in ways other than “downward-looking” beliefs. In the Ap-
pendix, we apply a subjective-prior model where each experienced and inexperienced subject
is sure that there is a 50-50 split of inexperienced and experienced subjects (as publicly an-
nounced), but experienced and inexperienced subjects have subjective beliefs about the
values of the other type’s payoff responsiveness. These are represented by λ̂inexp (experi-
enced types’ common belief about an inexperienced type’s payoff responsiveness) and λ̂exp

(inexperienced types’ common belief about an experienced type’s payoff responsiveness),
respectively. Likelihood-Ratio tests for nested models show that SHAQRE and SHAQRE-
BU fit the data significantly better than HAQRE and HAQRE-BU, respectively (p−values
< 0.00001). But there is not much room for data-fit improvement left by incorporating
belief updating once subjective priors are allowed: the difference between the optimal log-
likelihoods of SHAQRE and SHAQRE-BU is not statistically significant. The details of this
exercise are in the Appendix.

26



8 Conclusion

This paper extends the QRE model to sequential-move games where players can be of
different skill types, and there is uncertainty and belief updating about each opponent’s skill
type. We define the Heterogeneous Agent Quantal Response Equilibrium (HAQRE) model
for finite perfect information games and finitely repeated games, which extends the AQRE
model of Mckelvey and Palfrey (1998) to account for skill heterogeneity, uncertainty, and
naive belief updation. We also define variants of HAQRE with subjective and truncated
prior beliefs, with and without naive belief updating. These definitions are provided in
order to serve as modeling tools for applications where players with different degrees of skill
interact in sequential-move games.

We show that each of these concepts exists, and in the finite perfect information game
context, each of them generates a unique prediction. Furthermore, in the finite perfect
information game context, the HAQRE and its variants do not require complicated fixed
point calculations. Rather, a simple backward-induction-like recursive procedure yields the
unique prediction given the prior on skill distributions assumed by the researcher, where
skill is captured by payoff-responsiveness in QRE models.

We test the HAQRE and related models to experimental data of a winner-take-all
sequential-move game between players drawn from two different experience-levels (high
or low), with each player’s own experience-level being private information. Results from
our MLE exercises show that accounting for possible heterogeneity of skill can be important
in such settings with possibly heterogeneous experience-level among players. The HAQRE
model yields a significantly better data fit relative to AQRE. We also find that if, along with
skill heterogeneity, we incorporate naive belief updating by players during the play of the
sequential-move game, then that yields a further significant improvement in data fit. That
is, we find that the HAQRE-BU model (HAQRE with belief updating) yields a significantly
better data fit relative to the HAQRE.

Thus, we find that accounting for skill heterogeneity and belief updating about the
opponent’s skill, as we do in the HAQRE and related models, can be important in improving
our understanding of multi-stage interactions among players with heterogeneous skill. The
MLE parameters, yielding a greater payoff responsiveness estimate for experienced players,
show that such situations of heterogeneity in skills can arise simply due to heterogeneity in
experience—an arguable common occurrence in real world interactions.

Our data analysis deals with the context of finite perfect information games. Extending
the data analysis of HAQRE and related models to the important context of finitely repeated
games, especially when there is skill heterogeneity among players, is left for future research.
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Appendix

A.1 HAQRE and HAQRE-BU for a general error distribution

General standard HAQRE

Definition 1 (HAQRE without belief updating) can be adapted to a general error distribution
(which we call “general” for short, henceforth) using straightforward substitutions. Instead
of Λi being the set of player-types for each player i of Γ, we have Φi = {F 1

i , ..., F
m(i)
i }, where

1,.., m(i) are natural numbers, and so m(i) denotes the number of types of player i. Each
player-type knows her type, but is uncertain about other players’ types. This uncertainty
is captured by a commonly-known prior distribution π, which specifies the prior over Φi

for each player i in Γ. We assume that prior distributions across players are pairwise
independent.

For each type t ∈ {1, .., m(i)}, F t
i denotes the distribution from which each perceived

payoff disturbance term (ϵt
ika) for player i of type t is drawn. Thus, ϵt

ika (used in (1)) is
drawn independently and identically, according to the distribution F t

i , for all a ∈ A(hk
i ),

and for all hk
i ∈ H i. We assume that the error distribution for each type of each player, F t

i ,
is statistically independent from the error distribution for each type of each other player,
F t′

j , for all i, j and all t, t′. We will assume that for all player-types i-t, F t
i with probability

density function f t
i is admissible in the sense of Mckelvey and Palfrey (1998). That is, we

assume that each ϵt
i (the vector of all errors corresponding to all possible actions of player-

type i-t) is an absolutely continuous random vector (with respect to the Lebesgue measure),
and that the expected value of ϵt

ika exists for all i-t, hk
i , and a ∈ A(hk

i ).
Given the setup above, the definition of a general HAQRE b is exactly like the logistic

HAQRE, except the following changes.

1. In step 1 of Definition 1, let P (hS) be some player i, then the probability that each
type F t

i chooses an arbitrary action a ∈ A(hS) is given by

b(a|hS, F t
i ) = Pr(a yields i max expected payoff among A(hS)|hS) =

= Pr[(ϵt
ihSa)a∈A(hS)|ui(a | hS) + ϵt

ihSa ≥ ui(a′ | hS) + ϵt
ihSa′ ∀a′ ∈ A(hS)]. (17)

2. In step s, for s ∈ {2, .., S} we need the following change. Type F t
P (hs) of P (hs) can

calculate the expected payoff of her action a ∈ A(hs) as:

ūP (hs)(a | hs, bs, π−P (hs), F t
P (hs)).

Denote this as ū(a|hs) for short. Then, in the general HAQRE, the probability that
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each type F t
P (hs) of P (hs) chooses an arbitrary action a ∈ A(hs) is given by

b(a|hs, F t
P (hs)) =

= Pr[(ϵt
P (hs)hsa)a∈A(hs)|ū(a|hs) + ϵt

P (hs)hsa ≥ ū(a′|hs) + ϵt
P (hs)hsa′ ∀a′ ∈ A(hS)]. (18)

Given that the generalization of logistic HAQRE requires only these changes, and that (17)
and (18) yield well defined and unique probabilities, we have Fact 1.

General HAQRE with belief updating

We now assume for HAQRE with belief updating (HAQRE-BU) the general error structure
used for general (standard) HAQRE. We add one more assumption: for each player i and
each type t, we only allow for F t

i that yields a totally-mixed HAQRE.
The definition of a general HAQRE-BU uses the unique general HAQRE bH , and (b, µ)

is defined exactly like the logistic HAQRE-BU, except the following changes.

1. Beliefs are given as follows. For all i ̸= P (hs) and all F t
i ∈ Φi,

µF t
P (hs)

(F t
i |hs, bH , π) = Pr(hs|π, bH , F t

i )∑
F t

i ∈Φi
Pr(hs|π, bH , F t

i ) . (19)

2. F t
P (hs)’s expectation of payoffs from an arbitrary action a ∈ A(hs) is:

ūP (hs)(a | hs, bH , µF t
P (hs)

, b
F t

P (hs)).

Denote it as ū(a|hs) for short. Then in HAQRE-BU, F t
P (hs) at her move hs chooses

a ∈ A(hs) with the probability

b(a|hs, F t
P (hs)) =

= Pr[(ϵt
P (hs)hs a)a∈A(hs)|ū(a|hs)+ϵt

P (hs)hs a ≥ ū(a′|hs)+ϵt
P (hs)hs a′ ∀a′ ∈ A(hs)]. (20)

3. The construction of b
F t

P (hs) is the same as the construction of bλP (hs) (other than µ

and bH different as specified above), except that to calculate the probabilities with
which a certain action is to be played at any given move, F t

P (hs) is used rather than
the logit formulation used there.

Given that the generalization of logistic HAQRE-BU requires only these changes, and that
(19) and (20) yield well defined and unique probabilities, we have Fact 2.
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A.2 Subjective HAQRE

Recall that we used ΓI to denote the incomplete-information game with observable actions,
where for each player i ∈ N of Γ, there is a set of player-types Λi, and there is a common
knowledge prior probability distribution over the types of each player i given by πi for i ∈ N .
To specify the Subjective HAQRE model (SHAQRE for short), we will need an additional
object in ΓI : each player-type ti (type t of player i) will have a subjective prior belief given
by ρti , where ρti specifies a probability distribution over ×i∈N Λi. When we refer to ΓI in
this section, it is understood that ΓI includes the subjective prior beliefs for each player
type.

Subjective HAQRE without belief updating

The logistic version of SHAQRE (this is without belief updating) is a behavioral strategy
profile for ΓI which specifies for each type of each player, the (possibly mixed) action
they will take at each move. There is only one change required relative to the Logistic
HAQRE to define the Logistic SHAQRE. In steps 2 through S of the HAQRE definition
(Definition 1), we replace “the probability distributions over other players’ types, π−P (hs),”
used by λP (hs) to calculate the expected payoff from each action in A(hs), by the subjective
prior of λP (hs) which we can denote by ρ−λP (hs) . Note that each player-type uses the same
subjective prior at each of her moves, i.e., ρ−λP (hs)=ρ−λP (h′

s)
whenever λP (hs) = λP (h′

s),
even if hs ̸= h′

s. Thus, analogous to Proposition 1, existence and uniqueness follows for the
Logistic SHAQRE.

For the case of general error structures, we replace Λi as the set of player-types for each
player i of ΓI , and instead we have Φi = {F 1

i , ..., F
m(i)
i } as the set of player-types. We add

one more assumption: we only allow for F t
i for each player i and each type t that yields a

totally-mixed SHAQRE. Again, instead of the commonly-known prior distribution π, each
type of each player has a different prior belief given by ρF t

i
. So, the definition of a general

SHAQRE b is exactly like the general HAQRE, except that in (18) we use ρ−F t
P (hs)

instead
of π−P (hs) to calculate expected payoffs from actions available at A(hs). Again, analogous
to Fact 1, for every ΓI , the general SHAQRE exists, and it is unique.

Subjective HAQRE with belief updating

The belief updating in the Logistic SHAQRE-BU is exactly as it is in Logistic HAQRE-BU,
except the prior belief of each player-type is subjective and not the common-knowledge
objective prior. Again, we will assume naive belief updating: i.e., we will assume that while
player-types update beliefs about opponents’ types on the basis of opponents’ actions they
observe, they don’t account for opponents’ types performing the analogous belief updating.
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Instead, each player-type ti assumes that each type of each opponent, say t′
j holds prior

beliefs which are the same as the subjective prior beliefs of ti, denoted as ρti , at each of the
moves of t′

j . Again, the rationale for this choice is incorporating simplicity in the reasoning
process of each player-type.

First, we describe how the Logistic HAQRE-BU definition (Definition 2) needs to be
modified to describe the Logistic SHAQRE-BU. The Logistic SHAQRE with belief updating
(SHAQRE-BU) is a behavioral strategy profile b and a profile of beliefs µ =(µλi

)λi∈Λi and i∈N

for ΓI . We first define µ. Consider the unique SHAQRE strategy profile of ΓI , denoted bH .
For any information set hs with some player-type λP (hs) moving there, the SHAQRE-
BU belief of λP (hs) is calculated through Bayesian updating using the subjective prior
distribution of ρλP (hs) and the SHAQRE strategy profile bH . Thus, we have for all i ̸= P (hs)
and all λi ∈ Λi,

µλP (hs)(λi|hs, bH , ρλP (hs)) =
Pr(hs|ρλP (hs) , bH , λi)∑

λ′
i∈Λi

Pr(hs|ρλP (hs) , bH , λ′
i)

. (21)

Given that µ for SHAQRE-BU is defined as in (21), the construction of the strategy profile
b of the Logistic SHAQRE-BU using µ is exactly as in Definition 2. Furthermore, analogous
to Proposition 2, the Logistic SHAQRE-BU exists, and it is unique.

SHAQRE-BU for a general error structure

To model SHAQRE with belief updating for general error structures (as in general SHAQRE),
we again add one more assumption: we only allow for F t

i for each player i and each type t

that yields a totally-mixed SHAQRE. The subjective prior of F t
i is given by πF t

i
.

The definition of a general SHAQRE-BU uses the unique general SHAQRE bH of ΓI ,
and (b, µ) is defined exactly like the Logistic SHAQRE-BU, except the following change.
Beliefs are calculated using subjective priors rather than an objective common knowledge
prior. So, for all i ̸= P (hs) and all F t

i ∈ Φi, we have

µF t
P (hs)

(F t
i |hs, bH , ρF t

P (hs)
) =

Pr(hs|ρF t
P (hs)

, bH , F t
i )∑

F t
i ∈Φi

Pr(hs|ρF t
P (hs)

, bH , F t
i ) . (22)

Finally, the strategy profile b of the general SHAQRE-BU is constructed from µ as in (20).
Given that the generalization of the Logistic SHAQRE-BU requires only these changes, and
that (22) and the associated b yield well defined and unique probabilities, analogous to Fact
2, the general SHAQRE-BU exists, and it is unique.

31



A.3 MLE results for logit-SHAQRE and logit-SHAQRE-BU

Here we detail the results obtained for the logistic specification of SHAQRE and SHAQRE-
BU with respect to the experimental data in Rampal (2020). The MLE exercise for subjec-
tive models in this setting gives a set of optimal λ−parameters composed by four elements:
the two real payoff-responsiveness of Exp and Inexp subjects, respectively, λexp and λinexp,
and each type’s common belief about the other type’s payoff responsiveness, λ̂exp and λ̂inexp.

The maximized likelihoods, the AIC and BIC estimates and the optimal parameters
for SHAQRE and SHAQRE-BU are presented in Table 3 next to their respective (non-
subjective) counterparts. Table 3 also shows the results of the Likelihood-Ratio tests com-
paring each subjective model to its counterpart.

Results/Parameters HAQRE SHAQRE HAQRE-BU SHAQRE-BU

LogLikelihood −2403.32 −2261.72 −2391.00 −2270.51

AIC 4810.6 4531.4 4786.0 4549.0

BIC 4818.0 4546.1 4793.4 4563.7

λinexp | λ̂inexp 0.009271 0.0070 | 0.0270 0.008925 0.0075 | 0.0278

λexp | λ̂exp 0.015214 0.0095 | 0.0393 0.016196 0.0090 | 0.0165

p-value (H0 : HAQRE(-BU) = SHAQRE(-BU)) 3.20 · 10−62 4.68 · 10−53

Table 3: MLE Comparison: HAQRE vs SHAQRE, BU and non-BU.

The SHAQRE and SHAQRE-BU models fit the data significantly better than HAQRE
and HAQRE-BU, respectively (p−values < 0.00001). On the other hand, the difference
between the optimal likelihoods of SHAQRE and SHAQRE-BU is not statistically signifi-
cant (p−value = 0.20). This indicates that most of the significant data-fit improvement is
incorporated into the priors once subjectivity is allowed, and there is not much room left
for improvement coming from belief updating.
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