27/11/2022
Urban development induced land transitions affect urban hydrology, resulting in increased flooding risks. Climate change-related precipitation changes are an added complexity to the flood risks of cities. This study examines the role of land use changes in determining the occurrence of urban flooding events across 42 Indian cities under current and future climate change scenarios. Landsat images for 1990, 2000, 2010, and 2017 have been processed using a hybrid classification technique to determine the land use shares for all cities. A typical event-count study using newspaper archives has been conducted to create a flooding event database. A multilevel model employing logistic mixed-effects approach was used. Future projections of the occurrence of flooding events for nine models under three climate change-related Representative Concentration Pathways (RCPs)—2.6, 4.5, and 8.5—and three urban development scenarios have been carried out. The results suggest that cities should preserve the land uses that act as a sponge—the green, open and blue spaces. As these spaces decrease, the projected flooding events increase. Under the RCP 2.6 scenario, the number of flooding events is significantly lower (95 % confidence) than under RCPs 4.5 and 8.5. The expected flooding occurrences between RCP4.5 and RCP8.5 are not significantly different (95 % confidence) for many scenarios, suggesting that Indian cities should aim for a world temperature increase of below 2 °C, or devastating consequences are imminent. This study highlights the need for Indian cities to undertake integrated spatial planning measures for a resilient, sustainable urban future.