06/08/2006
We look at scaling a nonlinear optimization problem for iterative solvers that use at least first derivatives. These derivatives are either computed analytically or by differncing. We ignore iterative methods that are based on function evaluations only and that do not use any derivative information. We also exclude methods where the full problem structure is unknown like variants of delayed column generation. We look at related work in section (1). Despite its importance as evidenced in widely used implementations of nonlinear programming algorithms, scaling has not received enough attention from a theoretical point of view. What do we mean by scaling a nonlinear problem itself is not very clear. In this paper we attempt a scaling framework definition. We start with a description of a nonlinear problem in section (2). Various authors prefer different forms, but all forms can be converted to the form we show. We then describe our scaling framework in section (3). We show the equivalence between the original problem and the scaled problem. The correctness results of section (3.3) play an important role in the dynamic scaling scheme suggested. In section (4), we develop a prototypical algorithm that can be used to represent a variety of iterative solution methods. Using this we examine the impact of scaling in section (5). In the last section (6), we look at what the goal should be for an ideal scaling scheme and make some implementation suggestions for nonlinear solvers.